EE210: Analog Electronics

Question Set 7

Instructor: Imon Mondal, imon@iitk.ac.in

1) Consider the circuit in Fig 1. $\mu_n C_{ox} = 0.2mA/V^2$, $I_0 = 1mA$, $V_{DD} = 6V$, $R_1 = R_2 = 2k\Omega$, $V_{tn} = 1V$.

Figure 1: Question 1.

a) Size M1 and M2 such that M1 is in saturation with a margin of 500 mV, and $g_{M1} = 1$ mS.

b) Find the incremental resistances r_1 and r_2 .

c) Use the configuration to implement a common source amplifier.

d) If you want to implement a CCCS, where and how will you apply the i/p and take the o/p?

e) How is this config. different from a standard common gate config.?

f) If you want to implement a VCVS having gain ≈ 1 while driving a load $R_L \approx 1 \mathrm{k}\Omega$ to $2\mathrm{k}\Omega$, what will you do?

2) The circuit shown in Fig. 2 is used to generate a bias voltage $V_B = V_{tn} + V_{ov}$. If we want to generate a bias voltage of $V_B = V_{tn} + 2V_{ov}$, how will you change the circuit without changing the I_0 ?

3) $I_0 = 1mA$, $(W/L)_1 = 10$, $\mu_n C_{ox} = 200\mu A/V^2$, $\mu_p C_{ox} = 100\mu A/V^2$ $(W/L)_2 = 20$, $V_{DD} = 5 V$

Figure 3: Question 3

a) Find the quiescent current through M1 and M2.

b) Between M1 and M2 ,what will you change to bias M1 at the edge of saturation region ?

c) Among the four types of biasing schemes that you have learnt, which one is being used here to bias M1?

- Observe the drain, feedback at source.
- Observe the drain, feedback at gate.
- Observe the source, feedback at source.
- Observe the drain, feedback at gate.

d) Find the maximum and minimum V_B required to keep both the transistors in saturation while maintaining the constraint of a minimum overdrive voltage of 100 mV?