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Abstract
Cis-regulatory elements (enhancers) are considered to be
a key component of the gene regulatory process and
they are difficult to be located using conventional ap-
proaches. Even, there are no computational methods of
finding enhancers in a genome sequence. Few attempts
have been made to cluster Transcription Factor Binding
Sites(TFBSs) and hence predict the potential enhancers
but the enhancers generated by this method are prone to
errors as it is very difficult to hit the proper density for
clustering. Here, we present a tool to predict putative en-
hancers in co-expressed genes if the tool is provided a de-
cent list of co-expressed genes.

1 Introduction
Transcription may be considered as a process where the
rate limiting step is the recruitment of RNA Polymerase
II to the promoter. Thus regulation of transcription can be
viewed as the mechanism to vary this rate. Since pro-
moter sequence is largely invariant this variation must
come from the Enhancer. Enhancer is a cluster of Tran-
scription Factor binding sites and act by combination of
transcription factors that are bound to it. It is essential for
the control of gene expression. Most of the enhancers are
cis-acting and so, also referred as cis-regulatory element.

The cis-regulatory elements are difficult to locate using
conventional approaches [2, 9, 8] as they are very small
and scattered widely over genome’s non-coding region
[4]. Studies have found that the regions of high density
of Transcription Factor Binding Sites are highly probable
of being active regulatory sequence. In [1], 37 regions
of the Drosophila melanogaster genome with high densi-
ties of predicted binding sites were identified for five tran-
scription factors involved in anterior-posterior embryonic

patterning. Nine of these clusters overlapped known en-
hancers. They incorporated conservation of binding-site
clustering into a new genome-wide enhancer screen, and
predict several hundred new regulatory sequences. Some
efforts have been made in this regard but its correctness
depends on whether the clustering method is hitting the
right density or not.

We have proposed a method to predict potential en-
hancers in co-expressed genes. We start with predict-
ing Transcription Factor Binding Sites in a genome se-
quence using P-Match [3] tool. It effectively combines
pattern matching and weight matrix approaches. It uses
the TRANSFAC\R library of weight matrices as well as
sets of aligned known TFBSs collected in the TRANS-
FAC\R database. We have proposed two different ways
to cluster the Transcription Factor Binding Sites to get pu-
tative enhancers in a genome sequence. But, simple clus-
tering is expected to give a huge number of putative en-
hancers than the real enhancers as our algorithms blindly
output all the clusters crossing some thresholds which
were decided based on patterns in real enhancers. To take
care of this issue, we are making use of the hypothesis that
co-expressed genes are expected to have similar enhancer.
Provided a list of co-expressed genes, the tool outputs the
putative enhancers for each gene that are similar to some
enhancer in most of the other genes of co-expressed gene
set.

The roadmap of the paper is as follows- Section 2 de-
scribes the P-Match Algorithm used to predict Transcrip-
tion Factor Binding Sites (TFBSs) within a sequence.
Section 3 discusses two different approaches to cluster
TFBSs. Section 4 contains description of an additional
filtering used towards the end to get enhancers with strong
possibility of existence. Section 5 analyzes the results of
our method. Finally, Section 6 contains concluding re-
marks.
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2 Predicting Transcription Factor
Binding Sites(TFBSs)

We have implemented P-Match algorithm [3] to predict
TFBSs in a sequence. The algorithm is based on simul-
taneous use of a positional weight matrix (PWM) and
a set of aligned TFBSs. It uses matrix library of Nu-
cleotide Frequency Matrix(NFM) provided by TRANS-
FAC\R which contains the NFMs for 1740 different tran-
scription factors. Nucleotide frequency Matrix contains
frequencies of each base(can be one among A,C,G,T) at
each position in the regulatory sequence. To construct
NFM for a transcription factor, a set of sites is compiled
by grouping all sites from the database which are known
targets of the selected transcription factor or a family of
similar transcription factors. The sites are aligned by
using a combination of Gibbs site sampling method [6]
and a recursive application of Match program [5] mak-
ing sure that the core of each site(experimentally found)
is included in the alignment. In the end, that window is
selected which provides lowest false positives.

The PWMs are computed from the nucleotide fre-
quency matrix using the following formula:

wi,B = fi,B × Ii;B ∈{A,C,G,T}, (1)

where,

Ii =
∑

B∈{A,C,G,T}

fi,B × log2 fi,B −
∑
k=1,4

1

4
log2

1

4
(2)

So, PWM is essentially 4*(Length of Transcription
Factor, f) matrix for each transcription factor, f.

/* We have used a default cut-off of 0.9. */
The P-Match algorithm computes d-score which mea-

sures the similarity between a sub-sequence X of length
L in a genome and a given transcription factor S. The d-
score is calculated using weights of the nucleotides in the
individual positions (present in PWM):

d =
MaxWeight−

∑
i=1,L |wi,B(Xi) − wi,B(Si)|

MaxWeight
(3)

where B(Xi) and B(Si) are the nucleotides in ith posi-
tion of the subsequence X and the site S, respectively.
The d-score can take value from 0.0 to 1.0, where 1.0
denotes that there is a perfect match between the subse-
quence S and the sequence obtained by nucleotides with
maximum frequency at each place.

Two different d-scores have been used: dmatrix is the
d-score calculated for the whole site while dcore is the d-
score calculated for the five most conserved positions in

the PWM. By ’five most conserved positions’ we mean
Top5(Maxi∈{A,C,G,T}(f))

We have used a default cut-off score of 0.9 for dmatrix

and a cut-off score of 0.9 for dcore. Only those TFBS are
reported and accounted for in the next step of the algo-
rithm which clear both the cut-offs.

3 Enhancer Predicting Algorithm

3.1 Sliding Window Approach
In this method, we slide a window of fixed size from one
end to the other end of a gene sequence. In the process of
scanning, we check if the region is dense enough (char-
acterized by MINTFBS, ie. minimum number of TFBSs
required in a window) and it is added to the enhancer list if
satisfies the cut-off criteria. We have taken the MINTFBS
to be 15, though there is not any backing towards this hy-
pothesis but a typical enhancer used to have more than
15 TFBSs. The algorithm ensures that the maximum dis-
tance between two farthest TFBSs is less than the Sliding
Window size.

3.2 Trie-Based Approach
The problem with Sliding Window based algorithm is that
it enforces TFBSs to spread close to Window size. A
dense cluster with a very short length as compared to Win-
dow size can not be the outcome of above algorithm as
rather a sparse cluster spread across the sliding window
size would be the corresponding cluster outputted by the
algorithm. It is even difficult to choose the window size
as there is not sufficient studies to provide the average
length.

The algorithm we describe in this section takes care of
the limitations of the above algorithm. It ensures that all
the clusters of length greater than MINTFBS are gener-
ated. It starts with pairing up each of the TFBSs to both
its neighbours. In the next iteration, the pairs are paired
to both their neighbouring pairs and the process builds up
a trie in a bottom-up way. During the process the clus-
tered TFBSs that satisfy clustering criteria are added to
the potential enhancers list and the clusters in which dis-
tance between farthest TFBSs cross the MAXLENGTH
are discarded from clustering process. We have chosen
MAXLENGTH to be 1 kilo base. In [7], the size of en-
hancer is said to be ranging from 100 base pairs to a kilo
bases with average length of a typical enhancer being 500
base pairs. A cluster left in between discarded clusters
is also discarded for the next iterations. The algorithm is
described in Algorithm 1-3.
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The above algorithm outputs all the possible clusters
with at least MINTFBS shared transcription factor bind-
ing sites (TFBS) such that the largest distance between
any two TFBS does not exceed MAXLENGTH.

Algorithm 1: clusterTFBS

Require: List < Node > OriginalTrie
1: if allAbandoned then
2: return
3: end if
4: List < Node > trie, trie1, trie2
5: i = 0;
6: while i < trie.Size do
7: if trie[i].abandoned then
8: i++;
9: else

10: if (i == trie.size − 1||trie[i].abandoned)
then

11: if (i == 0||trie[i− 1].abandoned) then
12: trie[i].abandoned = true
13: else
14: trie1.add(trrie[i])
15: end if
16: i+ = 2
17: else
18: trie1.add(combineNodes(trie[i], trie[i +

1]))
19: end if
20: end if
21: end while
22: clusterTFBS(trie1)
23: trie = originalTrie.clone
24: i = 0
25: while {i < trie.size} do
26: if trie[i].abandoned then
27: i++
28: else
29: if i == trie.size − 1||trie[i + 1].abandoned

then
30: if i == 0||trie[i− 1].abandoned then
31: trie[i].abandoned = true
32: i+ = 2
33: else
34: trie2.add(trie[i])
35: i+ = 2
36: end if
37: else
38: if i == 0||trie[i− 1].abandoned then
39: trie2.add(trie[i])
40: i++
41: else

42: trie2.add(combineNodes(trie[i], trie[i+
1])

43: i+ = 2
44: end if
45: end if
46: end if
47: end while
48: clusterTFBS(trie2)

Algorithm 2: CombineNodes

Require: Node n1, Node n2
1: Node n
2: n.addTFBS(n1.getTFBS)
3: n.addTFBS(n2.getTFBS)
4: if (n.End− n.Start) > MAXLENGTH then
5: n.abandoned = true
6: end if
7: if n.sizegfTFBS > MINTFBS then
8: findPotentialClusters(n1, n2)
9: end if

10: return n

Algorithm 3: findPotentialClusters

Require: Node n1, Node n2
1: Node n
2: n.addTFBS(n1.getTFBS)
3: for

i = 0; i < (MINTFBS − n1.noOfTFBS); i++
do

4: n.addTFBS(n2.getTFBS[i])
5: end for
6: i = (MINTFBS − n1.noOfTFBS) > 0? : 0
7: while i < n2.noOfTFBS do
8: n.addTFBS(n2.getTFBS[i])
9: if (n.End− n.Start) > MAXLENGTH then

10: break
11: end if
12: trieList.add(new Cluster(n.getTFBS))
13: i++
14: end while
15: n.removeAll()
16: n.addTFBS(n2.getTFBS)
17: for i = n1.getNoOfTFBS − 1;

i > (n1.getNoOfTFBS − 1−
(MINTFBS − n2.getNoOfTFBS));
i−−) do

18: n.addTFBS(n1.getTFBS[i])
19: end for
20: (n1.getNoOfTFBS − 1 − (MINTFBS −
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n2.getNoOfTFBS)) > 0?(MINTFBS −
n2.getNoOfTFBS) : 0

21: while i >= 0 do
22: if (n.End− n.Start) > MAXLENGTH then
23: break
24: end if
25: n.addTFBS(n1.getTFBS[i])
26: trieList.add(new Cluster(n.getTFBS()))
27: i++
28: end while

Algorithm 4: isMatched

Require: Enhancer e1, Enhancer e2
1: editDistance =

e1.getTFBS.size+ e2.getTFBS.size
−2 ∗ intersectionSizeOf
(e1.getTFBS, e2.getTFBS)

2: if editDistance =< MAXDIST then
3: return true;
4: else
5: return false;
6: end if

4 Another Filtering

After we get the potential enhancers from the above algo-
rithm, we apply another filtering algorithm to make our
claim stronger. It is observed that co-expressed genes are
more likely to contain shared transcription factor binding
sites (TFBS) [4]. So, if an enhancer is present in most of
the co-expressed genes, it has high probability of actually
being an enhancer. Our tool allows a user to provide a set
of co-expressed genes and based on cross-gene enhancers,
we output a list of enhancers with strong chances of be-
ing a real enhancer. As the process of predicting TFBs is
not accurate because of possible errors in Position Weight
Matrix creation step, we have not used perfect match be-
tween enhancers, but a loose match isMatched(Enhancer
e1, Enhancer e2). isMatched is based on the idea of Ham-
ming distance[6] which captures the dissimilarities be-
tween two strings of equal length. The edit distance be-
tween two enhancers is calculated as given in Algorithm
4. The non-transitivity property of isMathced enforces
checking each pair for similarity. The algorithm is de-
scribed in Algorithm 5.

Algorithm 5: crossGeneEnhancers

1: for (i = 0; i < C.size; i++) do
2: for (j = 0; j < C[i].size; j ++) do

3: for (l = 0; l < C[k].size; l ++) do
4: if isMatched(C[i][j], C[k][l]) then
5: C[i][j].adjList.add(C[k][l])
6: C[k][l].adjList.add(C[i][j])
7: end if
8: end for
9: end for

10: end for
11: list < list < Enhancers >> E
12: for m = 0;m < C.size;m++ do
13: E{m} = null
14: end for
15: for m = 0;m < C.size;m++ do
16: for n = 0;n < C[m].size;n++ do
17: if C[m][n].adjList.size >

MINGENEMATCHRQD then
18: E[m].add(C[m][n])
19: end if
20: end for
21: end for

5 Result

We tested our tool on the following set of co-expressed
genes: {SLC35D1, SLC26A2, PAPSS2, WWP2, SER-
PINH1, UAP1L1} because these genes are expected to be
expressed in same space and time and therefore, expected
to share enhancers. Following is the result obtained:

Table 1: Number of enhancers predicted for a Gene Set

Gene Number of Enhancers Predicted
SLC35D1 12
SLC26A2 42
PAPSS2 34
WWP2 9
SERPINH1 50
UAP1L1 52

Using the ChIP-seq technology, powerful predictive tools
have been developed to study regulatory sequences and
their properties. Using a Support Vector Machine (SVM)
framework on gene sequence it is now possible to accu-
rately identify EP300-bound enhancers. First the SVM
is trained on experimentally found enhancers and then it
is used to find new enhancers that are enriched in both
ChIP-seq signal and DNase I hypersensitivity signal in the
mouse brain and are located near relevant genes.
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Figure 1: Number of Transcription Factors Found along
the Length of the Gene SLC26A2

6 Limitations and Future Work
The tool is not automatically adjustable in a way that user
interference is required for better results. For example, a
user needs to provide a correct list of co-expressed genes
in order to get good quality of results. A biologist gen-
erally looks for regulatory regions for co-expressed genes
and not a single gene, so in most cases, we can expect a
concerned user to be already having a list of co-expressed
genes. Apart from that, the quality of results also de-
pends on the upstream and downstream length provided
by the user. Though there is not any concrete guidelines
for choosing those lengths, but some studies have found
that most of the regulatory regions have been observed to
be within 2kb of promoters. We still need to test the pos-
sible enhancers found using the CRM Activity Database
which is a compilation of experimentally validated en-
hancers and the REDFly database of enhancers.
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