
On analogues of Miller-Yu theorem in

Resource-Bounded Measures

Himanshu Shukla
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur
Email-hshukla@cse.iitk.ac.in

Mentor: Dr. Satyadev Nandakumar
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur

July 9, 2015

SURGE-2015 IIT Kanpur

Abstract

We study the analogues of Miller-Yu theorem in Resource-bounded measures. Miller-Yu [7] gave the
first characterization of 1-randomness in terms of Plain Kolmogorov complexity. Hence closing a long
standing open problem. Its analogues in Resource Bounded measures were still unknown. We explore
them and discover the behaviour of existing theorems in resource-bounded measures. We present the
resource-bounded version of Chaitin’s inequality[2] and present the proof for the same. Further we define
randomness in resource-bounded measures and prove that the set of strings random with respect to
computational paradigm in resource bounded measures is a subset of set of random strings in terms of
measure-theoretic paradigm. Also prove one side of implication of Miller-Yu theorem in resource-bounded
measures. We stop with a conjecture that set of computationally random strings is a ”proper subset” of
set of strings which are measure-theoretically random.

1

Contents

Introduction 3

1 Definitions and previous results 3

2 Miller-Yu Theorem 5
2.1 Original Proof . 5
2.2 Simpler proof of Miller-Yu theorem . 8

3 Our Work 8
3.1 Resource-bounded version of Chaitin’s Inequality . 9
3.2 Proof of Miller-Yu theorem and Schnorr’s Theorem using Unpredictability paradigm 11

3.2.1 Miller-Yu theorem in Unpredictability paradigm . 11
3.2.2 Schnorr’s Theorem in unpredictability paradigm . 12

3.3 Polynomial time randomness . 13
3.4 Conjectures . 15

4 Directions for future work 15

References 15

2

Introduction

Infinite random sequences have been interesting mathematicians and computer-scientists since long. Using
measure theoretic approaches Von Misses in 1931 tried to define infinite random sequences as follows

A sequence is random if any of its sub-sequence created using an admissible place selection function which
is independent of value of the nth term chosen, follows law of large numbers.

. This definition did not work and there were many counter-examples showing such sequences can be non-
random in Geneva conference (1937). In 1966 Martin Löf[6] gave the first criterion of randomness using
measure theory. In 1970 Chaitin and Levin gave the criterion for randomness in terms of Computational
aspect of random sequence which means that ”All initial segments of random sequences have longer descrip-
tions”.

In 1972-73 Schnorr showed that the definition of random sequences using computational aspect and
measure theory were equivalent. But still there was no characterization in terms of Plain Kolmogorov
complexity. In 1971 Martin Löf[5] went very close in deriving such a criterion but just missed it. In
2008 Joshep S. Miller and Liang Yu solved this long standing open problem by giving a criterion for 1-
random infinite binary sequences in terms of Plain Kolmogorov complexity. Resource bounded complexity
is informally defined as the Kolmogorov complexity when time and space are bounded. The characterization
of Miller and Yu does not assume resource-boundedness. The analogues of this theorem in resource-bounded
measures were still unknown. We studied them and have proved the behaviour of various inequalities and
theorems in resource-bounded measures. First of all I will be stating some definitions and previous results
of this field without proof. A detailed discussion on them and proofs can be found in standard texts like[3]
and [4].

1 Definitions and previous results

1. Kolmogorov’s complexity: The Kolmogorov complexity of any finite binary string x with respect
to a Turing machine T is defined as shortest program p such that on input of y which is also a binary
string and the program p, T outputs x. Mathematically

CT (x|y) = min{l(p) : T (p, y) = x}

l(.) represents the length of any string. Note that this definition is conditional to y. For obtaining the
unconditional definition put y = ε. Also note that same definition works taking x and y as natural
numbers because we can inter-convert finite binary sequences and natural numbers and infinite binary
sequences into reals.
There is a similar definition of Kolmogorov complexity if the programs are prefix-free i.e. if a program p
produces x and q produces x′ then p can not be prefix of q or vice-versa. For prefix-free (instantaneous)
Kolmogorov complexity we have the following definition:

KT (x|y) = min{l(p) : T (p, y) = x}

Here the Turing machine T is prefix-free.

2. Theorem 1.0.1 : There exists a universal turing machine U such that for every turing machine T
there exists a constant cT for all x and y

CU (x|y) ≤ CT (x|y) + cT

A similar invariance theorem can be obtained for prefix-complexity by replace C by K and taking T
and U as prefix-free machines.

3

3. Theorem 1.0.2 :The number of strings of length n such that C(x) ≤ n−k, l(x) = n are at most 2n−k

4. Theorem 1.0.3 (Kraft’s inequality):
∑

p is instantaneous code

2−l(p) ≤ 1

5. Paradigms of Randomness: There are three paradigms of randomness namely computational,
measure-theoretic and unpredictability paradigm. We give the definition of all of the three.

(a) Computational Paradigm: Intuitively Random sequences should be hard to describe i.e. they
should not have shorter description. This notion was formalised by Chaitin and Levin and the
sequences following this criterion are called 1-random sequence. A sequence ω is said to 1-random
iff

K(ω � n) > n−O(1) ∀n

(b) Measure-theoretic Paradigm: Martin Löf in 1966 [6] gave the first criterion for randomness in
terms of measure theory. It can be simply stated as a sequence is random according to a property
iff it does not lie in an effectively null set. Formally it can be stated as follows:[3]

i. A Martin Löf test is a sequence {Un}nεω of uniformly
∑1

0 classes such that µ(Un) ≤ 2−n.

ii. A class C ⊂ 2ω is Martin-Löf null if there is a Martin- Löf test {Un}nεω such that C ⊆ ∩nUn.

iii. A set A ε 2ω is Martin Löf random if {A} is not Martin Löf null.

(c) Unpredictability Paradigm: Intuitively for a random sequence we should not be able to guess the
n+1 the bit if we are given n bits of the sequence. Formally it is defined as follows:
Let d be a computably enumerable (c.e.). martingale then an infinite sequence ω is said to
unpredictably non-random iff ωεS[d] where S[d] represents the success set of d.

Note: In 1972-1973 Schnorr showed that these three paradigms are equivalent.

6. Theorem 1.0.4 Let d be a c.e. martingale.

(a) For any string σ and any prefix-free set S of extensions of σ, we have
∑
τεS 2−|τ |d(τ) ≤ 2−|σ|d(σ).

(b) Let Rk = {σ : d(σ) ≤ k}. Then µ(JRkK) ≤ d(λ)
k .

7. Theorem 1.0.5 (Chaitin’s Inequality):

∀k∀n|{σε2n : K(σ) < n+K(n)− k}| < 2n−k+O(1)

. This theorem has got its importance because it gives a counting inequality for prefix complexity.

8. Universal Probability: Universal Probability is of any finite string x conditioned to y is defined as
follows:

P (x|y) =
∑

p(y)=x

2−l(p)

I present the following theorem which compiles the results of prefix free complexity. The proof of all
these theorems are present in [2].

9. Theorem 1.0.6 Here T is a prefix-free turing machine.

(a) K(x) ≤ K(x, y) +O(1)

(b) K(x, y) ≤ K(x) +K(y|x) +O(1)

(c) K(x, y) ≤ K(x) +K(y) +O(1)

(d) The set of all true propositions of the form ”PT (x) > 2−n” is recursively enumerable and given
y∗ one can recursively enumerate over all true propositions of the form ”PT (x|y) > 2−n”

4

(e) For every prefix-free turing machine T there is a constant c such that

i. K(x) ≤ −log2(PT (x)) + c

ii. K(x|y) ≤ −log2(Pt(x|y)) + c

(f) There is a computer T
′

for each turing machine T such that the following to hold:

i. KT ′ (x) = [−log2(PT (x))] + 1,PT ′ (x) = 2−[−log2(PT (x))]

ii. KT ′ (x|y) = [−log2(PT (x|y))] + 1,PT ′ (x|y) = 2−[−log2(PT (x|y))]

(g) For each computer T there is a constant c such that

i. P (x) ≥ 2−cPT (x) and P (x|y) ≥ 2−cPT (x|y)

ii. K(x) = −log2(P (x)) +O(1) and K(x|y) = −log2(P (x|y)) +O(1)

(h) P (x) ≈
∑
y
P (x, y)

(i) ∃ a turing machine T such that KT (y|x) = K(x, y)−K(x) + c

(j) K(s, t) = K(s) +K(t|s) +O(1)

10. Theorem 1.0.7 (Schnorr’s theorem): An infinite sequence ω is Martin Löf random iff ∀n K(ω �
n) > n−O(1)

11. Resource-bounded Kolmogorov Complexity: I am only concerned with the time hence will give
only time-bounded definition of Kolmogorov complexity. Let T be a turing machine and t(n) be a time
bound when n is length of string in interest. The time-bounded Plain Kolmogorov complexity of the x
conditioned to y is defined as length of shortest program producing from input y in at most t(n) steps.

C
t(n)
T (x|y) = min{l(p) : T (p, y) = x, in at most t(n) steps}

We have a similar definition for prefix-free complexity obtained by taking T as prefix-free machine and
C to be K.

K
t(n)
T (x|y) = min{l(p) : T (p, y) = x, in at most t(n) steps}

12. Theorem 1.0.8 (Invariace theorem for resource-bounded complexity): There exists a univer-
sal partial recursive turing machine U such that for every other partial recursive turing machine T
there is a constant c such that ∀x ∀y

C
ct(n)logt(n)
U (x|y) ≤ Kt(n)

T (x|y) + c.

A similar theorem holds for Resource-bounded prefix-free complexity which is as follows

K
ct(n)logt(n)
U (x|y) ≤ Kt(n)

T (x|y) + c.

2 Miller-Yu Theorem

2.1 Original Proof

I present the original proof of Miller-Yu theorem as given in [7] with some explanations. Before going on I
will state the following theorem which I will be proving later in this section.

5

Theorem 2.1.1 Let G(n) be defined as follows:

G(n) =

{
Ks+1(t), if n = 2〈s,t〉 and Ks+1(t) 6= Ks(t)

n, otherwise.

Here Ks means sth stage approximation of Kolmogorov complexity. That is we run all the programs of length
i for j steps such that i+ j = s. Hence if ω is an infinite sequence and ∀n C(ω � n) ≥ n−G(n)− c then is
Martin-Löf random.

Theorem 2.1.2 (Miller-Yu)[7]: For ω which is an infinite binary sequence, the following statements are
equivalent:

1. ω is 1-random.

2. ∀n C(ω � n) ≤ n−K(n)−O(1).

3. ∀n C(ω � n) ≥ n− g(n)−O(1) for every computable g : N⇒ N such that
∑
nεN 2−g(n) is finite.

4. ∀n C(ω � n) ≥ n−G(n)−O(1). G(n) is same as used in theorem 2.1.

I prove the following lemma before starting with the proof of the theorem:

Lemma 2.1.3
∑
nεN 2−G(n) <∞

Proof: ∑
nεN 2−G(n) ≤

∑
nεN 2−n +

∑
tεN

∑
mεN 2−Ks(t)∑

nεN 2−G(n) ≤
∑
nεN 2−n +

∑
tεN

∑
m≥K(t) 2−m∑

nεN 2−G(n) ≤
∑
nεN 2−n + 2

∑
tεN

2−K(t)

using Kraft’s inequality the sum converges. Hence
∑
nεN

2−G(n) <∞.

Now we prove the theorem: 1⇒ 2 : Define

Ik = {ωε2ω : (∃n)C(ω � N) < n−K(n)− k}.

Now as Ks and Cs represent the sth stage approximation of K and C. Then ∃n∃s such that C(ω � n)+K(ω �
n) < n− k iff ωεIk. This makes Ik to be a

∑1
0 class. Fewer than 2n −K(n)− k programs have length less

than n−K(n)− k, so |{σεn : C(σ) < n−K(n)− k}| ≤ 2n−K(n)−k. Hence

µIk ≤
∑
nεN

µ{ωε2N : C(ω � n) < n−K(n)− k}

≤
∑
nεN

2−n+n−K(n)−k = 2−k
∑
nεN

2−K(n) ≤ 2−k

Hence {Ik}kεN is a Martin Löf test. Now if ω is 1-random hence ω /∈ Ik for some k. Hence ∃k such that (∀n)
C(ω � n) ≥ n−K(n)− k

2 ⇒ 3 : Let g : N ⇒ N be a computable function such that
∑
nεN

2−g(n) < ∞. By minimality of K as

an information content measure, ∀n K(n) ≤ g(n) + O(1). Therefore, if ∀n C(ω � n) ≥ n − K(n) − O(1)
hence ∀n C(ω � n) ≥ n− g(n)−O(1).

6

3⇒ 4 : This follows because G is computable functions and
∑
nεN

2−G(n) is finite.

4 ⇒ 1 : This part is implied directly by theorem 2.1.1. Hence we now prove theorem 2.1.1 using contra-
positive argument. We would prove the following:

If ω is not 1-random then ∀c ∃n such that C(ω � n) ≤ n−G(n)− c

Proof: Suppose ω is not 1-random then ∀kεN ∃t such that K(ω � t) ≤ t − k. This is by Schnorr’s theorem
(theorem 1.0.7) and t is large enough so that

K(t) ≤ 2t − k − 1

as if not then we know that t > k, also suppose for contradiction K(t) ≥ 2t − k − 1 for some pair (t, k)
then K(t) has a max value as log(t) ⇒ k + 1 ≥ 2t − log(t) since k < t hence this will not hold. Hence a
contradiction. Therefore K(t) ≤ 2t − k − 1 is a valid assumption.
Now take the least s such that Ks+1(t) = K(t) then put n = 2〈s,t〉 (from now on we will assume n to be of
this form and to be the least s such that Ks+1(t) = K(t)) and we will show that for this n ∃ a program of
most length n−G(n)− k +O(1) such that C(ω � n) can be described.

Define a partial computable no prefix-free function M : 2N ⇒ 2N. ∀tεN let n = 2〈s,t〉 (this s is mini-
mum s such that Ks+1(t) = K(t)). To 〈s, t〉 we devote all the programs from length n/2 + c + 1 to n + c.
Note that no to pairs s1, t1〉 and 〈s2, t2〉 will have conflict in the program sets associated with them i.e. if
{〈si, ti〉} are the programs associated with 〈si, ti〉 then {〈si, ti〉} ∩ {〈sj , tj〉} = φ. This is because the range
of length associated with both of these sets are different.

Now for kεN, let m = n − Ks+1(t) − k + c. Now m is obviously < n + c and if m > n/2 + c + 1 then
∀yσε2n such that K(σ � t) ≤ t− k, we try to give each σ a M-program of length m. We required this m to
be > n/2 + c + 1 because k will be at least 1 and the number of strings with one bit compression can be
at most n/2. Note that different m do not compete for the programs. Also note that since Ks+1(t) = K(t)
so total number of strings in the set |{σε2n : K(σ � t) ≤ t − k}| ≤ 2t−K(t)−k+c.2t−k = 2m. Hence we have
enough M-programs of length m for such σ′s.
Now because ω is 1-random hence we have

m = n−K(t)− k + c ≥ n−K(t)− k + c ≥ n− 2t + k + 1− k + c
≥ n/2 + c+ 1

. This happens because 2t < n/2 as :

n = 2
(s+t)(s+t+1)

2 +t.

Now as s and t > 0 so

(s+t)(s+t+1)
2 ≥ 1

⇒ n/2 = 2
(s+t)(s+t+1)

2 +t−1 ≥ 2t.

Hence m > n/2 + c+ 1 which was also one of the required condition for giving M-programs.
Therefore ∃ a program of length m for ω � n as for ω a non 1-random ω � n ε2n and ω � t = σ � t for some
σε2n and for that σ there is a description of length m.
Therefore

C(ω � n) ≥ CM (ω � n) +O(1) ≤ n−K(t)− k + c+O(1)
≤ n−G(n)− k +O(1)

as k is an arbitrary value hence ∀c ∃n C(ω � n) ≤ n−G(n)− c.

7

2.2 Simpler proof of Miller-Yu theorem

Bienvenu, Merkel and Shen[1] gave a simpler proof of Miller-Yu theorem by showing the equivalence of
statement 1 and 3 in theorem 2.1.2. 1⇒ 3 is evident using g(n) instead ofK(n) in the proof of side 1⇒ 2.
We look at the simpler proof for the equivalence 3⇒ 1
3⇒ 1: By the universal randomness test we generate for every c = 1, 2, 3 . . . a sequence of strings

x(c, 0), x(c, 1), x(c, 2), . . .

such that total measure of all the intervals is less than 2−c, and for every non random sequence ω and every
c, one of the strings x(c, i) is a prefix of ω.

We without loss of generality assume that x(c, i) is a total function and the enumeration is done in the
increasing order of length i.e. l(x(c, 0)) ≤ l(x(c, 1)) ≤ l(x(c, 2)) . . . for any c, as dummy intervals can be
added without altering the total measure.

Now for each c there are finitely many strings of length n, and let m(c,n) represent the total measure of
such strings. Hence we have

∑
n
m(n, c) ≤ 2−c for every c.

Now consider the function g defined by the equation

2−f(n) =
∑
c

2c/2m(n, c).

Since the quantity
∑
n
m(n, c) < 2−c, hence

∑
n

2−f(n) =
∑
n,c

2c/2m(n, c) ≤
∑
c

2−c/2 ≤ 1

. Now any string of length n is the sequence x(c, .) is uniquely determined by c and then we number these
strings of length n from 1 to 2nm(n, c). Hence its Kolmogorov’s Complexity does not exceed

2log(c) + log(2nm(n, c)) +O(1) ≤ 2log(c) + n− f(n)− c+O(1)

As −2log(c) + c can be arbitrarily large hence putting this equal to c′, we prove the implication using
contra-positive argument.

3 Our Work

We took a two way approach for studying Miller-Yu theorem in the resource-bounds. One was using original
proof of Miller-Yu and another was using the simpler proof. We do all our study for polynomial time bounds
i.e. polynomial of length of string.

• In course of studying it through the original proof we derived a resource bounded-version of Chaitin’s
inequality (theorem 1.0.5). For which we derived all the parts of theorem 1.0.6 in resource-bounded
measures.

• We converted the proof in section 2.2 and theorem 1.0.7 into unpredictability paradigm. Then we de-
fined the definition of randomness in resource bounded measures analogous to paradigms of randomness
in unbounded case.

• We further studied the relation between these newly defined paradigms of resource bounded random-
ness.

• We prove the 3⇒ 1 of theorem 2.1.2 for resource bounded complexity.

• Finally we end have ended with the conjecture that the other implication of theorem 2.1.2 does not
hold.

8

3.1 Resource-bounded version of Chaitin’s Inequality

I reproduce whole of theorem 1.0.6 before proving the resource bound version. Let x∗ represent the shortest
program in lexicographic order which outputs x with respect to a turing machine.

Theorem 3.1.1 If p and q be polynomial time bounds then

∀p∃q such that ∀k∀n|{σε2n : Kp(σ) < n+Kq(n)− k}| < 2n−k+O(1)

Before proving, we give the following lemmas:

Lemma 3.1.2 Let p and q be the polynomial time bounds then

∃q ∀p(Kq(x) ≤ Kp(x, y) +O(1))

Proof: The proof for this lemma goes as follows, let p be a fixed polynomial time bound, let a represent a
program and as there is a Turing machine T such that T p(a) = x iff Up(a) = (x, y) ⇒ Kp

T (x) = Kp(x, y)
hence using the invariance theorem for the prefix-free resource bound version of Kolmogorov Complexity
there is a polynomial time bound q such that Kq(x) ≤ Kp(x, y) +O(1)

Lemma 3.1.3 let p, q and q′ be polynomial time bounds then

∀p∀q∃q′(Kq′(x, y) ≤ Kp(x) +Kq(y|x) +O(1))

Proof: We claim that there is computer T with the following property. If Uq(a, x∗) = y and |a| = Kq(y|x),

then T q+p+O(1)(x ∗ a, ε) = 〈x, y〉. Hence by invariance theorem K
q+p+O(1)
T (x, y) ≤ |x ∗ a| = |x ∗ | + |a| =

Kp(x) +Kq(y|x) and ∃q′ which is polynomial time bound such that Kq′(x, y) ≤ Kp+q+O(1)
T (x, y) +O(1)

I now verify the claim as follows: T does the following when given x ∗ a on its program tape and ε on its
work tape. Now first it simulates the computation of U and reads x∗ and performs the computation of x and
then it performs the simulation of U as x∗ given on work tape and a given on program tape and computes y.
Finally it takes O(1) time to calculate〈x, y〉. One can see that the amount of steps that T takes to compute
〈x, y〉 is p+ q +O(1).

Lemma 3.1.4 Let p and q be polynomial time bounds

∀p∃q(Kq(x, y) ≤ Kp(x) +Kp(y) +O(1))

Proof: Fix some polynomial time bound p then ∃ a computer T such that given x∗ and y∗ (with respect
to polynomial time bound p and U(x∗, ε) = x and U(y∗, ε) = y) on its program tape and ε on its program

tape it will compute x and then y and finally 〈x, y〉. Hence K
2p+O(1)
T (x, y) ≤ Kp(x) + Kp(y) hence using

invariance theorem we have Kq ≤ Kp(x) +Kp(y) +O(1) where q is a polynomial time bound.

Lemma 3.1.5 Let p be a fixed polynomial time bound then define

P pT (x) =
∑

a:Tp(a,ε)=x

2−|a|

then ∀p∃q such that all true propositions of the form ”P pT (x) > 2−n” are recursively enumerable and this
statement is polynomial time decidale in q steps.

Proof: We just present a rough draft of the proof by chosing the canonical Kraft’s tree, i.e. for a given
turing machine T there is exactly one program of each length such that it can halt and produce some string.
Now note that we run all the programs in this canonical Kraft’s Tree of length ≤ n for exactly p steps using
devotailing on this Kraft’s tree. Note that there are exactly n programs so total steps are n∗p. Now if there
is any program that produces x then clearly P pT (x) ≥ 2−n and we can see that if there is no program that
gives this then all the programs that can produce x in p steps are of length ≥ n + 1 hence P pT can at most
be 2−n. Hence there exists a q such that one can check the truth value of the expression ”P pT (x) > 2−n” in
at most q steps.

9

Lemma 3.1.6 Let p and q be polynomial time bounds and let T be a prefix-free turing machine then

1. ∀T∀p∃q such that Kq(x) ≤ −log2(P pT (x)) + c

2. ∀T∀p∃q such that Kq(x|y) ≤ −log2(P pT (x|y)) + c

Proof: Define a turing machine T ′ which functions as follows first of all it checks whether it has been
given ε or y∗ on its work tape. If it has been given ε then it enumerates the true propositions of the
form ”P pT (x) > 2−n” and simulates the turing machine defined by the requirements of the form 〈x, n + 1〉
(”P pT (x) > 2−n”) i.e 〈x, n is said to be a requirement iff n ≥ [−log2(P pT (x))] + 1 ([.] represents Greatest
Integer Fucntion). Now this check can be made in polynomial time bound as for a particular x start from
n = 1 and then move forward in polynomial time we will get the least n such that P pT (x) > 2−n and
note that all the n’s after that will automatically satistfy this. Hence the programs a of length n such
that T

′
(a, ε) = x is 1 if n ≥ [−log2(P pT (x))] + 1 and 0 otherwise. This said because note that if n is

choses then n + 1, n + 2, . . . all be chosen hence in the machine T ′ we will be assigning the first program
available of each length to x hence we can conclude that ∃q′ which is a polynomial time bound such that

Kq′

T ′
(x) = [−log2(P pT (x))] + 1,P q

′

T ′
(x) = 2−[−log2(P

p
T (x))] now use invariance theorem to get the theorem part

a. The other part also follows in a similar fashion.

Lemma 3.1.7 Let p and q be polynomial time bounds and let T be a prefix-free turing machine then

1. there exists a constant c such that

P q(x) ≥ 2−cP pT (x), P q(x|y) ≥ 2−cP pT (x|y)

2. Kq(x) = −log2(P p(x)) +O(1),Kq(x|y) = −log2(P p(x|y)) +O(1)

Proof: The proof of part a follows from lemma 3.1.6 using the fact that P q(s) ≥ 2−K
q(s) and proof of second

part is obtained by taking C = U

Lemma 3.1.8 Let p, q, q′ be a polynomial time bounds then

1. ∀p∃q and a constant c such that P q(x) ≥ 2−c
∑
y
P p(x, y).

2. ∀p∃q′ and a constant c′ such that P q
′
(x) ≤ 2c

′∑
y
P p(x, y).

Proof: This is a two way proof, first of all there is a turing machine T such that ∃l which is a polynomial
time bound T l(a, ε) = x if Up(a, ε) = 〈x, t〉. Thus P lT (x) ≥

∑
y
P p(x, y). This statement simply means that set

of programs producing x in machine T in at most p time bound is a superset of set of programs producing
〈x, y〉 using the machine U in at most p time bound. Hence P lT (x) ≥

∑
y
P p(x, y). Using the lemma 3.1.8.1

part a we have a q which is a polynomial time bound and a c such that P q(x) ≥ 2−c
∑
y
P p(x, y).

Secondly there is a turing machine T ′ such that l′ which is polynomial time bound T
′ l′

(a, ε) = 〈x, x〉 if
Up(a, ε) = x Thus using the same subset argument we have

∑
y
P l
′

T ′
(x, y) ≥ P l

′

T ′
(s, s) ≥ P p(s). Now again

using part a of lemma 3.1.8 ∃q′ which is a polynomial time bound and a c′ such that
∑
y
P q
′
(x, y) ≥ 2−c

′
P p(x).

This proves the theorem.

Lemma 3.1.9 ∀p which is a polynomial time bound there is a turing machine T , a constant c and polynomial
time bounds q and l such that

Kl
T (y|x) = Kp(x, y)−Kq(s) + c

10

Proof: The set of programs such that U(a, ε) is defined is recursively enumeratble and each program in this
set can be checked in polynomial time that Up(a, ε) is defined or not. Let ak be the kth program in some
recursive enumeration of this set and xk, yk〉 = Up(ak, ε). Now by 3.1.8 we have a c′ and a polynomial time

bound q′ such that P q
′
(x) ≥ 2−c

′∑
y
P p(x, y). Hence

2−c′∑
y
Pp(x,y)

P q′ (x)
≤ 1. Now by lemma 3.1.7.2 we have a

polynomial time bound q and a constant c′′ such that Kq(x) = −log2(P q
′
(x)) + c and hence writing the

combination of c′ and c′′ as c we have 2K
q(x)−c∑

y
P p(x, y) ≤ 1∀x. Given x∗ on its work tape T simulates

Ts defined by the requirements 〈tk, |ak| − |x ∗ | + c and x = Uq(x∗, ε). This simulation of T will also be
in polynomial time as every other thing is in polynomial time hence for some l which is a polynomial time
bound T (a′, x∗) = Tx(a′, ε) = y. and a′ = |ak| −Kq(x) + c i.e. Kl

T (y|x) = Kp(x, y)−Kq(x) + c. Hence we
have constructed such a T such that the condition of the theorem is satisfied.

Lemma 3.1.10 Let p, q and q′ be the polynomial time bounds then ∀p∃q and q′ and c′ such that

Kp(x, y) ≥ Kq′(y|x) +Kq(x)− c′

Proof: By lemma 3.1.9 ∀p which is polynomial time bound we have a turing machine T and polynomial
time bounds q and l and a constant c such that Kl

T (y|x) = Kp(x, y) − Kq(x) + c, now by invariance

theorem we have a polynomial time bound q′ and c′ such that Kq′(y|x) ≤ Kp(x, y) − Kq(x) + c′. Hence
Kp(x, y) ≥ Kq′(y|x) +Kq(x)− c′.

Proof of theorem 3.1: Let n be the length of string σ and p be polynomial time bound then ∃q, q′ and
c such that Kp(σ) = Kp(n, σ) + O(1) ≥ Kq(n) + Kq′(x|n) − c + O(1). Now by counting argument there
are less than 2n−k strings such that Kq′(σ|n) < n − k. Hence fewer than 2n−k strings satisfy Kp(σ) <
Kq(n) + n− k − c+O(1). This proves the inequality for resource bounded version.

3.2 Proof of Miller-Yu theorem and Schnorr’s Theorem using Unpredictability
paradigm

3.2.1 Miller-Yu theorem in Unpredictability paradigm

Unpredictability formulation of the simpler proof will be as follows:

Theorem 3.2.1 The following statements hold:

1. Let f : N⇒ N be such that
∑

2−f(n) <∞. Then if ∀ c.e. martingales d, ω /∈ S[d], ∃ a constant c such that
∀n.

2. There exists a total computable function f : N⇒ N such that
∑

2−f(n) <∞ and ω ε S[d] every non-random
sequence ω and ∀ c ∃ n such that C(ω � n) < n− f(n)− c

I present the proof of second part first.

Proof: Let d be c.e. martingale. Let χc = {σ : d(σ) ≥ 2c}. Now let ω be such that ω ε S[d]. Also
without loss of generality assume these strings enter the set χc in lexicographic order. Hence for every c
∃ nc such that d(ω � nc) > 2c, hence this initial segment belongs to χc. Note that the measure of all the
segments of length nc= m(nc, c) in χc

=
#ofsegmentsoflengthnc

2−nc
=

∑
σεχc

|σ|=nc

2−nc
d(σ)

d(σ)

≤ 2−c
∑
σεχc

|σ|=nc

2−ncd(σ)

≤ d(ε)
2c using theorem 1.4.

11

Also
∑
n
m(n, c) ≤ d(ε)2−c. Now I consider the function f defined by the equation

2−f(n) =
∑
c

2
c
2m(n, c).

Since each m(n, c) and even the sum
∑
nm(n, c) does not exceed 2−c, the right hand side is a computably

convergent series and f is computable. Hence,∑
2−f(n) =

∑
n,c

2c/2m(n, c) ≤
∑
c

2−c/2 <∞.

Number of strings of length n in χc can be uniquely and computably determined by c and the ordinal number
of this string among 2nmn, c of them. Hence Kolmogorov complexity of the initial segment till nc.

C(ω � nc|n) ≤ 2log c + log(2nm(c, nc)) +O(1) ≤ 2logc+ n− f(n)− c+O(1)

Keep the constant 2logc− c as another constant say c
′
.

The proof of first part is as follows:
let f be a total computable function such that ∀ c ∃ n such that C(ω � n) < n− f(n)− c. Let R0, R1 . . . be
prefix free generators such that JRcK = {ω : ∃n such that C(ω � n) < n − f(n) − c}. Now we construct a
martingale dc such that whenever a string σ is added to Rc ∀ τ such that τ � σ we add 1 and we add 2k−|σ|

to all dc(σ � k), k < |σ|. As dc are uniformly c.e. maringales and dc(ε) ≤ 2−c. Thus d =
∑
n dn is a c.e.

martingale. note that if for a sequence ω the condition holds then ∀ c, it will lie in JRcK, hence for different
c′s, dc(ω) would have been incremented by 1 hence.

∑
c 1 diverges and hence if ω satisfies the condition then

there exists a martingale such that ωεS[d].

3.2.2 Schnorr’s Theorem in unpredictability paradigm

Unpredictability formulation of Schnorr’s theorem is as follows:

Theorem 3.2.2 The following two statements hold:

1. If d is c.e. martingale such that ωε S[d] then it is not 1-random.

2. If ∀ d which are c.e martingales such that ω /∈ S[d] then ω is 1-random.

Proof: First statement has the following proof, construct prefix free sets R0, R1, . . . such that

JRnK = J{σ : d(σ) > 2k}K.
Rn ⊆ {σ : d(σ) > 2n},

Rn is constructed such that it is minimal (if σεRn then σ � l ∀ l < |σ| /∈ in Rn).

Hence ∑
n≥2

∑
σεRn2

2−|σ|+n =
∑
n≥2

2n d(σ)d(σ)

≤
∑
n≥2

d(ε)2n−n
2

without loss of generality lets assume d(ε) = 1, hence∑
n≥2

d(ε)2n−n
2 ≤

∑
m≥2

2−m < 1.

So by minimality of K among information content measures ∃ a constant c such that if σεRn2 for some n ≥ 2
then K(σ) ≤ |σ| − n + c. Since ωεS[d], hence ωεJRn2K, for each n ∃ a k such that K(ω � k) ≤ k − n + c,
hence ω is not 1- random.
Second statement can be proved as follows. Let Rk be a prefix-free set such that JRkK = {ω : ∃nK(ω � n) ≤
n − k}. Construct dk in the sense of proof of first part of simpler proof[1]. Hence if @ d such that ωε S[d].
Hence ∃ k K(ω � n) > n− k ∀n. Thus ω is 1-random.

12

3.3 Polynomial time randomness

If we look at the proof of all theorems that are concerned randomness of strings. They rely on the following
idea:

All the three paradigms defining randomness of infinite binary sequences are equivalent.

This statement simply means that if a string is random with respect of computational paradigm then it
is random with respect to measure theoretic paradigm and also with respect to unpredictability paradigm.
Hence I give the following definitions in resource-bounded measures as analogues of the three randomness
paradigms.

• 1-k-randomness: An infinite binary sequence is said to be 1-k random iff the following holds.

Knk

(ω � n) ≥ n−O(1) ∀n.

• p-Unpredictably random: An infinite binary sequence ω is said to be p-unpredictably random iff
the following holds:

∀dp such that dp is a polynomial time computable martingale ω /∈ S[dp].

• Polynomially Martin-Löf random: A Martin-Löf test Un is said to be polynomial Martin Löf test
iff ∃ a dp which is a polynomial time computable martingale such that it is possible to construct sets
Rn which is a prefix-free set such that

JRnK = Jσ : dp(σ) > 2nK.

A sequence ω is said to be polynomially Martin-Löf random iff ω /∈ ∩Un where Un is a polynomial
Martin-Löf test.

It is easy to say that if a sequence is polynomially Martin-Löf random then it is p-unpredictably random
and vice-versa which is implied by the way these two things have been defined. We have defined them in
such a way because it was more appealing to the intuition and we cannot have a something like polynomial
time thing in the measure theoretic paradigm of randomness because there is no algorithm, also it is more
intuitively appealing that unpredictability is more close to the measure-theory which is more close to the
probability which is a measure of uncertainty. Now the only thing left is to check that a sequence is ”1-k
random for some k iff it is p-unpredictably random”.

We state the following theorem:

Theorem 3.3.1 If a string is not p-unpredictably random then it is not 1-k random ∀ k ≥ 2.

Proof: The proof is on the similar grounds as the proof of part 1 of Schnorr’s theorem. As since ∃ a dp such
that ωS[dp]. We construct the sets R0, R1, . . . such that

JRnK = J{σ : dp(σ) > 2k}K.
Rn ⊆ {σ : dp(σ) > 2n},

Rn is constructed such that it is minimal (if σεRn then σ � l ∀ l < |σ| /∈ in Rn).

Hence ∑
n≥2

∑
σεRn2

2−|σ|+n =
∑
n≥2

2n
dp(σ)
dp(σ)

≤
∑
n≥2

dp(ε)2
n−n2

13

without loss of generality lets assume d(ε) = 1, hence∑
n≥2

d(ε)2n−n
2 ≤

∑
m≥2

2−m < 1.

Now using the argument that even resource bounded complexity is minimal among all the resource bounded
information content measures (bounded by the same amount of time). Hence we need to ensure the running
time of the information measure |σ| − n for the strings in Rn2 given n we can get to the Rn2 in log(n) time
also we know that n < |σ|. Now in a given Rn2 I can have at most 2|σ|/2 strings of same length such that

dp(σ) > 2n
2

as if we have more then we will have more than 2|σ|/2 strings then we will not have Rn2 as
minimal. Now we give ordinal numbers to the strings of the same length. Now it will take < log(2|σ|/2)+O(1)
time to decode the string. Hence the measure |σ| − n takes at most |σ| time to get decoded. Hence ∀ k ≥ 1

there exists a constant c such that if σεRn2 then for some n ≥ 2, K |σ|
k

(σ) ≤ |σ| −n+ c. Hence ωεJRn2K, for

each n ∃ a k′ such that Kk′k(ω � k′) ≤ k′ − n+ c, hence ω is not 1-k random.

“This theorem says that the set of strings which are 1-k random form a subset of strings
which are p-unpredictably random.”

Now if we look at the converse then it does not seem to hold if we follow the constructional methodol-
ogy of martingales used in proof of Schnorr’s theorem,theorem 3.2.1 as we calculate d as

∑
n dn. Also we

claim that implication 1⇒ 2 of theorem 3.1.1 should not hold in resource-bounds. We prove the implication
2⇒ 1 of theorem 3.1.1 in resource bounds.

Theorem 3.3.2 If a sequence is not p-unpredictably random then it is ∀k ∃ a computable function f(n)

such that ∀c ∃n such that Cn
k

(ω � n) < n− f(n)− c

Proof: The proof goes on the similar grounds as the proof of theorem 3.1.1 second part. Let dp be c.e.
martingale. Let us fix a k and let χc = {σ : dp(σ) ≥ 2c}. Now let ω be such that ω ε S[dp]. Also without
loss of generality assume these strings enter the set χc in lexicographic order. Hence for every c ∃ nc such
that d(ω � nc) > 2c, hence this initial segment belongs to χc. Note that the measure of all the segments of
length nc= m(nc, c) in χc

=
#ofsegmentsoflengthnc

2−nc
=

∑
σεχc

|σ|=nc

2−nc
dp(σ)

dp(σ)

≤ 2−c
∑
σεχc

|σ|=nc

2−ncdp(σ)

≤ dp(ε)
2c using theorem 1.4.

Also
∑
n
m(n, c) ≤ d(ε)2−c Now we consider the function f defined by the equation

2−f(n) =
∑
c

2
c
2m(n, c).

Since each m(n, c) and even the sum
∑
nm(n, c) does not exceed 2−c, the right hand side is a computably

convergent series and f is computable. Hence,∑
2−f(n) =

∑
n,c

2c/2m(n, c) ≤
∑
c

2−c/2 <∞.

We assign a lexicographic ordering to string of length n in χc and hence they can be uniquely and com-
putably determined by c in log(n) + log(2nm(n, c)) < O(n) time using binary search type algorithm. Hence
Kolmogorov complexity of the initial segment till nc for any k ≤ 1 using this algorithm say T .

Cn
k+1

(ω � nc|n) ≤ CT n
k

(ω � nc|n) +O(1)
≤ 2log c + log(2nm(c, nc)) +O(1) ≤ 2logc+ n− f(n)− c+O(1)

Keep the constant 2logc− c as another constant say c
′
. and this proves the theorem.

14

Figure 1: p-unpredictably non random ⊆ 1-k non-random

3.4 Conjectures

We make the following conjectures.
Conjecture 1:

The set of 1-k random sequences forms a proper subset of set of p-unpredictably random sequences.

Conjecture 2:

The second implication of Miller-Yu theorem should not hold.

The justification for second conjecture is that the usual way of construction of martingales for the other
implication uses

∑
n dn (theorem 3.1.1) which is not a polynomial. Hence this way does not work so we feel

that the other implication should not hold.

4 Directions for future work

Future work in this area which we would be looking forward is:

• To prove the conjectures that we have made.

• There is famous theorem by Van Lambalgen on generation of random sequences from random sequences
and we look forward to study its analogues in resource-bounded measures as generation of polynomial
time random sequences from polynomial time random sequences.

References

[1] Laurent Bienvenu, Wolfgang Merkle, and Alexander Shen. A simple proof of miller-yu theorem. Fundamenta Informaticae,
83(1-2):21–24, 2008.

[2] Gregory J. Chaitin. A theory of program size formally identical to information theory. J. ACM, 22(3):329–340, 1975.

[3] Rodney G Downey and Denis R Hirschfeldt. Algorithmic randomness and complexity. Springer Science & Business Media,
2010.

[4] Ming Li and PMB Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer, 2008.

15

[5] Per Martin Löf. Complexity oscillations in infinite binary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, 19.

[6] Per Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–619, 1966.

[7] Joseph Miller and Liang Yu. On initial segment complexity and degrees of randomness. Transactions of the American
Mathematical Society, 360(6):3193–3210, 2008.

16

