EE210: Analog Electronics

Question Set 2

Instructor: Imon Mondal, imon@iitk.ac.in

1): Consider the circuit in Fig. 1. Assume that the forward biased voltage of the diode is $650\,\mathrm{mV}$ for finding the quiescent points. Consider $I_B=2.65mA$, $V_{in}=0,~R_1=2k\Omega,~R_2=2k\Omega.$

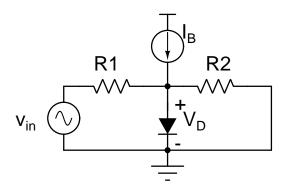


Fig. 1. Problem 1

- a): Find the quiescent current through all the elements in the network.
- b): Now assume $I_B = 2.65mA + 0.5mA\sin(\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the diode.
- c): Assume $I_B = 2.65mA + 0.5mA\sin(\omega t)$ and $V_{in} = 100mV\sin(\omega t)$. Find the total voltage across the diode. (Hint: You can use superposition when network is linear.)
- d): Assume $I_B = 2.65mA + 0.5mA\sin(\omega t)$ and $V_{in} = 1.65V + 100mV\sin(\omega t)$. Find the total voltage across the diode. (Careful: You cannot use superposition when a network is non-linear.)
- 2) : Consider the circuit in Fig. 2(a). Assume that the forward biased voltage of the diode is 650 mV for finding the quiescent points. $R=1k\Omega$.
- a) : If $I_A=0$, sketch the small signal equivalent circuit of the given network. Express the small signal parameters in terms of V_{DD}
- b) : If $V_{DD}=2.3V$, and $I_A=0.1mA\sin(\omega t)$ find the total voltage at V_0 .

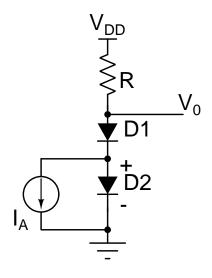


Fig. 2. Problem 2

3) : Consider the circuit in Fig. 3. $I_B=2mA, V_{in}=0, R_1=2k\Omega, R_2=2k\Omega$. The I-V characteristics of the non-linear element is given by $I_N=\alpha {V_N}^2$, for $V_N\geq 0$, and $I_N=0$ for $V_N<0$, where $\alpha=1mA/V^2$.

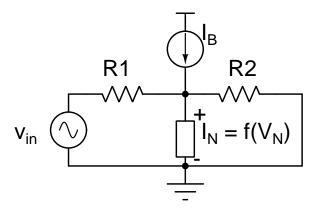


Fig. 3. Problem 3

- a): Find the quiescent current through all the elements in the network.
- b) : Now assume $I_B=2mA+0.1mA\sin(\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the nonlinear element.
- c) : Assume $I_B=2mA+0.1mA\sin(\omega t)$ and $V_{in}=10mV\sin(\omega t)$. Find the total voltage across the non-linear element.

4) : Consider the circuit in Fig. 4. $I_B=2mA$, $R=1k\Omega$. The I-V characteristics of the non-linear element is given by $I_N=\alpha(V_N-1)^2$, for $V_N\geq 1$, and $I_N=0$ for $V_N<1$, where $\alpha=1mA/V^2$.

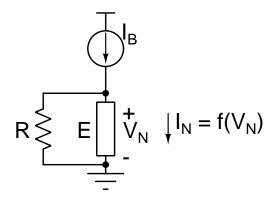


Fig. 4. Problem 4

- a): Find the quiescent current through all the elements in the network. Find the total quiescent power dissipated in R and E.
- b): Now assume $I_B=2mA+0.1mA\sin(\omega t)$. Using the small signal analysis taught in the class, find the incremental and the total voltage across the nonlinear element.
- c): Find the total average power dissipated in R and E under the condition of (b). (Note: Average power = time-average of $(I \times V)$, where I and V are the total currents and voltages respectively.)
- 5) : Consider the circuit in Fig. 5(a). The I-V characteristic of the non-linear element E is shown in Fig. 6(b). $R1=1k\Omega$.
- a) : Find the ranges of V_A such that $0 < V_N < 2V$ and $V_N > 2V$.
- b): Sketch the incremental network for the circuit shown in the figure for the ranges you evaluated in part a).
 - c): Find total V_N if $V_A = 6V + 0.2V \sin(\omega t)$.
 - d): Find total V_N if $V_A = 3V + 0.2V \sin(\omega t)$.
- 6) : Consider the circuit in Fig. 6(a). $R1 = 1k\Omega$. The I-V characteristic of the non-linear element E is shown in Fig. 6(b).
- a) : Find V_A such that $V_N = 3V$. Let us call this value V_{AQ} .
- b) : In $V_A = V_{AQ} + 10 mV \sin(\omega t)$, find the total V_N .



Fig. 5. Problem 5

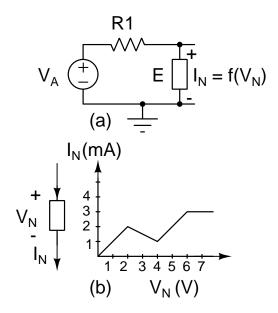


Fig. 6. Problem 6

7) : Consider the circuit in Fig. 7. $R1=1k\Omega,\,V_{DC}=5\,V.$ A three terminal non-linear element has been used, whose terminals are defined in the inset. The element has the following characteristics.

 $I_A = I_B = \alpha V_{CB}^2$ for $V_{CB} \ge 0$ and $V_{AB} \ge 0$. $I_A = I_B = 0$ otherwise.

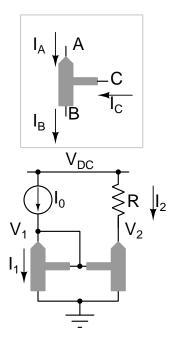


Fig. 7. Problem 7

- a) : Find quiescent $V_1, I_1, I_{\cdot 2}, V_2$. Assume $\alpha = 1\,mA/V^2$, and $I_0 = 1\,mA$
 - b): What will I_2 be if V_{DC} is changed to 6 V?
- c) : Due to fabrication imperfections, α changed to $0.9\,mA/V^2$ for both the devices. What will the new I_2 be?