Java Extension:
Automatic

Type Inference

CS698Y Project, 2013-14 11

Prof. Rajeev Kumar {rajv@iitk.ac.in}

Abhimanyu Jaju {10327009, abhijaju@iitk.ac.in}
Harshit Maheshwari {10327290, harshitm@iitk.ac.in}
Vinit Kataria { 10327807, vinitk@iitk.ac.in}

Indian Institute of Technology, Kanpur
Computer Science and Engineering

CONTENTS

[1_Abstract]

I3 State of Artl

4 History and Usefulness of auto|
4.1 HIStOry| . . . o o o

b C++11 Specifications|

6 C++414 Proposed Plan|

[/ Proposed Rules|

[7.1.1 ‘auto’for primitive datatypes|.
[7.1.2 ‘auto’for user defined objects|.

[7.2.1 Multiple return types for primitives|
[7.2.2 Multiple return types forclasses|
(7.3 C/C++Compiler].

9 Implementation|

1 ABSTRACT

In Java, the type of a variable must be explicitly specified in order to use it. However,
with our knowledge of type-inference and type-unification, usually we can deduce
the types of variables as well as return types of functions (although it is not always
possible to deduce the type). For this purpose we propose the use of auto keyword
in Java. This would help developers to focus on the logic rather than on things which
the compiler can itself deduce. The feature of auto keyword for type-deduction of
variables has already been included in the latest C++11 standard. Further, in the pro-
posed C++14 standard, automatic deduction of function-return-type has been in-
cluded.

2 KEYWORDS

Java language features, auto, function type deduction, variable type deduction

3 STATE OF ART

Currently, Java supports no such feature. In Java, the type of the variable and the
return type of functions have to be explicitly mentioned at the time of variable/func-
tion declaration. However, the C++ language specifications supports leaving the type
deduction up to the compiler whenever possible in certain situations. The C++11
standard supports the keyword auto for variables which allows automatic type de-
duction for variables at compile time. Hence, at the time of variable declaration, the
compiler deduces the type of the variable by looking at the value being assigned to it.
Further, the new C++14 standard extends the usage of the keyword auto to function
(as well as for lambda function) return-type-deduction. On similar lines, C# standard
currently supports the var keyword for automatic type deduction of variables. But, a
necessity in both of the implementations is that the variable has to be initialized at
the time of declaration. Another necessity is that if the function return type deduc-
tion has to be done by the compiler, then the function definition needs to accompany
the function declaration.

4 HISTORY AND USEFULNESS OF AUTO

The auto specifier [1,2] was only allowed for variables declared at block scope or in
function parameter lists. It indicated automatic storage duration, which is the default
for these kinds of declarations. The meaning of this keyword was changed in C++11.

4.1 HISTORY

“The auto feature has the distinction to be the earliest to be suggested and imple-
mented: I had it working in my Cfront implementation in early 1984, but was forced
to take it out because of C compatibility problems. Those compatibility problems dis-
appeared when C++98 and C99 accepted the removal of "implicit int"; that is, both
languages require every variable and function to be defined with an explicit type. The
old meaning of auto ("this is a local variable") is now illegal. Several committee mem-
bers trawled through millions of lines of code finding only a handful of uses — and most
of those were in test suites or appeared to be bugs.

Being primarily a facility to simplify notation in code, auto does not affect the standard
library specification.”

—Bjarne Stroustrup , C++11 - the new ISO C++ standard [?]

4.2 USEFULNESS

As stated by Bjarne Stroustrup, auto is basically a tool to simplify notation in the code
and at the same time not effect the standard library specification. As a result, use of
auto in extensions of older code would not lead to broken code. Some powerful use
of auto [9,10] are described below:

* Readability: According to Java Language Specification (JLS) type of a variable
has to be explicitly mentioned at the time of declaration. Sometimes, in case of
castings this can become redundant and messy leading to reduced readability.
For example, to iterate over a map:

rMap map = getSomeMap () ;
Iterator iter = map.entrySet().iterator();
while (iter.hasNext()) {
Map.Entry entry = (Map.Entry) iter.next();
MyTableValue value = (MyTableValue) entry.
getValue () ;

L]

Iteration in java

Here the variable declarations of 'entry’ and 'value’ need to specify the type
twice. A simple extension to the JLS would be to be able to introduce variables
without specifying the type.

auto map = getSomeMap();
auto iter = map.entrySet().iterator();
while (iter.hasNext()) {

auto entry = (Map.Entry) iter.next();
auto value (MyTableValue) entry.getValue();

L]

auto as iterator

This makes the code easier to read, type, and change due to less duplication of
information.

* Maintainability: If we use ‘auto‘ in source code of large projects, then changes
to source code can be made easily if we had used ’auto’ previously.

* Ease of use: The use of auto to deduce the type of a variable from its initializer
is obviously most useful when that type is either hard to know exactly or hard
to write.

-

void printall(com.google.android.maps.Map myMap)
{

//instead of com.google.android.maps.Map temp = myMap
auto temp = myMap;

Type is hard to type/know

4.2.1 JAVA BUGS

There are some attempts [4,7] (bug 4459053 and 6242254) in which auto type infer-
encing was
against this was primarily the one we give for it’s use: readability.

The evaluation committee gave the following reasons for not including automatic
type inferencing:

tried to be introduced in Java, which were unsuccessful. The reason given

* The redundant type serve as valuable documentation. Readers do not have to
search for declaration to find the actual type of variable.

* Theredundancy allows the programmer to declare the intended type, and thereby
benefit from a cross check performed by the compiler, that helps catch errors.

Several other related bugs were filed by users but were repeatedly rejected by the
evalutaion committee [2,5,6,/8].

5 C++11 SPECIFICATIONS

The C++11 specification [3] for the use of ‘auto‘ keyword list the rules as follows:

e The ‘auto‘ keyword can be used as a simple type specifier. Examples:

int foo();

auto x1 = foo(); // x1 : int

const auto& x2 = foo(); // x2 : const inté&

auto& x3 = foo(); // x3 : inté&: error, cannot bind a

reference to a temporary
float& bar();
auto y1 = bar(); // yl : float
const auto& y2 = bar(); // y2 : const float
auto& y3 = bar(); // y3 : float
Ax fii()
autox z1 = fii(); // z1 : Ax
auto z2 = fii(); // z2 : Ax
autox z3 = bar(); // error, bar does not return a pointer
type

Example assignment using ‘auto’

* ‘auto’ can be used to provide a effective way for the programmers to express his
intentions in context of objects. Examples:

g
A foo();
A% bar () ;

A x1 = foo(Q); // x1 : A

auto x1 = foo(); // x1 : A

A& x2 = foo(); // error, we cannot bind a non—-lvalue to a
non—const reference

auto& x2 = foo(); // error

Ayl =bvar(); // y1 : A

auto y1 = bar(); // yl : A

At y2 = bar(); // y2 : Asg

auto& y2 = bar(); // y2 : A&

Reference type assignments using ‘auto’

* In C more than one variable can be declared in a single assignment provided
that individual type deductions don’t leave conflicts.

int i;

auto a = 1, *b = &i; //ok

auto x = 1, *y = &x; //Valid assignment from left to
right

auto ¢ = 1, d=2.2; // Error type conflicts c:int; d:
double;

Multi Variable Declaration

* ‘auto’ can be used for direct initialization, for the purpose of type deduction.

Example:
auto x = 1; // x : int
auto x(1); // x : int
auto*x x = new auto(1l); // x : int =

Multi Variable Declaration

6 C++14 PROPOSED PLAN

Some of the proposals for C++14 [9] language specification with reference to ‘auto’
are mentioned below.

* Allowing non-defining function declarations with auto return type is not strictly
necessary, but it is useful for coding styles that prefer to define member func-
tions outside the class. Example:

struct A {

auto f(); // forward declaration
};
auto A::f() { return 42; }

Forward declaration

 Since C++ compilers are single parse, if the return type cannot be deduced from
the first return statement then it gives error.

A foo();
A& bar ();

A x1 = foo(); // x1 : A

auto x1 = foo(Q); // x1 : A

A% x2 = foo(); // error, we cannot bind a non—-lvalue to a
non—const reference

auto& x2 = foo(); // error

A y1 =Dbvar(); // yl1 : A

auto y1 = bar(); // yl1 : A

Ay y2 = bar(); // y2 : A&

auto& y2 = bar(); // y2 : A&

.

Function return type deduction

e Similarly, for templates, some examples:

g
A foo();
A% bar () ;

A x1 = foo(Q); // x1 : A

auto x1 = foo(); // x1 : A

A% x2 = foo(); // error, we cannot bind a non—-lvalue to a
non—const reference

auto& x2 = foo(); // error

Ayl =bar(); // yl1 : A

auto y1 = bar(); // yl : A

Ay y2 = bar(); // y2 : As

auto& y2 = bar(); // y2 : A&

Template forward declaration

* Type deduction for multiple returns in a function is also defined. Examples:

g
auto iterate(int len)

{
for (int i = 0; i < len; ++1i)
if (search (i))
return i;
return -1;

Multiple returns in a function

* Recursion is handled in the following manner:

p
auto h() { return h(); } // error, return type of h 1is
unknown

auto sum(int i) {

if (i == 1)
return i; // return type deduced to int
else

return sum(i-1)+i; // ok to call it now

Type deduction in recursive functions

Table 7.1: A comparative study

Feature

‘ C++11/C++14

Proposed Rule in Java

Variable initialization (prim-

itive type)

[C++11]:Type is assigned ac-
cording to the C++11 ranges
for primitive data types

Type is assigned according

to Table

Variable initialization (user
defined class)

[C++11]:Type is assigned ac-
cording to type of value be-
ing assigned

Type is assigned according
to type of value begin as-
signed

Multiple variable initializa-
tion in a single statement

[C++11]:Allowed, but type
should be same for all

Allowed. Also, type can be
different

[C++14]: Type should be in-

Type should be inferable
through at least one return

Function Return Type ferable by the first return .
statement/cyclic depen-
statement
dency
Type can be different. Least
Multiple Return Type [C++14]: Type must be same | common ancestor in inheri-

tance hierarchy is returned.

7 PROPOSED RULES

In Table we do a comparative analysis of auto usage in different C++11/14 and

Java.

7.1 ‘AUTO‘ FOR VARIABLES

These rules discuss ‘auto’ type assignment w.r.t. variables.

auto x =
expression also

VALUE_TO_BE_ASSIGNED //right hand side can be

Listing 1: Example assignment for variables

7.1.1 ‘AUTO‘ FOR PRIMITIVE DATA TYPES

If auto is used for variables then for primitive types we propose the type assignments
based on the range of the value to be assigned as mentioned in Table However,
as per the language specifications if ‘1 is appended in the numeral literal it is consid-
ered as a long literal by default. Similarly, if ‘* is appended in the decimal literal it is
considered as a float literal by default.

Table 7.2: Range for ‘type‘ assignment

Primitive Lower Range Upper Range

Type

int -2,147,483,648 2,147,483,647

long (-9,223,372,036,854,775,808 | (2,147,483,648
.. -2,147,483,649) 9,223,372,036,854,775,807)

float 1.4E-45 3.4028235E+38

double 439E-324 1.7976931348623157E+308

boolean true false

Bacteria

Amoeba

Figure 7.1: Class Hierarchy Diagram

7.1.2 ‘AUTO’ FOR USER DEFINED OBJECTS

While assigning user defined objects to auto variables the type of the object being
assigned is given to the auto variable. Suppose we have the following Class arrange-
ment as shown in Figure

auto x
auto y

new Animal () ;
(Dog) animal;

// x 1s assigned type ‘Animal’
// x is assigned type ‘Dog’

Listing 2: Example assignment of user defined objects

10

7.2 ‘AUTO‘ FOR FUNCTIONS

In functions instead of specifying return type in function signature we can use auto
as return type. The compiler will infer type from all return statements of the function
and will try to deduce the most specialized return type which will be compatible with
all return statements. This will allow users to directly return primitive types/objects
at any level of hierarchy. Specific rules are explained through the examples below. In
the following code sample ‘x‘ would be assigned type ‘int‘ and ‘y* would be assigned
type ‘Animal‘.

auto myFunctl1 (){
return 4;
}

auto myFunct2(){

return new Animal () ;

}
auto x = myFunctl1(); //x: 1nt
auto y = myFunct2(); //y: Animal

Listing 3: Basic function calling

7.2.1 MULTIPLE RETURN TYPES FOR PRIMITIVES

In case of conflicting return types of primitive data the function will return lowest
common ancestor as shown in Figure[7.2] Same rule will be followed for the wrapper
class of these return types.

auto myFunct () { //return type: double
int i;
double 4d;

if (condition){
return i;

}

else{
return d;

3

Listing 4: Multiple return types

11

Figure 7.2: Primitive data types coercision

7.2.2 MULTIPLE RETURN TYPES FOR CLASSES

Parent — Child

double

T

float

T

long

T

nt

T

S

short

char

T

byte

When the return type of a function is auto and it returns parent class as well as child
class then after type resolution the parent class would be assigned as the return type

of the function.

Based on the hierarchy of Figure [7.3]if we have the code as given in Code 5| then the
return type should be Animal.

auto myFunct (){

if (condition){
return a;

}

else{
return m;

}

//return type:
Animal a = new Animal ();
Mammal m = new Mammal () ;

Listing 5: Multiple return types

12

Different levels in inheritance hierarchy

In case when the return type of the function is auto and it returns two sibling class in
a class hierarchy then the return type of the function would be the lowest common
ancestor in the inheritance hierarchy.

Based on the hierarchy of[7.1]if we have the code as given in Code[6|then the return
type should be Animal as it is the lowest common ancestor in the class hierarchy.

auto myFunct O){ //return type: animal
Amoeba a = new Amoeba();
Cat m = new Cat () ;

if (condition){
return a;

}

else{
return c;

3

Listing 6: Multiple return types

This is allowed because currently in Java the code given in Code[7]is allowed.

Animal myFunct O){ //this is allowed in java
Amoeba a = new Amoebal();
Cat m = new Cat () ;

if (condition){
return a;

}

else{
return c;

3

Listing 7: Multiple return types

7.3 C/C++ COMPILER

In C++11 standards value assignment to ‘auto‘ variables cannot be deferred and the
variable definition should be accompanied together with variable declaration. Code
given in Code8]is allowed but code given in Code[9|gives error.

13

auto x = 11; //declarationa and definition should be
together

Listing 8: Immediate variable definition

auto x; //gives error; definition should accompany
declaration

x=11;

Listing 9: Deferred variable definition

C/C++ compilers are single parse compilers. Therefore, we need to give the function
definition/declaration before actual function use.

7.3.1 RECURSION

The code given in Code |10[and Code |11| should give error while the code given in
Code[12]is allowed. The reason is that we should be able to deduce the return type of
functions in the first parse as C/C++ compilers are single parse.

auto h() {
return h(); //gives error

}

Listing 10: Not allowed

auto sum(int i) {
if (i == 1)
return sum(i-1)+i;
else
return i;

Listing 11: Not allowed

auto sum(int i) {

if (i == 1)
return i;
else

return sum(i-1)+i;

Listing 12: Recursion allowed

14

7.4 JAVA COMPILER: POSSIBILITIES

We can allow the code given in Listing 15 in Java as Java compilers make multiple
parse over the code. This is also the reason that in Java we can defer the function
definition after function use because we can parse the code again to type check with
the function definition.

auto sum(int i) { //allowed

if (i == 1)
return sum(i-1)+i;
else

return i;

Listing 13: Deferred variable definition

In fact, in Java we can allow the use of ‘auto‘ keyword for function return type for
cyclic dependencies as shown in Code[14] In Code[14]the return type of all the func-
tions will become ‘int‘.

auto myFunctl () { //return type: int

return myFunct2();

}
auto myFunct2 () { //return type: int

return myFunct3();

}

auto myFunct3 () { //return type: 1int
int i;

if (condition){
return myFunctl ();
}
else{
return i;

}

}

Listing 14: Cyclic Dependency

There is only one condition that it is actually possible to deduce the return type and
there is not clash in return types. For instance the code given in Listing[15|will give
compile time error as there is unresolved cyclic dependency of return types.

15

auto myFunctl () { //compilation error: return type cannot
be deduced

return myFunct2();

}
auto myFunct2 () {

return myFunct3();

}
auto myFunct3 () {

return myFunctl () ;

3

Listing 15: Type deduction not possible

However, the code given in Code[16]is allowed and we can deduce the return type.

auto myFunct1 (){ //return type animal

return myFunct2 () ;

}

auto myFunct2 () { //return type animal
Amoeba a = new Amoeba () ;

if (condition){
return myFunct3();
}
else{
return a;

}
}

auto myFunct3 () { //return type animal
Cat ¢ = new Cat();

if (condition){
return myFunctl ();
}
else{
return c;

}

Listing 16: Cyclic dependencies

16

myFunct2 myFunct3

Bacteria/Lowest class of Cat/Lowest class of class

class hierarchy hierarchy

Figure 7.3: Cyclic dependencies

8 LIMITATION

The following are some limitations of ‘auto‘:

* auto as type in parameter(s) of functions
The function calls are made during run-time so that the data type of arguments
cannot be found entirely during compile time. So we have a run-time depen-
dency in determining the actual type of auto parameters used in the function
definition.

* Overestimating the power of auto
Allowing rules like type inferencing in cyclic dependencies will put the respon-
sibility of ensuring that return type can be inferred on developers. This might
result in unnecessary confusion and longer time spent in debugging.

* Loss of comprehensibility
Extensive use of auto can lead to problems in understanding and readability of
code.

* Also, redundant type checking is useful for cross checking which leads for trusted
and safer code.

17

9 IMPLEMENTATION

We have modified the Java grammar and made the following changes:

AutoType:
AUTO

FieldDeclaration:
AutoType AutoVariableDeclarators SEMICOLON
| Modifiers AutoType AutoVariableDeclarators SEMICOLON

AutoVariableDeclarators:
AutoVariableDeclarator
| AutoVariableDeclarators COMMA AutoVariableDeclarator

>

AutoVariableDeclarator:
VariableDeclaratorId EQUALS VariableInitializer

MethodHeader:

AutoType MethodDeclarator
| Modifiers AutoType MethodDeclarator
|

>

LocalVariableDeclaration:
AutoType AutoVariableDeclarators

Listing 17: Modified Grammar

We have implemented and rigourously tested the following:

e We have implemented a basic functionality providing Java compiler as the start-
ing point for our project which supports compile time type deduction for vari-
able declarations and return type of functions. We also generate assembly code
for the same.

* We are doing type deductions only at compile time.

* auto can be used for type deductions of primitive as well as user defined types.

18

auto x=3, y = ’a’;
class myClass{

}

auto z = new myClass();

x:int

z: myClass

y: char

* We have also generated assembly code for the same.

* We have also implemented type deductions for primitive function return type.

auato myFunction () {

int i = 0;
return i;
}
auto myFunction (){
int i = 1;
int d = 2.2;
if (condition){
return 1i;
}
else{
reutn d;
}

return type:
i: int

return type:
i: int
d: double

returning:

returning:

int

double

int

double

* Automatic type coersion is also implemented for the same.

* Type deductions for auto functions with only one return statement which re-

turns object is implemented.

auto myFunction (){

Animal a;

Animal b;

if (condition){
return a;

}

else{
return b;

}

-

return type:
a: Animal
b: Animal

returning:

returning:

Animal

Animal

Animal

e Return type deduction for auto functions with multiple return statements that
are returning different/same objects is also implemented.

19

auto myFunction (){ return type: Animal
Animal a; a: Animal
Dog d; d: Dog
if (condition){
return a; returning: Animal
}
elseq{
return d; returning: Dog
}
}

-~

The following is not implemented in out implmentation:

* Return type inferencing for cyclic dependencies in functions is not implemented
due to the immense complexity.

REFERENCES

[1] Auto - a necessary evil? http://www.howzatt.demon.co.uk/articles/
AutoP1.html.

(2] C++11. http://en.cppreference.com/w/cpp/language/storage_
duration.

[3] C++11. https://en.wikipedia.org/wiki/C++11/.

(4] Jdk-4459053 : Type inference for variable declarations. http://bugs.java.
com/view_bug.do?bug_id=4459053, May 2001.

(5] Jdk-4879776 : Constructor type inference (jsrl4 + jsr65 ++). http://bugs.
java.com/view_bug.do?bug_id=4879776, 2003.

[6] Jdk-6220689 : Type arguments for a class shall be inferred on constructor invo-
cation. http://bugs. java.com/view_bug.do?bug_id=6220689, 2005.

[7] Jdk-6242254 : Language support for type inference. http://bugs. java.com/
view_bug.do?bug_1id=6242254, 2005.

[8] Jdk-6840638 : Project coin: Improved type inference for generic instance
creation (aka 'diamond’). http://bugs.java.com/view_bug.do?bug_id=
6840638, May 2009.

[9] Gabriel Dos Reis Bjarne Stroustrup, Jaakko JAd'rvi. Deducing the type of variable
from its initializer expression. http://www.open-std.org/jtcl/sc22/wg21/
docs/papers/2006/n1984 . pdf, 2006.

20

http://www.howzatt.demon.co.uk/articles/AutoP1.html
http://www.howzatt.demon.co.uk/articles/AutoP1.html
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/storage_duration
https://en.wikipedia.org/wiki/C++11/
http://bugs.java.com/view_bug.do?bug_id=4459053
http://bugs.java.com/view_bug.do?bug_id=4459053
http://bugs.java.com/view_bug.do?bug_id=4879776
http://bugs.java.com/view_bug.do?bug_id=4879776
http://bugs.java.com/view_bug.do?bug_id=6220689
http://bugs.java.com/view_bug.do?bug_id=6242254
http://bugs.java.com/view_bug.do?bug_id=6242254
http://bugs.java.com/view_bug.do?bug_id=6840638
http://bugs.java.com/view_bug.do?bug_id=6840638
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf

[10] Bjarne Stroustrup. C++11 - the new iso c++ standard.
stroustrup.com/C++11FAQ.html#auto.

http://www.

21

http://www.stroustrup.com/C++11FAQ.html#auto
http://www.stroustrup.com/C++11FAQ.html#auto

	Abstract
	Keywords
	State of Art
	History and Usefulness of auto
	History
	Usefulness
	Java Bugs

	C++11 Specifications
	C++14 Proposed Plan
	Proposed Rules
	`auto` for variables
	`auto` for primitive data types
	`auto` for user defined objects

	`auto` for functions
	Multiple return types for primitives
	Multiple return types for classes

	C/C++ Compiler
	Recursion

	Java Compiler: Possibilities

	limitation
	Implementation

