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1. Introduction

In complex dynamics, the iteration theory of rational functions originated
around 1920 in the work of Gaston Julia and Piere Fatou. The study of
dynamics of entire functions essentially started in 1926 in the work of Fatou
[28]. Subsequently, there was not much activity in the field for about sixty
years. Around 1980, a renewed interest in the complex analytic dynamics was
generated, due to the beautiful computer graphics introduced into the subject.
A comprehensive survey of the work on complex dynamics of rational functions
and polynomials can be found in [5,14,15,16,20]. Baker extended much of the
work of Fatou and Julia to the class of entire functions, showing along the way
that a new type of stable behaviour (wandering domain) could occur for entire
transcendental functions. The dynamics of entire functions is quite different
from the dynamics of polynomials or rational functions, mainly because of the
essential singularity at oo. By Picard’s theorem, any neighbourhood of oo is
mapped over the entire plane infinitely often, missing at most one point which,
in the language of dynamical systems, means that an entire map exhibits a
tremendous amount of hyperbolicity near cc.

For polynomials or rational functions, there are several comprehensive
reviews and books available for the work on their dynamics. However, no
effort has been made to update the work on the dynamics of entire func-
tions after the survey of Devaney [19]. The present work is aimed at to fill
this gap. However, this endeavour of the authors has been guided solely by
their own research interests and many meritorious research papers might have
been omitted just because they do not belong to the main theme of the review.

2. Basic definitions and results
Let f(z) be a non-constant entire function.Let 2o = f(2¢) and 2, = f(2,_1) =
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f™(z0) ;n = 1,2,..., where f* = fofofo...of is the nth iterate of f. The
set O"(z9) = {f™(20) : n =0,1,2,...} is called the orbit or forward orbit of
2o and the set O~ (z9) = {z: f™(z) = 2o for some positive integer n} is called
the backward orbit of zj.

A family F of analytic functions defined on a domain 2 C (' is said to
be normal in Q if every sequence of functions {f,} C F contains either a
subsequence which converges (in usual metric) to a limit function f uniformly
on each compact subset of (2, or a subsequence which converges (in usual
metric) uniformly to oo on each compact subset. A family F is said to be
normal at a point 2y € (2 if it is normal in some neighbourhood of z,.

Let C* = C U{oo} denote the extended complex plane. The Fatou set of
an entire function f(z), denoted by F(f), is defined as F/(f) = {z € C* : {f"}
is normal at z}. The Julia set is the complement of Fatou set.

A set S is called invariant under f if f(S) C S. The set S is called
completely invariant if f(S) € S and f!(S) C S.

The following are some of the elementary properties of the Fatou set and
the Julia set of f(z) ( See e.g. [5,7,14,35] ).

e F(f) is open and J(f) is closed.

« F(f) = F(f") and J(f) = J(f") ¥n > 2.

e Either J(f) has empty interior or J(f) = C*.

e J(f) is nonempty perfect set.

e F(f) and J(f) are completely invariant.

o If zy € J(f) is not a exceptional value (i.e., f(z) = 2 for some z € C),

then J(f) = O ().

A point z is said to be a periodic point of period p for a function f(z)
if fP(z) = z. The least positive integer p for which f?(z) = z is called the
minimal period of z. The number A = (f?)'(z) is called the multiplier or
eigenvalue of the periodic point z.

If the minimal period of z is 1 (i.e. f(z) = z) then z is called a fixed point
of f(z). For a periodic point 2z, of period p, the orbit {zo, f(20), f*(20) - - -,
P71 (20)} is called a cycle or a periodic cycle of z. The periodic point z, of
period p is called attracting, repelling and neutral or indifferent if [A| < 1,
|A| > 1 or |A| = 1 respectively. If A = 0, the attracting periodic point 2 is
called superattracting. If |A| # 1, the periodic point 2, is called hyperbolic.
When \ = e?™@ the indifferent periodic point is further classified as rationally
or irrationally indifferent according as « is rational or an irrational number.
The cycle of the periodic point z, is called attracting, repelling, rationally
neutral or irrationally neutral if 2 is attracting, repelling, rationally neutral
or irrationally neutral respectively.

A rational function always has a fixed point. However, a transcendental
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entire function need not have any fixed point, e.g. consider f(z) = e* + z.
Fatou [28] proved that a rational function f(z) (of degree > 1) has periodic
point of (not necessarily minimal) period n for all n > 1, while an entire tran-
scendental function f(z) has at least one periodic point of order 2. However,
an entire transcendental function has infinitely many periodic points of period
n (not necessarily minimal period) for all n > 2 [39].

In 1968, Baker [1] conjectured that if f(z) is an entire transcendental func-
tion and n > 2, then f has infinitely many repelling points of minimal period
n. The above conjecture was proved in affirmative by Bergweiler [6]. Further,
it was conjectured [30] that if f(z) is an entire transcendental function, [ a
straight line in the complex plane, and n > 2, then f™ has infinitely many
fixpoints that do not lie on [. This conjecture was proved by Bergweiler [11].
Further, Bergweiler [9] combined the above two results, and proved that if f
is an entire transcendental function, [ a straight line in the complex plane,
and n > 2, then f has infinitely many repelling periodic points of period n
that do not lie on (.

The Julia set J(f) is the closure of the set of repelling periodic points
of f(z) [1]. It is easily seen that the attracting periodic points are in the
Fatou set, while repelling periodic points are in the Julia set. Further, it
is well known that rationally indifferent periodic points are in the Julia set.
However, the irrationally indifferent periodic points may lie either in the Fatou
set or the Julia set.

Let f(z) be either an entire function or a rational function. A maximal
connected domain U contained in the Fatou set of a function f(z) is said to be
a component of the Fatou set F'(f). Since, F(f) is completely invariant and
f™(z) is analytic in U for each n, f*(U) = U, (say) is a component contained
in F(f). Bergweiler and Rohde [12] proved that if f is a transcendental
entire function and U and V are two Fatou components of F(f) such that
f(U) C V, then V\f(U) contains at most one point. This result was also
proved by Herring [31] in 1993 independently.

Yang and Hua [44] proved that if f is an entire transcendental function,
then

F=fF)=f(F)u{PV(f)nF}
where PV (f) denotes the set of all finite Picard exceptional values with respect
to f.

A component U of F(f) is called periodic with period n if f*(U) = U.
The set {Uy = U, f(U), f2(U),..., "1 (U)} is called the (periodic) cycle of
components. The least positive integer n with this property is called the
minimal period of U. A component U of F(f) is called preperiodic if there
exist nonnegative integers n and m with n > m > 0 such that f*(U) =
f™U). Tt is easily seen that the periodic components are preperiodic and
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if U is preperiodic component then f™(U) is a periodic component of period
n —m. A component of F(f) which is not preperiodic is called a wandering
component or a wandering domain.

Sullivan [40] proved that if f(z) is a rational function of degree greater
than one, then the function f(z) has no wandering domain in its Fatou set.
Sullivan [40,41,42] completed a classification scheme studied in parts by Fa-
tou, Julia, Siegel, Arnold, Moser and Herman for the dynamics of a rational
function in the periodic components of its Fatou set. A similar classification
scheme for the class of entire functions is given by Bergweiler [7]. Thus, we
have the following theorem giving the behaviour of iterates of an entire func-
tion f(z) in the periodic components :

Theorem 2.1 Let f(z) be an entire function other than linear polynomial.
Let U be a periodic component of the Fatou set F(f) having minimal period
n and let S = f". Then, only the following possibilities can occur :

(1) U is an attracting domain : In this case the periodic component U
contains an attracting periodic point zy of period n.

An attracting domain is also called an attractive basin of zy. Further, |S'(z)| <
1, S¥(2) — 2o for z € U as k — co. The cycle {z, f(20), f*(20), - - -
s ™ Y(20)} is called the attracting cycle for f(z). If S'(z¢) = 0, then U is
called a superattracting domain.

(2) U is a parabolic domain : In this case the boundary OU of the periodic
component U contains a periodic point 2z, of period n and S*(z) — 2, for
zeUask — oo.

A parabolic domain is also called a leau domain. Further, S’(z) = 1 the cycle
{20, f(20),--., " Y(20)} is called the parabolic cycle for f(z).

(3) U is Siegel disk : In this case there exists an analytic homeomor-
phism ¢ : U — D where D = {z : |z| < 1} is the unit disk, such that
#(Sod™'(z)) = e*™z for some irrational number a.

(4) U is a Baker domain : In this case there exists zp € OU such that
Sk(2) — 2z for z € U as k — oo, but S(z¢) is not defined. If f(z) is an entire
transcendental function, zy = oo. Thus, for an entire transcendental function
U is also called a domain at infinity. However, for a polynomial entire function
P(00) = 00, and hence Baker domain do not exist for polynomials.

Remark : A periodic component, called Herman ring, that is different from
all the periodic components of above theorem occurs only in the dynamics of
rational functions. The component U of the Fatou set of a rational function is
called a Herman ring if there exists an analytic homeomorphism ¢ : U — A,
A being the annulus A = {z : 1 < |2| < r}, such that ¢(S(¢p7*(2))) = e*™2
for some irrational number a. Herman rings do not exist in the dynamics of
entire functions [43].

The following examples illustrate each of the classifications of periodic
components of the Fatou set F'(f) given by the above theorem.
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Ezample 1 Attracting domain : Let f(z) = 2? be entire function. the point
z = 0 is an (super) attracting fixed point for f(z). In this case, U = A(0) =
{z : |z|] < 1} is an attracting domain for f(z).

Ezample 2 Parabolic domain : Let E(z) = e*~'. The point z = 1 is a
rationally indifferent fixed point of F(z). Let U = interior{z € C' : E™(z) —
1 as n — oo}. The fixed point z = 1 lies on the boundary of U, since
E™(z) — oo for x > 1 as n — oo. Thus, U is a parabolic domain for E(z).
Ezample 3 Siegel disk : Let P(z) = e*™@z +- ..+ 2% where « is an irrational
number satisfying the condition > >°  (log (¢n+1)/¢n) < co where p,/gn, n =
1,2,... are the continued fraction approximants to . The point z = 0 is
irrationally indifferent fixed point of P(z) with multiplier e*™. Further, there
exists an analytic homeomorphism ¢ : U — D where D is the unit disk and U
is an open neighborhood containing 0 such that ¢(f(¢71(2))) = >z [35].
Thus, U is a Siegel disk for P(z).

Ezxample / Baker domain : It is easily seen that a polynomial has no Baker
domain, since oo is a super attracting fixed point for a polynomial. Let f(z) =
1+z+e€* be an entire transcendental function. Set H* = {z € C : R(z) > 0}
and U = {z € C: f*"(z) = o0 as n — oo}. It is observed that R(f(z)) =
1+ R(z) + R(e?) > R(z) for z € HT. Therefore, all the orbits in the half
plane H* lie in stable domain U consisting of points whose orbits tend to the
essential singularity oo. Consequently, H™ C U is a Baker domain for f(z).
FEzample 5 Wandering domain : Let f(z) = z + A sin z, where A > 1 is
chosen such that each critical point zy of f(z) is mapped to zy & 27, another
critical point of f(z). Thus, there are only two distinct orbits corresponding
to the critical points. Consequently, all sufficiently small neighborhoods of a
critical point lie in the Fatou set, since the iterates contracts these regions and
all orbits tend uniformly to oo in these neighborhoods. Further, the vertical
lines = kn lie in the Julia set of f(z) for any integer k [19]. It therefore
follows that each critical point on a critical orbit lies in a distinct component
of the Fatou set. Thus, each of these components are wandering domains since
they are not preperiodic.

There are points other than periodic points which play important role in
the dynamics of a function. The following is a review of the role of such points
in the complex dynamics.

A point w is said to be a critical point of f(z) if f'(w) = 0. The value
f(w) corresponding to a critical point w is called a critical value of f. A point
w € C* is said to be an asymptotic value of f(z), if there is a continuous
curve 7(t) satisfying
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lim ~y(t) = oo and tlirglo f(y@®)=w

t—00

Clearly, oo is an asymptotic value for every entire function. If a function
f(2) has an asymptotic value w, the preimage of any neighbourhood of w is
unbounded and has noncompact closure.

The set SV (f) of singular values of an entire function f(z) is defined as the
union of the set of all critical values of f(z) and the set of all finite asymptotic
values of f(z). Thus,

SV(f) = CV(f)UAV(f)

where, CV (f) = set of all critical values of f(z) and AV(f) = set of all (finite)
asymptotic values of f(z).

The following results exhibit the importance of singular values in the dy-
namics of an entire function. Devaney [22] proved that if f(z) is an entire
function other than a linear polynomial and z; lies on an attracting cycle
or a parabolic cycle of f(z), then the orbit of at least one critical value or
asymptotic value is attracted to a point in the orbit of zy, and also proved
that if f(z) is an entire function other than a linear polynomial and the Fatou
set F'(f) has a Siegel disk, then the forward orbit of some critical point must
accumulate in its boundary.

In case of domains which are not preperiodic, the finite limit function of
iterates of an entire function in wandering domains are limit points of the
forward orbits of the singular values. More precisely, it was proved in [10]
that if f(z) is an entire function and U is a wandering domain of f(z) and
S'(f) = Der{f"(z) : z € SV(f),n = 0,1,2,...} denote the derived set of
the forward orbits of all singular values of f, then all limit functions of the
sequence {f"(U)} are contained in S’(f) U {co}. Let

B ={f :sing(f') is bounded}
S = {f :sing(f") is finite}

Eremenko and Lyubich [27] proved that if f € B is a transcendental entire
function and z € F(f) then the orbit {f™} does not tend to oo, and if f € S,
then F(f) has no wandering components and every orbit in F'(f) is absorbed
by a cycle of Fatou domains or by a cycle of Siegel disks. Further, the set
sing(f~') contains at most ¢ points, then ng+n; < ¢, where np is the number
of the cycles of Fatou domains and n; the number of irrational neutral cycles.

3. Complex Dynamics of Critically Finite Fntire Func-
tions

An entire function is said to be critically finite if it has only finitely many
asymptotic and critical values. The critically finite entire maps form a
class of entire functions whose dynamics prove to be most tractable. We
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review below some of the recent work on the dynamics of the class of critically
finite transcendental entire functions.

It is easily seen that the entire functions Ae®, Asinz and Acosz are in the
class of critically finite transcendental entire functions. On the other hand
Ae* —1)/z, and z + Asinz are not in the class of critically finite transcen-
dental entire functions, since they have infinitely many critical values. As a
dynamical system, a function in the class of critically finite transcendental
entire functions shares many of the property of the polynomials or rational
functions. However, there are several significant differences, such as existance
of a wandering domains, existance of a Baker domains, existance of unbounded
domain of attraction for a finite attracting periodic point in the Fatou sets of
entire transcendental functions while any of domains cannot be contained the
Fatou sets of polynomials or rational functions. The dynamics of the func-
tions in the class of critically finite transcendental entire functions is mainly
studied by Devaney [17,18,21,24,25], Durkin [23], Eremenko [26], Goldberg
[29], Lyubich [26], Keen [29], krych [24] and Tangerman [25]. An excellent
review of almost all the fundamental results on dynamics of critically finite
entire functions is due to Devaney [19].

The “no wandering domain” theorem due to Sullivan [40] gives that if f (2)
is a rational function of degree greater than one then f (z) has no wandering
domains in its Fatou set. Goldberg and Keen [29] and Eremenko and Lyubich
[26] extended Sullivan’s result to the entire functions in the class of critically
finite transcendental entire functions as follows:

Theorem 3.1 (]26,29]) Let f (z) be a critically finite entire transcendental
function. Then f (z) has no wandering domains.

Theorem 3.2 ([27]) Let f(z) be a critically finite entire transcendental
function. Then f (z) has no Baker domains.

It is well known that the Julia set of a polynomial never equals the ex-
tended complex plane, since point at infinity is an attracting fixed point for a
polynomial. Fatou [28] in 1926, conjectured that the Julia set of the function
e® equals the extended complex plane. Misiurewicz [37] proved the Fatou’s
conjecture affirmatively in 1981. The following theorems give criteria for the
Juila set of an entire function to be the extended complex plane.

Theorem 3.3 ([21]) Let f(z) be a critically finite entire transcendental
function and the forward orbits of all its singular values tend to co under iter-
ation of f (z). Then the Julia set J (f) of f (2) equals the extended complex
plane C*°.
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Theorem 3.4 ([21]) Let f(z) be a critically finite entire transcendental
function and all its singular values are prepriodic (but not periodic). Then,
the Julia set J (f) of f (z) equals the extended complex plane C°.

For critically finite transcendental functions, Devaney and coworkers [17,
18, 21, 23, 24| have taken more interest in the exponential family Ae*. They
studied the dynamics of entire functions Ae?, (A > 0)) and exhibited all its
beauties. Some of the main results on the dynamics of entire transcendental
function F) (z) = Ae?, A > 0 are reviewed in the following:

Theorem 3.5 ([23]) Let Ey(z) = Xe*, A > 0. Then, the Julia set of
E) (2) is a nowhere subset of the right half plane for 0 < A < 1.

Theorem 3.6 ([23]) Let E\(z) = Xe*, A > 0. Then, the Fatou set of
E)(2), 0 < A < 1, is the attractive basin A (ay) = {z : f*(2) = a, as
n — oo}of the attracting real fixed point ay of E) (2).

Theorem 3.7 ([25]) Let Ey(z) = Xe*, A > 0. Then, the Julia set of
E (z) contains ‘Cantor bouquets’ for 0 < A < 1.

Theorem 3.8 ([21]) Let Ey(2) = Ae*, A > 0. Then, for A > { Julia
set of E) (2), equals the extended complex plane C°.

Devaney and Durkin [23] proved that the Julia set of E) (z) for 0 < A < 1
is a nowhere dense subset entirely contained in the right half plane. As soon as
the the parameter A\ crosses the value %, E, (z) suddenly explodes and equals
to the extended complex plane. This phenomena is reffered to as explosion or
chaotic burst in the Julia sets of functions in one parameter family. This type
of explosion occurs as well as in other family of functions like Acosz, A > 0.
The characterization of the Julia set of E) (z) as the closure of the set of all
escaping points (i.e. the points whose orbits tend to oo under iteration) is as
follows:

Theorem 3.9 ([23,25]) Let Ey(z) = Ae?, A > 0. Then, the Julia set
of E) (z) is given by

J(E\) ={2€ C:E}(2) - 0coasn— oo}

At a particular parameter value, the dynamical changes suddenly, after
which it again remains the same for the parameter belonging to a large
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interval. These sudden changes in dynamics are called bifurcations. A bifurca-
tion accuring in the dynamics of E) (z) = Xe®, A > 0 is observed by Devaney.
Thus,

Theorem 3.10 ([17,21]) Let E\(2) = Xe®, A > 0 be a one parameter
family of functions. Thus, a bifurcation in the dynamics of E) (z) occur at

1
the parameter value A = —.

This type of bifurcatioen is also found to occur in the families of functions
like Asinz, 1Acosz, for A > 0.

Jang [32] while describing the dynamics of ze*™#, proved that if the real
parameter p belongs to the set (—o0,2) U (2, ), then the critically finite
function f,(z) = ze*** has the Julia set that is not the whole complex plane,
where 1, is root of the equation

G(u) = p+a(p) + (—p + ap))ezpa(p) = 0,
a(p) = (1 — 2 +2)"".

4. Complex Dynamics of Non-Critically Finite
Entire Functions
An entire function is said to be non-critically finite if it has infinitely many
asymptotic and critical values or we can say if an entire function is not criti-
cally finite then it is said to be non-critically finite.

The dynamics of non-critically entire functions had not been explored
lately probably because of non-applicability of Sullivan’s theorem to these
functions. Also, the presence of infinitely many critical values and the be-
haviour of the orbits of critical values make it difficult to study the dynam-
ics of non-critically finite entire functions. The work in this direction has

been started recentely [33,34], with the studied of the entire transcendental
e? —

functions A and introduction of a class of non-critically finite entire

z
functions. Some of the basic results for the dynamics of such functions are
reviewed here.

Let K = {f,\(z) !

A > O} be one parameter family of entire

transcendental functions. A function f)(z) € K has infinitely many crit-
ical values in the disk centered at origin and having radius A and f}(2)
has infinitely many zeros in the left half plane. Further f, is not periodic.
The bifurcation occurs in the dynamics of f, at the critical parameter value
A* 2 0.64761. For 0 < A < A*, F(f\) equals the basin of the attraction of
the real attracting fixed point and J(f)) lies only in the right half plane.
J(fx) contains the real line R for A > A\*. Figure 1 suggests that the Julia
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sets of f) admits cantor bouquets for 0 < A < A* and there is an explosion in
the Julia set of f) asA crosses the value A*. Further, the Julia set of f)(z) is
characterized as the closure of the set of escaping points for A > 0.

Figure 1: Explosion in the Julia set of fy(z) (i) A =0.64 < A* (ii) A = 0.65 >
A*

Let H be the class of functions defined by

(1)  f(z)is an entire function having order p with (1/2) < p <1
H=1{f0): (#7)  f(z) has only negative real zeros in the complex plane
" (i) |f(—=x)] < f(0)=1forallz >0
(iv) limg e f(—2) =0

and G be the class of functions defined by

G={g(z) = f(*): f € H}
For a function g € G, let

S ={g:\(z2) =Xg(z) : g € G and )\ € R\{0}}

be one parameter family of entire transcendental functions. One of the inter-
esting examples of the family S is { AIp(2); A € R\{0} and I, is the well known
modified Bessel function of zero order}. The dynamics of g,(z) € S has been
studied in [34]. Some of the basic dynamical properties of the function g € G
are given in the sequel. If g € G, then ¢(z) passes infinitely many real critical
values and w=0 is the only finite asymptotic value of g(z). If g(z) € S and
A(ay) be the basin of attraction of the real attracting fixed point a, of gx(z)
for 0 < [A[ < A}, then, for 0 < |A| < A}, F(gx(2))= A(ax). The Julia set of
ga(z) € S for 0 < |A| < A} is characterized as the closure of the set escaping
points. Further, if g\(z) € S and |A| > A}, then Julia set of gx(z) = C* for
Al > A

The dynamics of another non-critically finite entire function
fa(z) = A+ z+¢€* is described in [38]. Let the lines Ly = {z =t + kmi :
t € R,k € I} be invariant under fy, where I is set of integers. The lines Ly,

10
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for k even, belong to the Julia set and divide the plane into parallel strips of
width 27. These strips are denoted by 7;,. Inside each strip we define a set
M,,, where the derivative is bounded,i.e.,

My = {2 =2 +iy € T : | f4(2)] <1}

If 0 < A <1, then the set M,, is contained in the immediate basin of
attraction (i.e., connected component of basin of attraction) of log(\) + mmi.
Figure 2 shows part of the dynamical plane for A = 0.1 and A = 1 [-37 <
x < 3m,—2m < y < 27|; the black points belong to J(f).

L o o S o g
1_«.'{%1.

N AT AR P o o o R

et S o T

Figure 2: The julia set of A + 2z + e* for A=0.1 and 1.

If semistip T = {zx+iy:2>3,—7/2<y<0}and a>0and 0 < § < .
Then there exists an invariant curve in the semistrip 7', which is a graph of a
continuous function y = ¢(x). Figure 3 show part of the dynamical plane for
A=09402, A=14+dand A =14 0.25i [-37 <z < 37, —27 < y < 27|,
respectively; black points belong to the Julia set.

5.Connectivity of Julia Sets

The connectivity of Julia sets for entire transcendental function is de-
scribed in [36]. The following results are in this direction:.

Theorem 5.1 Let f be a transcendental function. Then the set J(f)U oo
in C'*° is connected if only if f has no multiply connected wandering domain.

It is follows from theorem 5.1 that J(f)Uoc is C* connected if one of the
following conditions holds;

1. sing(f~!) is a bounded set.
2. The Fatou set F(f) has an unbounded component.

3. there exists a curve L(t) (0 < ¢t < 1) with lim;_,o L(t) = oo such that fi,
is bounded. In particular, (3) holds if f has a finite asymptotic value.

Theorem 5.2 Let f be a transcendental entire function. If all the Fatou

11
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Figure 3: The julia set of A + z + e* for A=0.9+0.2i, 1+i and 1+0.25i(left to
right).

components of f are bounded and simply connected then J(f) is connected.

The following is an easy consequence of theorem 5.1 and 5.2. If f is a tran-
scendental entire function and all the Fatou components of f are bounded,
then J(f) is connected in C' if and only if J(f) U {co} is connected in C'*.
The following theorem gives that the connectivity of Julia set J(f) depends
on the boundaries of the Fatou components of f.

Thermo 5.3 The boundary of each Fatou components of the function
f(z) =2 —log2 + 2z — €* is Jorden curve in C*°. In particular, the Julia set
J(f) is connected in C.

Bergweiler found the property in theorem 5.3 independently for the func-
tion f(z) =2 —1log2 + 2z — €* in [8].

6. Growth aspects and complex dynamics

In the dynamics of an entire function the order of an entire function
plays an important role. For a polynomial or an entire function of order
zero, the basin of attraction of any finite attracting periodic point is bounded.
However, this is not necessarily true for entire transcendental functions
with non zero order. Bhattacharya [13] showed that the basin of
attraction of any finite attracting periodic point is bounded if the entire

1
transcendental function has growth 5,0), that is, either order

12
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0< p(f) = lim,_, sup % <

7= lim, o Suploi](\;)(r): 0. Thus,

s or 0<p(f)=3 and the type

Theorem 6.1([13]) Let f(z) be a non-constant entire function of growth
1
37 0) and let o € C' be an attracting periodic point of period n. Then the

basin of attraction of « is bounded.

The estimates for the growth of functions with unbounded(e.g including
half planes) basins of attraction are obtained in [13]. Baker proved that if
f(z) is an entire transcendental function of sufficiently small rate of growth,
then F'(f) can have unbounded completely invariant component and under
suitable slow growth conditions no unbounded component at all. Thus,

Theorem 6.2([3]) If for a transcendental entire function f(z), there is
an unbounded invariant component of the Fatou set , then f(z) must be of

1
growth greater that (5, 0).

Theorem 6.3([3]) If a transcendental entire function f(z) is of generalized

) allogM(r)) .
- = —_— h == ]_
(v, )-order po (f) = lim, 00 sUP alogr) with a(z) = logz and 1 < p < 3,

then every component of the Fatou set of f(z) is bounded.

Theorem 6.4([3)) If f(z) is a transcendental entire function of growth not
1
greater than 5,0 , then the Fatou set F'(f) has no completely invariant

component.

Devaney [19] proved that if a critically finite entire transcendental function
f satisfies certain growth conditions(see [25] for specific growth condition),
then any point which tends to oo under iteration of f lies J(f). Moreover,
J(f) is precisely the closure of the set of points which escape to oo under
iteration.

Baker [2,4] showed the existance of an entire functions of a given order,
0 < p < o0, with multiply connected wandering domains. Thus, he proved

Theorem 6.5 For p such that 0 < p < oo there is an entire function of
order p, which has multiply connected wandering domains.

Theorem 6.6 There exists an entire function which has wandering domains
of infinite connectivity.

13
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