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Abstract

We investigate planetary fly-bys of asteroids using an approximate volume-averaged
method that offers a relatively simple, but very flexible, approach to study the
rotational dynamics of ellipsoids. The asteroid is considered to be a deformable,
prolate ellipsoid, with its interior being modelled as a rigid-granular material. Effects
due to the asteroid’s rotation, its self-gravity and gravitational interaction with the
planet are included. Using a simplified approach allows us to explore in detail the
mechanics of asteroid’s deformations and disruptions during planetary encounters.
We also compare our results with those obtained by Richardson et al. (1998) who
used a large numerical code. We find that many of the features reported by them can
indeed be captured by our rather simple methodology, and we discuss the reasons
why some of our results differ from theirs.

1 Introduction

Evidence is accumulating that asteroids might be granular aggregates lacking
tensile strength (Richardson et al. 1998, 2002) that are simply held together
by self-gravity alone. Such objects may be so fragile that they fragment during
planetary fly-bys owing to tidal effects (Sridhar and Tremaine 1992, Asphaug
et al. 1994, Richardson et al. 1998, Walsh and Richardson 2006). In fact,
such an event was observed when comet Shoemaker-Levy 9 flew past Jupiter.
Presumably asteroids that are thought to have accumulated by gravitational
processes like those that brought comets together, and which might be shat-
tered over their lifetimes by energetic collisions (Holsapple et al. 2002), may
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behave similarly. A study into the nature of tidal break-up may provide clues
to the asteroid’s interior. For example, the observation of a disruption event,
where one is predicted during a planetary flyby, will reinforce the belief that
asteroids are granular aggregates. By contrast, no observed disruption, under
circumstances when one is forecast, will presumably mean that the asteroid
has some tensile strength. Such insights would be useful in understanding the
size distribution and duplicity of Near-Earth Objects (NEOs) as well as the
prevalence of binary craters on the terrestrial planets.

Tidal break-up during planetary passage has previously been approached by
detailed particle simulations. We will investigate whether volume-averaged,
(semi)-analytical methods may offer a much simpler way to analyze planetary
fly-bys and may, simultaneously, provide a deeper insight into the relevant
mechanics. To some degree, this was pursued earlier by Sridhar and Tremaine
(1992), whose analysis, however, differs from ours in several respects. First,
they considered a fluid-like material response with a pressure-dependent vis-
cosity. This particular form of viscosity is quite artificial, as the authors them-
selves admit, but seems to give “reasonable” results. Secondly, they consider
only parabolic fly-by paths; these have longer fly-by times than hyperbolic
encounters. This, in turn, augments tidal interaction, thereby increasing the
probability of break-ups. Finally, they do not investigate the effects of vari-
ables, such as the long-axis’s orientation and tidal torques in the vicinity of
the periapse, on the fly-by’s possible outcomes.

In a pioneering numerical study, Richardson et al. (1998) considered the break-
up of bodies as they flew past planets, with the fragmentation occurring due to
the combined effects of rotation, tidal torques (in case of asymmetric bodies)
and tidal stresses. They modeled the body as a granular aggregate comprised
of 247 smooth spheres that interacted with each other only through inelas-
tic collisions and that were held together just by gravity. A large numerical
simulation was used to determine the motion of individual spheres. Various pa-
rameters, including the initial angular velocity vector and encounter variables,
were changed to explore the consequences of different fly-bys.

In the analysis to follow, the above problem is solved using a volume-averaged
method. We will demonstrate that much of the qualitative behavior obtained
by Richardson et al. (1998) can be achieved far more easily by this technique,
thereby allowing many different materials to be investigated. We also discuss
several reasons for those discrepancies that are seen between our results and
those of Richardson et al. (1998). Furthermore, the simplicity of our approach
allows us to explore the mechanics of tidal encounters in detail. Because little
is known of an asteroid’s interior, more detailed modelling at this stage is,
perhaps, unwarranted. In fact, the ideal way to gain insight into the essential
mechanics is to keep the number of free parameters at a minimum while si-
multaneously still being able to produce the essential aspects of the observed
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Fig. 1. Description of a fly-by orbit.

behavior.

We now specify the parameters governing an asteroid’s planetary fly-by, where
the planet is taken to be the Earth. To study a fly-by, we need first to specify
the asteroid’s orbit (its semi-major axis a and eccentricity e). This is done by
defining an encounter velocity v∞ (the velocity far away from the planet) and
the distance of closest approach q. In our calculations, the asteroid starts at
a distance, like the Moon’s, of about sixty times the Earth’s radius R⊕ to a
comparable distance after its encounter. It is assumed that any changes in the
asteroid’s shape and spin state due to tidal interaction do not affect the orbit
significantly, i.e., we ignore any spin-orbit coupling. Fig. 1 shows a schematic
of the fly-by, where the problem is considered to be two-dimensional with the
asteroid’s spin normal to the orbit plane; we have chosen the initial conditions
so that the pericenter lies on the x-axis. The asteroid is taken to be an ellipsoid
with axes ai, i = 1, 2, 3 (see Sec. 5 below) that lie along principal axes in a
coordinate system, indicated by the unit vectors e1 and e2 (with e3 coming
out of the paper); see Fig. 3.

We take the asteroid’s initial shape to be a prolate ellipsoid with a2/a1 = α =
β = a3/a1 = 0.6, as opposed to the choice of Richardson et al. (1998), who used
α = 0.6 and β = 0.55. However, we do not expect this simplifying assumption
to cause major differences from their results. The asteroid is considered to
be spinning about the 3-axis. Richardson et al. (1998) also investigated the
consequences of different initial spin periods and directions, and non-principal-
axis rotations; the latter effect is not considered here, but we do remark upon
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the effect of the first two. However, the role of the long-axis’ orientation at
the time of the closest approach, and the effect of tidal torques in the vicinity
of the periapse, are explored by varying the asteroid’s semi-major axes’ initial
orientation with respect to the planet.

Other parameters are: ρA - the asteroid’s initial bulk density, ρs - the mass
density of the spheres assumed to comprise the aggregate (asteroid), ρ⊕ - the
density of the Earth, f(t) - the asteroid’s angular position which varies with
time, R(t) - the asteroid’s distance from the Earth, φq - the orientation of the
asteroid’s long axis at the time of closest approach, which is measured in an
anti-clockwise direction from the periapse axis (see Fig. 1), and m⊕ and mA -
the masses of Earth and the asteroid, respectively.

It is also necessary to assume a description of the asteroid’s interior, which
we model as a rigid-granular material. Before the encounter we take the aster-
oid to be rigid. This assumption is consistent with the fact that present-day
observations of asteroids in free motion show no shape changes. Furthermore,
tightly packed aggregates show very little deformation, especially if the con-
stituent “spheres” are hard enough and if the stresses due to body forces are
compressive and do not change drastically (as might occur during a fly-by).
In the granular state, the asteroid’s mechanics are modelled by a constitutive
law for loosely packed granular aggregates that is described later. We also
utilize appropriate conditions to switch between the two states. Further on,
we discuss the merits of modelling the granular aggregate (cf. Richardson et
al. 1998) as a rigid-granular material.

As we will see below, because volume-averaged methods are used, the asteroid
must always be an ellipsoid. Consequently, the model cannot describe break-
up events although it can hint at their occurrence. The asteroid could be
said to have broken apart if it becomes “too thin”. As Sridhar and Tremaine
(1992) point out, long thin ellipsoids are subject to instabilities due to their
gravitational fields, which tend to tear them apart.

2 Preliminaries

We now describe how we will study this problem analytically, and lay out the
mathematical formalism behind this approach. Those who wish to see only
results should move directly to Sec. 6.

In order to describe a rigid body’s motion, it is enough to follow the evolution
of the center-of-mass and the orientation of the body’s principal inertia axes.
However, for deformable bodies, we must take into account the evolution of
each infinitesimal mass element. Fig. 2 shows the forces acting on one such
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Fig. 2. Free body diagram of a typical mass element inside a body. Shear stresses
on hidden faces are not shown, but they vary in a manner similar to the normal
stresses.

mass element located at x. Invoking force balance for this mass element, we
obtain after dividing by the volume dV

σij,j + ρbi = ρẍi, (1)

in terms of the internal stresses σij, the body force b and density ρ; this is
the linear-momentum-balance equation. We use the indical notation and the
summation convention throughout this paper, with each subscript ranging
from one to three.

In the theory of elasticity, in order to determine the motion of a deformable
body, it is necessary to solve for the stresses from the above equation while
satisfying the prescribed boundary conditions, such as the surface of the body
is free of applied forces. However, this in itself is not enough, as there are an
infinity of solutions for the stresses that satisfy this equation (Fung 1965). In
linear elasticity, the stresses unique to the solid under investigation are ob-
tained by studying the displacement field associated with each stress solution.
The displacements themselves are obtained by employing constitutive relations
linking the stresses and the strains, e.g., a linear-elastic law or a Maxwellian
visco-elastic material. In general, the associated displacement fields are not
compatible. In order to obtain stresses that yield displacements that are com-
patible with the assumed material response of the body’s interior, it is neces-
sary that the stresses satisfy an extra set of equations, called the compatibility
equations. The requirement of solving the compatibility equations makes the
solution of elasticity problems extremely difficult. In the following, we will fol-
low a volume-averaged approach, similar in spirit to St. Venant’s semi-inverse
method (Love 1946), where we assume the displacement field and solve for the
accompanying stresses. Note that assuming a displacement field automatically
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satisfies the compatibility condition. Though approximate, this approach, as
will be shown, can yield meaningful solutions in many contexts.

We now introduce some mathematical notation that will help in describing
the volume-averaged approach later.

2.1 Tensors or dyads

In a coordinate system defined by the orthogonal unit vectors ei, a vector a
can be written in terms of its components ai as

a = aiei.

Next, given two vectors a and b, we define the tensor or dyadic product, de-
noted by a ⊗ b, in terms of its components in the coordinate system formed
by ei above by

(a⊗ b)ij = aibj.

Higher-order products can be similarly defined. We note that the common
operation of taking the cross-product of two vectors can be recovered by taking
the vector associated with the anti-symmetric part of the tensor product of
those two vectors.

We call the tensor product (or the dyadic product) of a vector field with a
position vector, averaged over a space, as taking the first moment of that field.
An immediate example is the inertia dyad I defined by

Iij =
∫

V
ρxixjdV , (2)

which is obtained as the first moment of the mass distribution field ρx in a
body.

It is possible to take the first moment of each quantity in a vector equation.
By assuming that infinitesimal mass elements of a rigid body interact only
along their lines-of-center, we can “derive” Euler’s equations for a rigid body
by taking the anti-symmetric part of the volume-averaged, first moment of
the linear momentum balance equation (1). This is illustrated below in Sec.
6. Taking the first and higher moments of a field, or an equation, that de-
scribes some characteristic of a system can be a powerful tool to obtain more
information about the behavior of that system.
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3 Governing equations: Volume-averaging

We now provide some simple background on continuum modelling. Further
details may be found in Fung (1965) or Holzapfel (2003). The number of
dynamical equations required to describe a system depends on the degrees of
freedom of that system. Thus, if we are interested in investigating the dynamics
of a rigid body, we require six equations: three to follow the position of the
center-of-mass and a trio more to follow the three Euler angles. Because it is
composed of an infinite number of kinematically unconstrained points, a non-
rigid body has infinite degrees of freedom. Thus, the governing equations are
no longer ordinary differential equations but, instead, are a set of non-linear
partial differential equations. As we noted above, solving these equations is
very difficult analytically, and even numerical approaches are not easy. To
obtain a more manageable theory, we need to reduce the degrees of freedom
of a deformable body by putting restrictions on the displacement field.

A systematic procedure exists (Chadrasekhar 1969) by which theories for de-
formable bodies with increasing degrees of freedom can be formulated. The
simplest such theory, and the one that we will employ here, assumes that the
body’s shape is a triaxial ellipsoid and that it can subsequently deform only
into another ellipsoid. This deformation’s description requires twelve kinematic
variables: three to locate the center of mass of the ellipsoid, three Euler an-
gles to locate the instantaneous principal axes of the ellipsoid, three stretches
along the principal axes and three shears. Thus, this so-called homogeneous
deformation has twelve degrees of freedom.

Once the center-of-mass is specified, the deformation of an ellipsoid into an-
other ellipsoid can be described in terms of nine variables. This information
can be encoded into a matrix F , whose action on the position vector X of a
mass element in the undeformed state yields the mass element’s time depen-
dent position vector x in the deformed state, i.e.,

x = FX. (3)

The components of F , which form the deformation gradient, consist of the nine
time-dependent variables Fij(t) that, once known, would completely describe
the evolution of the ellipsoid’s shape.

To obtain a mass element’s velocity, we differentiate the above equation with
respect to time

ẋ = ḞX;

this relates a mass element’s velocity to its original position. It is useful to
relate the mass element’s velocity to its present position x. This can be ac-
complished by utilizing the inverted form of (3) in the previous equation to
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obtain

ẋ = ḞF−1x,

or

ẋ = Lx, (4)

with the definition

L = ḞF−1. (5)

Eqn. (4) relates a mass element’s velocity to its present position, i.e., its posi-
tion in the deformed ellipsoid. The components of L are the spatial gradients
of the velocity in the deformed configuration, while L is called the velocity
gradient. A useful decomposition of L is

L = D + W , (6)

where D and W are L’s symmetric and anti-symmetric parts:

D = symL =
1

2
(L + LT ) (7)

and

W = asymL =
1

2
(L− LT ). (8)

The quantity D is called the strain rate (or stretching rate) tensor while W
is the local angular velocity (or spin) tensor. While D measures the rate at
which the body is stretched and sheared, W measures the rate at which lines
joining material points rotate. We employ the notation symB and asymB to
signify the operation of forming the symmetric and anti-symmetric parts of a
tensor B .

Finally, the mass element’s acceleration is obtained by differentiating (4):

ẍ = L̇x + Lẋ =
(
L̇ + L2

)
x ≡ Px. (9)

It now remains to obtain twelve ordinary differential equations to follow the
evolution of these twelve kinematic variables. Three of these equations are
given by force balance applied to the ellipsoid, which follows the acceleration of
the center-of-mass. In our case, we need only two equations, as the fly-by occurs
in a plane. The asteroid’s center-of-mass is located by the angle f(t) and its
distance from the planet is R(t) as shown in Fig. 1. The time evolution of these
quantities can be expressed in terms of the orbital eccentricity e, the semi-

major axis a and the associated angular momentum h∞
(
=
√

GmP a(1− e2)
)

of the hyperbolic orbit, which are in turn known once the encounter velocity
v∞ and the distance at closest approach q is specified. The evolution of the
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asteroid’s angular position is (e.g., Murray and Dermott 1999 )

ḟ =
G2m2

P

h3
∞

(1 + e cos f)2 , (10)

while the asteroid’s distance from the planet is

R =
a(1− e2)

1 + e cos f
. (11)

The above equations completely specify the two-dimensional orbit of the as-
teroid during the fly-by.

The remaining nine equations are obtained by taking the first moment of the
linear momentum balance equations (1) and averaging over the body’s volume;
hence, the term volume-averaging. Recall that the first moment was obtained
by taking the tensor product of each term of Eqn. (1) with the position vector
x of the mass element, and averaging it over the body’s volume:∫

V
xk {σij,j + ρbi = ρẍi} dV . (12)

For the term on the right-hand side, we employ (9) to obtain∫
V

ρẍixkdV =
∫

V
ρPijxjxkdV = Pij

∫
V

ρxjxkdV = PijIjk, (13)

where we have used the definition (2).

The second term on (12)’s left-hand side, i.e, the one involving the body force,
is simply

Mki ≡
∫

V
xkρbidV , (14)

with M being called the moment tensor. Note, that the torque due to the ex-
ternal forces, which involves a cross-product between x and b, can be obtained
by taking the anti-symmetric part of M .

Finally, (12)’s lead term that contains the divergence of the stress becomes∫
V

σij,jxkdV =
∫

V

[
(σijxk),j − σijxk,j

]
dV =

∫
S

σijnjxkdS −
∫

V
σijδjkdV

=
∫

S
TjxkdS −

∫
V

σikdV ,

where we have used Green’s theorem to convert the first volume integral to
a surface integral and have denoted σijnj by Tj, which is simply the traction
(force per unit area) on the ellipsoid’s surface. In our applications, the aster-
oid’s surface will be taken to be free from external forces. Thus, we drop the
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surface term from the previous equation. We also denote the volume-averaged
stress

∫
V σdV by σV , where σ denotes the average stress and V the ellipsoid’s

volume, and rewrite the previous equation by

∫
V

σij,jxkdV = −σikV. (15)

When a body’s allowed deformations are restricted to homogeneous deforma-
tions (i.e., ellipsoids deforming only into ellipsoids), the stresses within it are a
constant. This is because constitutive laws relate the stress to the deformation
gradient F , which is a constant through the body. Thus, we subsequently drop
the overline on σ.

Finally, we bring together the results from Eqns. (13-15) into (12) to obtain

PijIjk = Mki − σikV,

which on reverting to more direct notation, substituting back for P from (9)
and taking the equation’s transpose, becomes

(
L̇ + L2

)
I = M T − σV. (16)

The above equation is simply a balance, in a volume-averaged sense, between
the inertial forces represented by the left-hand side, the body force and the re-
sistance to deformation of the body. Because the body’s shape may change, so
too may its inertia dyad I . Thus, in order to complete the dynamical descrip-
tion of a deforming ellipsoid, it is necessary to provide an additional equation
for the inertia dyad. This equation can be obtained directly by differentiating
(2):

İij =
∫

V
ρẋixjdV +

∫
V

ρxiẋjdV =
∫

V
ρLikxkxjdV +

∫
V

ρxiLjkxkdV

= Lik

∫
V

ρxkxjdV + Ljk

∫
V

ρxixkdV = LikIkj + LjkIik,

which, when written in an index-free notation, becomes

İ = LI + ILT . (17)

Eqns. 16 and 17 will be used to solve for the dynamical evolution of the
deforming ellipsoid (within the assumed restrictions on the deformation), once
the effects of external forces as captured by M and a constitutive law relating
the material response σ to the deformation L are prescribed.
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4 Material behavior

In order to use the volume-averaged equation (16), it is necessary to have
a model for the asteroid’s material behavior. As we mentioned above, we
consider the asteroid to be a rigid-granular material, which is rigid until one
of two transition criteria (introduced below) governing the material’s passage
from a rigid to a granular state is violated. When the body is in a rigid
state, its material behavior is simple enough; however, its response (i.e., the
relation between stress and strain, or its constitutive law) in a granular state is
complicated, as outlined below. We also specify when the material transitions
from a granular state back into a rigid state.

4.1 A continuum law for the granular state

This continuum model attempts to capture the essential features of the mate-
rial response of a loose collection of inelastic spheres with radius r, coefficient
of restitution ε and mass density ρs. Many flows of granular materials are
modelled by such collections of spheres (e.g., Jenkins and Savage 1983). Al-
though Jenkins and Savage (1983) took the spheres to be smooth, we could
allow them to be frictional if the coefficient of sliding friction were small, say
less than 0.2. In this case, the stresses are unaffected and the energy losses
due to friction can be accounted for in the coefficient of restitution (Jenkins
and Zhang 2002).

The motivation for using this description to model asteroids comes from the
work of Richardson et al. (1998) and several others. The asteroid was modeled
as a collection of smooth inelastic spheres that moved about colliding with
each other, with internal self-gravity being the confining force. Inelasticity was
included through the coefficient of restitution being less than unity. In such an
approach, the motion of each particle was followed and no attempt was made
to develop, or use, a continuum model for the asteroid. A primary aim in
studying the mechanics of loose granular aggregates is to test the hypothesis
that asteroids might actually have interiors similar to these.

The derivation of a continuum model for such a system invokes the obvious
analogy between colliding spheres and interacting molecules of a dense gas
(Jenkins and Savage 1983). This analogy is further reinforced by introducing
the notions of granular pressure and granular temperature, whose definitions
carry over directly from kinetic theory with molecules replaced by spheres.
Thus, granular pressure, as measured by a confining surface, would be the
mean time-rate of momentum transfer per unit area of the surface due to
impacts of the spheres. Similarly, granular temperature measures the mean
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translatory kinetic energy of the spheres as seen in a frame translating with the
mass motion of the aggregate. Thus, this estimates the kinetic energy hidden
in the fluctuations of the spheres alone. If we assume that the coefficient of
sliding friction is small, the exchange of angular momentum is small and the
rotational kinetic energy can be simply related to the translational kinetic
energy (Jenkins and Zhang 2002).

Methods of the kinetic theory of dense gases are used to derive the consti-
tutive law for this loose aggregate. Analogous to dense gases (Chapman and
Cowling 1970), we obtain that the stress in a granular material is related to
the deformation rate by

σ = (−p′ + $Dkk)1 + 2ηD , (18)

where 1 is the identity matrix, p′ is the previously defined granular pressure,
$ the bulk viscosity and η the shear viscosity. The constitutive relation above
is similar to that of a compressible, Newtonian fluid. The finite-size effect of
the constituent spheres enters via the three quantities p′, $ and η as listed
directly below. These can be related to the granular temperature T and the
aggregate’s density ρ via

p′ = ρ(1 + 4ĝ)T, (19)

$ =
8

3
√

π
ρr
√

T ĝ (20)

and

η =

√
π

6
ρr
√

T

[
5

16ĝ
+ 1 +

4

5

(
1 +

12

π

)
ĝ

]
, (21)

with the factor ĝ given by
ĝ(ν) = νg0(ν), (22)

where ν is the solid volume fraction, which is the ratio of the aggregate’s
density to the density of its constituent spheres, and g0(ν) incorporates the
influence of the volume occupied by the spheres on their collisional frequency.
In terms of ν, it is (Jenkins and Savage 1983; cf. Torquato 1995):

g0(ν) =


2−ν

2(1−ν)3
, 0.01 ≤ ν ≤ 0.5,

3(0.64−0.5)
ν(0.64−ν)

, 0.5 ≤ ν < 0.64 .

(23)

The above formula indicates that a sphere’s collisional frequency increases to
infinity as ν approaches 0.64 - the volume fraction of a random, close packed
aggregate of identical spheres (Torquato 2001). This models the decrease in a
sphere’s mean free path as the granular medium becomes denser.
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In order to be able to use (18), we need an equation for T ’s evolution. To this
end, energy balance is used to yield

3

2
ρṪ = −qk,k + σijDij − γ. (24)

Thus, the time-rate of change in fluctuation energy (as measured by the change
in temperature) is balanced by the divergence of the flux of fluctuation energy
q, the work done by the stresses (σijDij) and the collisional rate of dissipation
of fluctuation energy per unit volume γ. This equation is very similar to the
classical one obtained for gases (Chapman and Cowling 1970), except for the
presence of the non-classical dissipation term γ. Due to this dissipation, steady
states are possible in cases where they were not for an aggregate of elastic
spheres. The parameter γ can be shown (Jenkins and Savage 1983) to be

γ =
24√
π

(1− ε)
ρT

3
2

r
ĝ. (25)

After this short summary of the theory, we derive the constitutive model to
be used for further analysis. Note that though these are loose aggregates, the
volume fraction is still high (ν ≥ 0.4), so that ĝ ≥ 1.5. This allows us to
approximate (19) as

p′ ≈ 4ρĝT (26)

and (21) as

η ≈ 8

5
√

π

(
1 +

π

12

)
ρr
√

T ĝ. (27)

Comparing the above expression with (20), we see that the bulk and shear
viscosities are now very simply related:

η ≈ 0.76$.

Next, we simplify (24) by assuming that the rate of work done by the stresses
is balanced by the collisional dissipation of fluctuation energy γ, i.e.,

σijDij − γ = 0. (28)

This assumption says that the temperature T reaches equilibrium on a time
scale much faster than the dynamic time scale. It also assumes that the term
qk,k is zero, which is a reasonable assumption to make if we believe that the
amount of energy lost from the asteroid’s surface is small. Now, using the
expressions for γ from (25) and σ from (18) in the equation above, we obtain
the granular temperature T in terms of the strain rate:

T =
rDkk

√
π

12(1− ε)

−1 +

{
1 +

16

π
(1− ε)

(
1 +

6

5

(
1 +

π

12

) D′
ijD

′
ij

D2
kk

)} 1
2

 , (29)
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with D ′ defined in terms of the total deformation rate D by

D′
ij = Dij −

1

3
Dkkδij,

and is a measure of the shear rate, as the volumetric change Dkk/3 has been
subtracted.

The assumption of quasi-static growth in T is not really crucial to further
development, but it does reduce the number of variables by one, because now
T is known explicitly in terms of D ′. We can, if required, keep (24) as a
separate equation governing the time evolution of T , but no significant effect
on the results is expected, so we prefer to work with (29).

Eqns. (18), (20), (26), (27) and (29), with ĝ defined through g0 via (22) and
(23), give a complete description of the material response for a collection of
inelastic spheres. From these equations, we notice that the stress σ can be
expressed as only a function of the components of the deformation rate D .
We use this function in (16) along with expressions for the moment tensor M
derived below, to obtain an equation in terms of kinematic variables alone.
Recall that D and L are related by (6).

4.2 Transition between rigid and granular states

Assuming that the asteroid is initially rigid has consequences on the body’s
subsequent deformation, as the asteroid cannot change shape until it transi-
tions to a granular state. This contrasts with the model of Richardson et al.
(1998) and, as discussed later, significantly affects the asteroid’s overall be-
havior. Several failure criteria that govern this transition can be postulated.
For example, the transition might occur when the average pressure in the as-
teroid’s interior becomes negative. However, this is too restrictive, as a single
principal stress may become tensile even though the overall pressure remains
compressive. So, because granular materials are unable to sustain tensile loads,
a better failure law would be (Tensile Criterion) that the transition occurs
whenever any principal stress becomes positive. This global criterion differs
from the one that is inherently built into Richardson et al.’s (1998) model.
Under their computational scheme, the body sheds mass when the net force
on a sphere, on the body’s surface, ceases to be attractive. This can occur even
while the average principal stresses in the body are negative (compressive).
Another possible failure law (Mohr-Coulomb) considers the aggregate to tran-
sition from a rigid to a granular state whenever it violates the Mohr-Coulomb
criterion, which is commonly used to predict failure in soils. According to this
criterion, the transition occurs when the maximum shearing stress at a point
reaches a critical value that is a function of the normal stress on that same
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plane, i.e., when the inequality

σmax − kMCσmin ≤ 0, (30)

is violated. In the above, σmax and σmin are the maximum and minimum
principal compressive stresses. The parameter kMC is related to the internal
friction angle φF by

kMC =
1 + sin φF

1− sin φF

. (31)

By examining Mohr’s circle, which relates shear and normal stresses across
planes with different orientations, it is easily seen that the tensile criterion
results in a later failure than the Mohr-Coulomb criterion (e.g., Lambe and
Whitman 1969 or Chen and Han 1988).

We define the asteroid’s transition from a granular to a rigid state in a simple
way. The asteroid is considered to be rigid whenever the volume fraction ν in
the granular state increases above a critical cut-off, which we take to be 0.639.
This number is chosen because it is close to 0.64, which recall was the volume
fraction of a random, close-packed aggregate of identical spheres. The cut-off
is not set precisely at a ν of 0.64 to avoid the singularity inherent in Eqn. (23).
As noted later, such a transition criterion tends to hinder disruption because,
according to it, asteroids pass into a rigid state rather easily.

5 Moments

We now consider both the moment tensor due to self-gravity and the quadrupole
moment due to the planet’s gravitational field. These expressions will be used
in the following section.

5.1 Gravity moment tensor MG

Consider a coordinate system with its origin at the ellipsoid’s center-of-mass
and defined by unit vectors êi along the ellipsoid’s semi-major axes (see Fig. 3).
The gravitational potential at a point x = xiêi inside a triaxial ellipsoid is
(Kellogg 1953 or Chandrasekhar 1969)

U = −πρG(A1x
2
1 + A2x

2
2 + A3x

2
3), (32)

where we omit the additive constant as it has no effect on the body force. The
quantities Ai depend on the geometry (i.e., the semi-major axes ai) alone.
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Chandrasekhar (1969) notes an important property:

3∑
i=1

Ai = 2. (33)

Thus, for a sphere, A1 = A2 = A3 = 2/3. In general it is sufficient to know two
of the Ai’s, with the third being calculated from (33). For a prolate ellipsoid,
where 1 > α = β,

A3 = A2 =
1√

1− β2
− β2

2(1− β2)3/2
ln

1 +
√

1− β2

1−
√

1− β2
, (34)

while by employing (33),
A1 = 2(1− A3). (35)

In the given coordinate system we define the shape tensor A as

Aij =

Ai i = j

0 i 6= j.
(36)

This tensor captures the effect of the body’s shape on its internal gravitational
field. The potential U can now be rewritten as

U = −πρGAijxixj. (37)

The force acting on a mass element dm at x is simply ∇U . Then the body
force due to self-gravity is

bG = −2πρG(A1x1ê1 + A2x2ê2 + A3x3ê3)

= −2πρGAx. (38)

Using this in (14) and recognizing that A is a constant, the gravity moment
tensor MG is

MG = −2πρGIA. (39)

Note that the principal axes of I and A are the same and coincide with the
principal axes of the deformed ellipsoid. Thus, I and A commute.

5.2 Quadrupole moment tensor

The quadrupole moment tensor MQ is generated by the forces exerted by an
external body of mass mP . In order to calculate MQ , consider Fig. 3, where

D2 = r2 + R2 − 2rR cos θ (40)
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Fig. 3. Figure showing the geometry used to calculate the quadrupole moment MQ .

and

DêD = RêR + rêr . (41)

The body force on a unit mass (i.e., the acceleration) is

bQ =
dF

dm
= −G

mP

D2
êD = −GmP R

D3

(
êR +

r

R
êr

)
.

We use this in (14) to obtain

MQ = −
∫

V

ρGmP R

D3
r
(
êr ⊗ êR +

r

R
êr ⊗ êr

)
dV . (42)

Recall from Sec. 2 that êr⊗êr denotes the tensor product of êr and êr. In indical
notation it is simply the matrix êri

êrj
, where the components are evaluated in

the coordinate system shown in Fig. (3).

For most applications, such as planetary fly-bys, r � R. Expanding 1/D3 in
r/R and retaining terms of order r2/R2, we find

1

D3
∼ 1

R3

[
1 + 3 cos θ

r

R
+

3

2
(5 cos2 θ − 1)

r2

R2

]
.

Substituting this into (42) and keeping terms of order r2/R2 yields

MQ ≈ −GmP

R3

[∫
V

ρrR

{
1 + 3 cos θ

r

R
+

3

2
(5 cos2 θ − 1)

r2

R2

}
(êr ⊗ êR) dV

+
∫

V
r2
(
1 + 3 cos θ

r

R

)
(êr ⊗ êr) dV

]
.
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To evaluate the various integrals above, we use the center-of-mass’s definition
and symmetry arguments to find∫

V
rêr ⊗ êR dV = 0,

∫
V

r3êr ⊗ êR dV = 0,∫
V

r3 cos2 θêr ⊗ êR dV = 0 and
∫

V
r3 cos θêr ⊗ êr dV = 0 .

Additionally, ∫
V

r2 cos θêr ⊗ êR dV = −I êR ⊗ êR

and ∫
V

r2êr ⊗ êr dV = I ,

where the latter follows directly from (2) and the former is obtained by using
cos θ = êr · êR. Thus,

MQ = −GmP

R3
I (1 − 3êR ⊗ êR) , (43)

or,

MQij
= −GmP

R5
Iik

(
R2δkj − 3RkRj

)
.

These provide the quadrupole moment tensor in terms of the position of the
external perturber, its mass, and the inertia dyad (tensor) of the body itself.
Note that the skew part of MQ , which represents the quadrupole torque,
agrees with MacCullagh’s formula (see, e.g., Murray and Dermott 1999, pp.
197-198). Furthermore, our expression for MQ agrees with that of Sridhar and
Tremaine (1992), providing a further check.

6 Results

We now summarize how we will investigate planetary fly-bys of asteroids that
are modeled as rigid-granular prolate ellipsoids. In order to follow an encounter
we need to know the position of the asteroid’s center-of-mass as well as its
shape, which may change during the fly-by. The asteroid, i.e., its center-of-
mass, is required to fly along an orbit that is determined by choosing its initial
distance from the planet, the encounter velocity v∞, and the distance at closest
approach q. The location of the asteroid’s center-of-mass is obtained from (10)
and (11), which are integrated numerically.

The asteroid’s change in rotation rate and possible distortion in shape are
obtained by judicious use of (16). At the beginning of the encounter, the
asteroid is taken to be rigid, so that I is constant. The rotational dynamics
then is described completely by the spin tensor W , which, in the case of
a rigid body, is the same as the anti-symmetric tensor associated with the
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angular velocity measuring the rotation rate of the ellipsoid’s principal axes.
The equation for W ’s evolution is obtained by noting that because there is
no change in shape, D = 0 and L = W , so that taking the anti-symmetric
part of (16) yields

asym
[(

Ẇ + W 2
)
I
]

= asymM T , (44)

where recall that the notation asym denotes the anti-symmetric part of a ten-
sor. Note that (44) is really three equations, which are, as was to be expected,
the Euler equations for a rigid body, with the right-hand side being the tidal
torque given by the anti-symmetric part of the quadrupole moment tensor
M Q from (43). The internal gravity, being radial (i.e., has zero curl), makes
no contribution to the rigid-body torque.

As the asteroid increasingly feels the planet’s gravitation, it may start to dis-
rupt. This can occur when either of the two failure criteria discussed previously
is violated. We explore the two criteria separately below. In general, for each
choice, we use the principal stresses of the average rigid-body stress tensor
at every integration step to check whether or not the chosen failure criterion
is violated. The rigid-body stress tensor is obtained by taking the symmetric
part (denoted by sym) of (16)

σ =
1

V
sym

[
M T −

(
Ẇ + W 2

)
I
]
, (45)

where the moment tensor now includes contributions from both the quadrupole
moment tensor and the gravity moment tensor MG given by (39). If the chosen
disruption criterion has indeed been violated, we assume that the asteroid has
begun to disrupt and its interior is then modelled by a granular rheology. As
the asteroid’s shape can now change, D 6= 0, and we have to solve for all nine
components of L from (16), along with the six components of the inertia dyad
I from (17). This is easily done numerically as it involves the integration of a
coupled set of ordinary differential equations, once we have substituted for the
stress tensor σ in (16) by employing (18), (20), (26), (27) and (29) to relate
the stress tensor to the deformation rate L, and have used the formulae for
the gravity moment tensor from (39) and the quadrupole moment tensor from
(43) to calculate the total moment tensor M . At this time, the motion of the
asteroid’s center-of-mass is still assumed to follow the previously determined
orbit.

Post-planetary encounter, a disrupted asteroid can re-accumulate. This will
occur, as was outlined earlier, when the volume fraction of the asteroid be-
comes large enough. We check this by calculating the volume fraction at each
integration step, using the constancy of mass of the asteroid and its deformed
shape, which in turn is found using the changing inertia dyad I . Recall that
in our model the ellipsoid can deform, but does not shed mass. Once the as-
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teroid re-accumulates and become rigid, its evolution is again easily followed.
Note that during disruption the asteroid’s volume changes. Though any con-
stituent sphere’s density remains unchanged, constancy of mass is enforced by
a varying volume fraction.

From the paragraphs above, we see that once we choose a transition criterion
from the two at our disposal, we have a closed set of ordinary differential
equations to model the asteroid’s fly-by. The evolution of the asteroid’s size,
as described by the semi-major axes of its ellipsoid, indicates the outcome of
that fly-by. Following Richardson et al. (1998), we choose the coefficient of
restitution ε that governs the energy dissipation in our continuum model to
be 0.8, the asteroid’s initial bulk density ρA is taken to be 2 g/cm3, and the
constituent sphere’s density ρs to be 3.6 g/cm3; the latter choices correspond
to an initial volume fraction of ν = ρA/ρs = 0.56. Finally, we consider three
different spin periods and look at both prograde and retrograde rotations.

Our numerical integration was carried out using the built-in ODE solver ode45
in MATLAB. Some limiting tests were carried out to validate the code. For
example, when we set the planetary mass to zero and allowed the asteroid
to execute full three-dimensional rotation, we obtained a linear path for the
asteroid’s center-of-mass, and free rigid-body nutational motion in which an-
gular momentum and energy were conserved, as was to be expected. Similarly,
if the asteroid’s shape was taken to be spherical, angular momentum and ro-
tational energy were conserved and we recovered the solution for a point mass
flying past a planet.

6.1 Outcomes with the tensile criterion

We first investigate the behavior of a rigid-granular asteroid whose disruption
is controlled by the tensile criterion described in Sec. 4.2. We choose an initially
rigid asteroid in prograde rotation, with axes ratios α = β = 0.6, located at
a distance of around 60 R⊕ from the planet, and follow the solution strategy
outlined in the previous section.

Fig. 4 tabulates the outcomes of fly-bys as the encounter velocity v∞ and
distance at closest approach q are varied. The asteroid’s initial spin period
was taken to be six hours. For each fly-by, several initial orientations of the
asteroid, which lead to different long-axis orientations φq at the point of closest
approach (periapse), were considered. The table uses notation similar to that
of Richardson et al. (1998), viz.,

• S: if the encounter results in a s ignificant amount of deformation. The en-
counter outcome could potentially be a Shoemaker-Levy-9-type string of
material (Asphaug and Benz 1996). An outcome where any one of the final
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Fig. 4. The outcomes of Earth fly-bys are tabulated for various encounter velocities
v∞ and distances of closest approach q. The asteroid’s initial prograde spin period
was six hours. The tensile criterion is used to model the transition from a rigid to
a granular state. The symbols S, M and N denote, respectively, fly-bys leading to
S -L-9 catastrophic break-ups, fly-bys where major shape changes take place, and
fly-bys where essentially no shape change occurs. Multiple entries, e.g., M/N, are
defined in the text. See the discussion in Sec. 6.3.

axes ratios is less than 0.3 is classified as an S-type.
• M: when the asteroid is not broken apart, but does suffer major change

in shape. Outcomes where the final axes ratios lie between 0.3 and 0.5 are
classified as M-types.

• N: when the asteroid’s shape has not changed appreciably at the end of the
fly-by. The final axes ratios lie between 0.5 and 0.6.

As mentioned earlier, because of the model’s limitations, the asteroid cannot
be seen to separate physically. So even though we can, with sufficient confi-
dence, predict whether an asteroid will break apart or not, it is impossible
to predict whether the progeny will be a binary or a string of objects. Thus,
all break-up events are marked by an S in Fig. 4. The outcomes identified
by S/M/N (and similarly for M/N) denote cases where the asteroid can be
broken apart, reshaped, or not affected, depending on the orientation of the
long-axis at periapse. This is because the outcome of a fly-by relies crucially on
the interactions near periapse, as the magnitude of the planet’s quadrupole
moment, and changes in spin due to planetary tidal torque, differ with the
orientation of the long-axis near the periapse.

Before proceeding to analyze the results tabulated in Fig. 4, we make some
prefatory remarks. For an asteroid to undergo disruption, failure has to be
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Fig. 5. The Roche limit with respect to the Earth for a prolate ellipsoid with axes
ratios α = β = 0.6 as a function of the long-axis orientation φq and its spin, as
calculated by the volume-averaged method. Davidsson’s (2001) result for φq = 0o is
also shown for comparison. The test cases are discussed in Sec. 6.3.

initiated, i.e., at some point during its fly-by, the stresses in the asteroid must
satisfy conditions for failure, which in the present case (Tensile failure crite-
rion) amounts to one principal stress becoming positive (tensile). After failure
is initiated, the rheology is no longer a rigid one, but granular, which permits
deformation. Once failure occurs, subsequent disruption depends on the mag-
nitude of the quadrupole moment MQ , the gravitational moment MG , and
also on changes in spin due to both tidal torques and the asteroid’s changing
shape.

In order to probe the mechanics of tidal encounters, two different initial spin
periods (either 6 or 12 hours) were employed. We summarize the effects of
different initial spins in Sec. 6.5. Further, two different periapse distances of
1.8R⊕ and 2.3R⊕ were used. In the following, we have non-dimensionalized
the time by 1/

√
2πρsG, which is approximately 0.23 hours, corresponding to

scaling the spin rate by 0.7 rotations/hour.

6.2 The Roche limit

To better understand the disruption process it is worthwhile to consider the
Roche limit of a granular ellipsoidal body. The classical Roche limit is the
distance from a planet within which a homogeneous, synchronously rotating,
fluid body will disrupt; it is 2.46 times the planetary radius for bodies of
equal densities (Murray and Dermott 1999, pp. 158-159). It is obtained by
balancing the stabilizing effects of the body’s self-gravity against the disruptive
effects of planetary tides and the centrifugal “force” due to the body’s spin
(Chandrasekhar 1969). In fact, for a real object this distance depends on,
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amongst other things, the body’s rotation rate, its and the planet’s physical
properties, the body’s orientation with respect to the planet, and the way the
body’s failure is characterized. Because of these last two dependencies, there
are several estimates of the Roche limit.

Davidsson (2001) evaluated the Roche limit as a function of the encounter
velocity and periapse distance, when the body’s long-axis points towards the
planet at periapse, i.e., φq = 0o. This estimate is shown in Fig. 5. Davidsson
(2001) required the failure to occur along pre-defined planes of the body. This
contrasts with the way that we model the body’s initial failure, where the body
breaks apart in a “volume-averaged” manner, i.e., we do not presuppose a par-
ticular plane of failure. However, it is possible to apply the volume-averaged
methodology to a rigid-granular ellipsoid and obtain appropriate Roche limits.
Fig. 5 shows that the Roche limit obtained by the volume-averaged approach
for φq = 0o is the same as Davidsson’s (2001). This gives us confidence to
employ the volume-averaged approach to obtain Roche limits for other long-
axis orientations, and the results for several other φq are indicated in Fig. 5.
This is necessary because in our case failure may be initiated at non-zero
values of the long-axis orientation φq, and such cases are not considered by
Davidsson (2001). From Fig. 5, we see that the Roche limit curves vary signifi-
cantly depending on the asteroid’s orientation. The details for calculating this
more generalized Roche limit appropriate for solid objects and derived using
the volume-averaged approach are not pursued here, and will be published
separately.

In general, for a fixed shape, if a body’s planetary distance and spin are such
that it lies outside the curve corresponding to φq = 90o it will definitely fail; if
it lies inside the curve corresponding to φq = 0o, it will never fail; and finally, if
it lies between the two curves, its failure depends on its orientation at closest
approach.

We should stress that the Roche limit discussed here does not depend on the
asteroid’s encounter velocity as it is calculated for static conditions, neglecting
the asteroid’s changing parameters during the fly-by. In particular, while the
limit includes the effects of stresses due to tides, spin and internal gravity,
it does not follow changes in “centrifugal” stresses due to the action of tidal
torques on the asteroid’s spin. Scheeres et al. (2000) and Scheeres (2001) in-
vestigate the effects of the tidal torques on the asteroid’s spin in detail, and
a truly complete Roche limit analysis would incorporate their results, thereby
accounting for the change in the Roche limit as the asteroid’s spin rate changes
during its fly-by. However, such an analysis is not yet available and we will
attempt to interpret our results in terms of the static landscape defined by
the curves of Fig. 5.

Fig. 6 provides another way to look at the Roche limit. It shows the Roche
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Fig. 6. A schematic of possible asteroid paths through the inner and outer Roche
spheres. All the fly-bys shown had v∞ = 3.26 km/s, while the object’s spin period
was fixed at six hours

spheres 1 corresponding to φq = 90o and φq = 0o for the same asteroid as in
Fig. 5. Several potential fly-by paths are also drawn. We call the part of the
asteroid’s fly-by path that intersects any of the Roche spheres, the “failure
zone”. Thus, if the failure zone of a fly-by path intersects both the inner and
the outer Roche spheres, as for paths 1 and 2, all asteroids on those fly-by
paths will fail with a high probability. On the other hand, paths 3 and 4 do
not intersect the inner Roche sphere. This means that it is possible for the
asteroid to traverse the failure zone without ever failing. Further, Fig. 6 hints
at other possibilities. For example, the failure zone of path 4 is rather small,
with the object spending only about 30 minutes in this zone, much shorter
than its spin period of six hours. Thus, if the tidal torque due to the planet
manages to decrease the asteroid’s spin during its passage through periapse,
it will shrink the size of the Roche spheres, implying that the asteroid will slip
past without failing. Similarly, an increase in the spin of an asteroid on path 3
may cause it to fail at orientations that are precluded by an initial spin period
of six hours. We explore all these aspects in more detail below. Finally, as we
mentioned above, the disruption subsequent to failure depends significantly on
the quadrupole moment MQ . It is difficult to follow the quadrupole moment
once the body begins to deform. However, the extent of the failure zone (see
Fig. 6) provides an estimate of the importance of the quadrupole moment
during any particular fly-by.

1 Spherical regions around the central planet indicated by the Roche limit, objects
within which will fail due to tides.
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6.3 Further analysis of fly-bys

In Fig. 4 the overall gross trend, as v∞ and/or q increases, is for the intensity
of disruptions to lessen, until there are no break-ups. Consider first the effect
of raising the periapse distance at a fixed encounter velocity v∞. Fig. 6 shows
that as the asteroid moves further out, the failure zone’s extent lessens. Thus,
though failure is initiated for all encounters with q 6 2R⊕, the likelihood of
subsequent disruption drops. Recall that the classical Roche limit does not
depend on the encounter velocity.

Now consider keeping the periapse distance q fixed and raising the encounter
velocity v∞. In general, all asteroids still undergo initial failure for q 6 2R⊕.
However, the extent of subsequent deformation depends on the encounter ve-
locity. This is because at higher encounter velocities the asteroid does not
spend enough time in the disruption zone, i.e., its interactions with the planet
are limited. This is marginally accentuated by the fact that with higher en-
counter velocities, fly-by paths are straighter, shortening the failure zone.
Thus, the severity of the disruption decreases as the encounter velocity in-
creases at a fixed q. For each case, failure is not initiated in general when
q > 2R⊕, so that the asteroid passes by unaffected.

We now explore the effects of the long-axis’ orientation at periapse (φq), which
is responsible for different outcomes despite the same encounter velocity v∞
and periapse distance q, as seen in Fig. 4. The orientation φq affects both the
magnitude of the tidal stresses and the tidal torques.

• Effect on tidal torques: Spin up/down: Because the asteroid is asymmetric
about the 3-axis, the planet can exert tidal torques. They can be obtained
from the axial vector corresponding to the anti-symmetric part of MQ (see
Sec. 5.2). These torques can raise or lower the asteroid’s spin during its fly-
by, depending on the long-axis’ orientation in the vicinity of the periapse.
Expressions that estimate the change in rotation rate for rigid asteroids
may be obtained from Scheeres (2001).

A larger spin translates into an augmented deformation for already dis-
rupting asteroids, as the disruptive centrifugal “force” is increased. Tidal
torques will be most effective when the long-axis points ahead or behind
the planet as suggested by the two sketches within Figs. 8 and 11(a). For
example, the amount spin-up (-down) of a prograde rotator due to a tidal
torque that, say, is felt only at periapse, is maximized at φq = −45o (45o).
Thus, if spin changes due to tidal torques were the only, or at least the
dominant mechanism determining the disruption process, we would predict
the deformation to be maximum when the long-axis’ orientation at periapse
φq ∼ −45o, and least when φq ∼ 45o.

Finally, we recall that tidal torques can be zero while the quadrupole

25



moment MQ itself is non-zero. This happens when the object is oblate, or
when φq = 0o or 90o. MQ captures also the tide-raising part associated with
the difference between gravitational and centrifugal forces for an object with
spatial extent.

• Effect on tidal stresses : As we note from Fig. 5, the long-axis’ orientation
at periapse affects the Roche limit; the critical periapse distance, i.e., the
distance above which failure is not initiated, decreases with an increasing φq

for a given spin. In other words, if we neglect changes in its spin, or, if tidal
stresses were the principal mechanism for disruptions during its fly-by, de-
pending on its long-axis’ orientation at periapse, an asteroid with the same
v∞ and q, may not fail (N), fail with mild deformation (M), or fail with
significant deformation (S). Thus, for example, a tidal-stress analysis would
predict that the asteroid with a six-hour period and at q = 1.8R⊕ in Fig. 5
will fail if, during its fly-by, its long-axis points towards the planet, but not
if its long-axis is perpendicular to the position vector of the planet. Also,
there will be an orientation, e.g., φq = 60o, so that the corresponding Roche
limit curve passes close to the test object, and the disruption subsequent to
failure is mild.

These mechanisms above are, in some sense, antagonistic. This is because,
while the disruptive effects of tidal stresses are more dramatic if at periapse
the long-axis points towards the planet, i.e., φq = 0o, tidal-torque-induced spin
changes are extremized when φq ∼ ±45o. This complicated interplay between
tidal stresses and torques makes an analysis based purely on the Roche limit, as
derived here, rather intricate. However, a complete Roche limit analysis that
has woven into it the effects of changing spins and tides, and that directly
indicates whether a fly-by is spin- or tidal-stress-controlled is unavailable.
Thus, instead, we will explore the interplay between these two mechanisms
via three test cases below. We will find that φq’s effect on both tidal stresses
and tidal torques is important.

• Spin-controlled regime: Fig. 7 plots the final axes ratios versus the long-axis’
orientation at periapse φq of fly-by tests carried out for a fixed q of 1.8 R⊕
and v∞ of 3.26 km/s, differing only in the long-axis’ initial orientation. The
asteroid’s position with respect to Roche limits is indicated by test case A
in Fig. 5.

From the plot we note that the severity of disruption, as indicated by
lowered values of the final axes ratios α and β, increases as the asteroid’s
long-axis gets aligned towards the planet, i.e., as φq → 0o, and continues
to grow until φq ∼ −45o. This is in keeping with the hypothesis that the
asteroid’s spin increased most when φq ∼ −45o, and this boost in spin
accentuates the subsequent disruption. Similarly, when φq is positive, the
asteroid’s rotation is slowed, causing a reduction in the observed deforma-
tion. This is confirmed by Fig. 8 in which we compare the spin histories
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Fig. 7. Final axes ratios α = a2/a1 (in gray) and β = a3/a1 (in black) are plot-
ted against the corresponding long-axis’ orientation at periapse φq. The dots indi-
cate individual tests that are identified by numbers next to them. Each fly-by had
v∞ = 3.26 km/s and q = 1.8R⊕. The asteroid’s initial spin period was six hours
and it was in prograde motion. This figure should be compared to Fig. 9.

of test cases 10, 14 and 4 where φq is around 0o, 45o and −45o (obtained
from Fig. 7). As Fig. 8 shows, the asteroid’s spin is initially reduced as the
body approaches periapse in cases 10 and 14 due to its orientation and that
causes detrimental tidal torques. Meanwhile, due to the asteroid’s favorable
orientation in case 4, the tidal torques help to augment the spin initially,
which in turn induces larger deformations.

In contrast, a tidal-stress argument would predict maximum deformation
when φq ∼ 0o, and similar behavior for positive and negative values of
φq, because the Roche limit does not depend on φq’s sign. It turns out
that, at the reasonably fast spin corresponding to a period of six hours, the
“centrifugal” stresses play a dominant role, so that changes in spin due to
tidal torques are more important than modifications in tidal stresses due to
the alignment of the long-axis. In this sense, we term this as a spin-controlled
regime.

• Tidal-stress-controlled regime: In Fig. 9 we plot the final axes ratios against
the corresponding long-axis’ orientation at periapse φq for fly-by tests car-
ried out with the same q and v∞ as in the case above, but with the asteroid’s
initial spin period lengthened (test case B in Fig. 5). We see that now the
maximum deformation occurs at φq ∼ 0o, with the deformation reducing
with increasing |φq|. This is explained by the fact that tidal stresses surge
with decreasing |φq|. In this case the spin is low enough for “centrifugal”
stresses to be unimportant compared to tidal stresses. Thus, we call this
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a tidal-stress-controlled regime. The fact that we do not quite recover a
symmetric deformational behavior, as would be the case for a pure tidal-
stress-controlled fly-by, is because of the action of tidal torques. Indeed,
spin-up induces greater deformation for φq < 0o, and conversely, an adverse
tidal torque retards deformation for φq > 0o. Fig. 10 plots the spin histo-
ries of test cases 5, 10 and 14 from Fig. 9. This figure confirms the fact
that even though the rotation rate of the asteroid increases in test case 5
(φq ∼ −45o), and decreases initially in test case 10 (φq ∼ 0o), Fig. 9 reports
greatest deformation for test case 10. Thus, it is the tidal stresses that play
a greater role in determining the outcome of this class of fly-bys.

• Spin-initiated failure: A growth in an asteroid’s spin can also initiate failure
in asteroids that would otherwise have flown by as rigid objects. This can
happen if the tidal torques can augment the asteroid’s spin enough to push
it outside its failure curve in Fig. 5. This is demonstrated in Fig. 11, where
we consider four separate instances of an asteroid’s fly-by that vary only
in the long-axis’ initial direction, leading in turn to different orientations
during passage through periapse. This particular fly-by is indicated by test
case C in Fig. 5.

First, consider the fly-bys numbered 2, 3 and 4. Fig. 11(a) shows that as-
teroids in these fly-bys are so aligned near periapse that tidal torques tend to
increase their spin. In case 2 the spin is raised, but not enough to initiate fail-
ure, as seen by the corresponding curve for the internal stress in Fig. 11(b),
where the stresses have been non-dimensionalized by (3/20π)(2πρsGmA)
(4πρA/3mA)1/3. Thus, the asteroid passes by as a rigid object, though its
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spin has grown substantially as a result of the encounter. In cases 3 and 4, on
the other hand, the initial augmentation in spin is enough to initiate failure.
This is confirmed by the stresses becoming tensile in Fig. 11(b). Post-failure,
the asteroid is governed by a granular rheology, and is allowed to deform,
as is indicated by the dashed curves 3 and 4. Once the asteroid leaves the
vicinity of periapse, it begins to re-accumulate until it becomes rigid again,
when the volume fraction reaches a critical value; thus in Fig. 11, curves 3
and 4 become solid again. It is interesting to see from Fig. 11(a) that the
asteroid’s spin drops from the value it had attained just before failure. This
happens because the deformation augments the inertia about the spin axis,
mandating a slower spin in order to balance angular momentum. Finally,
we caution that when the asteroid is no longer rigid, its spin is no longer
given by the axial vector associated with the tensor W . Thus, the dashed
part of the curve, which follows the evolution of W ’s axial vector, does not
indicate the actual spin, which instead is defined by the rate at which the
principal axes of the ellipsoid rotate.

A reduction in the spin’s magnitude, on the other hand, has a stabilizing
effect that reduces the amount of break-up, and may even suppress initial
failure. That spin-down is indeed possible and leads to a lessening of the
maximum principal stress is demonstrated by history 1 in Fig. 11.

The outcomes reported in Fig. 4 agree reasonably well with those obtained
by Richardson et al. (1998). However, in contrast to the latter’s results, our
model does not predict disruption at higher values of the encounter velocity
v∞ and periapse distance q. Moreover, we find less post-encounter deformation
than that published by Richardson et al. (1998). For example, Richardson et al.
(1998) predict S type encounters for v∞’s greater than 15 km/s at q = 1.01R⊕,
while we, at best, predict only M-type encounters. The asteroid spends about
12 minutes inside the failure zone in these encounters. Recall that our classifi-
cation scheme does not differentiate between the S- and B-type encounters of
Richardson et al. (1998); we label them both as S-type encounters. Similarly,
at q’s of 2.6R⊕ and 3R⊕, where the maximum tidal stresses are of the order
of 0.23 kPa and 0.35 kPa, respectively, we forecast that the fly-by has little
or no effect on the asteroid, while Richardson et al. (1998) predict modifica-
tion, at least at low encounter velocities. Note that the classical Roche limit,
calculated assuming our asteroid to be fluid, is about 3.4R⊕. This underlines
the fact that our model, and that of Richardson et al. (1998), are resistant to
shear.

These differences occur for two important reasons:

• Failure criterion: Richardson et al. (1998) represent the asteroid as an ag-
gregate of smooth spheres. In order to model such an aggregate as a rigid-
granular material with a failure law, one must pick an appropriate failure
criterion. In the above, we chose a tensile failure criterion, where the ma-
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Fig. 11. Evolutions of the spin rate and maximum stress for four different long-axis
orientations, but the same fly-by conditions (v∞ = 1.1 km/s and q = 2.3R⊕).
The initial rotation was prograde with a period of six hours. Effects of the Earth’s
presence are felt over a period of approximately seven hours, i.e., about 30 units of
non-dimensional time, during which the asteroid is within a distance of about 20
planetary radii. Compared to Figs. 8 and 10 a larger window of time is shown.
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terial failed if any principal stress became tensile. However, even when all
principal stresses are compressive, the aggregate can fail if a shear stress,
on some plane in its interior, manages to overcome the resistance due to
the interlocking of the spheres. It is possible to model this interlocking as
an internal geometric friction, i.e., a frictional resistance whose origins lie
in the aggregate’s arrangement, rather than in the surface properties of its
constituent spheres. Thus, an appropriate failure criterion governing the
transition from a rigid state, where the spheres are locked together, to a
more mobile granular state, could be the Mohr-Coulomb failure criterion
(Sec. 4.2) with some friction angle φF . Holsapple (2001) , Richardson et al.
(2005) and Sharma et al. (2005) provide further endorsement for using this
method to describe the aggregate considered by Richardson et al. (1998).

Holsapple (2001) studied the equilibrium shapes of spinning ellipsoids
that were rigid until they failed according to the Mohr-Coulomb failure
condition. Using an exact plasticity analysis, he was able to map out re-
gions that depended on the ellipsoid’s spin and its shape, as defined by the
axes ratios α and β, within which spinning ellipsoids could exist without
failure. Subsequently, Richardson et al. (2005), when considering equilib-
rium shapes of spinning, ellipsoidal, granular aggregates similar to the ones
used by Richardson et al. (1998), showed that the ellipsoidal aggregates
that remained in equilibrium all clustered together. According to Holsap-
ple’s (2001) study, this region was described by a rigid-plastic ellipsoid with
a Mohr-Coulomb failure criterion and an internal friction angle φF of 40o.

Using a Mohr-Coulomb criterion, which, as mentioned previously, permits
earlier failure than the tensile criterion, should have the effect of increasing
the frequency and severity of disruptions by making the asteroid more sus-
ceptible to break-ups. Thus, the asteroid will pass from a rigid state into a
granular state, where it can be deformed, much more easily. Below we see
that this hypothesis is indeed partially true.

Another reason that we obtain fewer break-ups than Richardson et al.
(1998) is the way that we model the reverse transition of the asteroid from
a granular to a rigid state. As mentioned earlier, we assume that the as-
teroid’s state is rigid once the volume fraction in the granular state crosses
a cut-off limit, which is typically set at around the volume fraction of a
random, closely packed aggregate of identical spheres. If we imagine that
the asteroid is made up of rock chunks held together by self-gravity alone,
then it is plausible that over time, due to gravitational pressure and adhe-
sive interactions, these rocks become sintered together. Thus, the asteroid
appears, for low-enough stresses, to behave rigidly. This, in a way, was one
of the motivations for choosing an initially rigid state in the problem above.

Now suppose that such an asteroid undergoes an event, e.g., a planetary
fly-by, which breaks apart any bonds that might have formed between its
constitutive rock chunks. Then it is unlikely that these internal bonds, which
probably developed over long periods of sustained pressure, will be imme-
diately regenerated if the asteroid becomes dense enough during the fly-by.
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Thus, by assuming that the asteroid becomes rigid if the volume-fraction of
the granular state increases sufficiently, we probably lessen the number of
break-up events.

The above deficiency can be overcome by not allowing the asteroid to
become rigid again once it has passed into a granular state. But so far an
efficient continuum model for the dynamics of a granular material at high
volume fractions is not available, and this remains a problem for future
study.

• Volume-averaging : In the volume-averaged models used in the above anal-
ysis, an object will fragment only if its average stress satisfies some failure
criterion. Thus, our approach will miss cases in which the body fails at cer-
tain points but not on average. Richardson et al. (1998) use a numerical
scheme to follow all the constituent spheres in their model, and so, in fact,
are ascertaining the body’s failure point-wise. They find, for example, that
a gravitationally held aggregate will frequently start shedding mass from
its surface before the failure reaches the interior. This was also seen by As-
phaug et al. (1994) and seems intuitively plausible. Such surface-shedding
cannot, of course, be captured by our volume-averaged model. We could im-
prove our model by perhaps applying volume-averaging over layers rather
than the full volume, but this would require a modification of the governing
equations with surface terms coming into play at the boundaries between
the layers. However, as we remark later, other reasons may account for most
discrepancies between our results and previous simulations.

The possibility of localized failure is increased at encounter velocities
significantly higher than the speed of sound in the asteroid’s material. This
is a result of the stress information not being communicated to the asteroid’s
interior fast enough to dissipate high local stresses, leading to failure. This
may not be captured by the volume-averaged approach because the stress
on average may be lower than that required for failure.

6.4 Outcomes with the Mohr-Coulomb criterion

When the Mohr-Coulomb criterion (30) with a friction angle φF of 40o is used
to govern the transition from a rigid to a granular state, previously unaf-
fected asteroids begin to break apart. Furthermore, the fraction of asteroids
that disrupt for particular choices of q and v∞ also increases, reflecting the
relative ease with which asteroids can now fail. However, in the case of an
asteroid that is already deforming when the tensile criterion was used, there is
little enhancement in its distortion. This occurs because the extent of defor-
mation depends on the time the asteroid spends disrupting, i.e., the interval
between failure’s initiation and the asteroid’s re-accumulation. Whenever pas-
sage through periapse happens rapidly, this interval differs little between the
two failure criteria, even though failure occurs earlier when the Mohr-Coulomb
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criterion is employed.

Fig. 12 tabulates the final shapes of 18 fly-bys that differ only in the long-axis’
orientation at periapse φq; they all have the same periapse distance q = 2.2R⊕
and encounter velocity v∞ = 3km/s. Note that in contrast to previous figures,
in Fig. 12 we plot the axes ratios against individual tests and not φq. When the
tensile failure criterion was employed, the asteroid’s final shape was unchanged
in 90% of the cases. However, once we utilize the Mohr-Coulomb criterion, the
number of disruptions increases significantly as does the deformation. From
Fig. 12 we observe that the asteroid failed in only two cases when the tensile
criterion was employed. Note though that in these cases too the final axes
ratios were greater than the corresponding ones obtained when the Mohr-
Coulomb criterion was utilized, thus indicating lesser deformation during the
fly-by. Finally, we mention that as we lower the internal friction angle φF , the
number and intensity of disruptions grow apace. We point out that in these
computations, the numerical approach and the initial conditions were exactly
the same as before.

6.5 The effect of spin direction

We also investigated fly-bys where the asteroid had an initial retrograde spin.
For outcomes of retrograde fly-bys in the spin-controlled regime, where the
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Fig. 13. Final axes ratios α = a2/a1 (in gray) and β = a3/a1 (in black) for retrograde
fly-bys are plotted against the corresponding long-axis’ orientation at periapse φq.
The dots indicate individual tests that are identified by numbers next to them. The
fly-bys had v∞ = 3.26 km/s and q = 1.8R⊕.
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asteroid’s spin plays an important role, Fig. 13(a) shows a decrease in the
number and the severity of disruptions. This agrees with the observation of
Richardson et al. (1998). Indeed, comparing Fig. 13(a) with the outcomes of
corresponding prograde fly-bys shown in Fig. 7, we see that disruption, as
characterized by the change in α and β, is much less in the retrograde case. It
is interesting to note however that the shapes of the α and β curves exhibit a
degree of mirror symmetry. This may reflect the fact that, in a spin-controlled
regime, the deformation in a prograde fly-by is maximized when φq ∼ −45o,
but in the retrograde case it should occur when φq ∼ 45o. As explained below
this is not strictly true owing to the mechanics of a retrograde fly-by being
fundamentally different from a prograde one.

A similar reduction in the disruption was not observed for retrograde fly-bys
that were tidally controlled, i.e., where the spin was low enough for tidal
stresses to dominate. Indeed, the outcomes of such retrograde fly-bys shown
in Fig. 13(b) are almost the same as the results of analogous prograde fly-
bys (Fig. 9). This behavior may be easily explained by utilizing a Roche-
limit analysis at the periapse. To see this, we simply note that the centrifugal
“force”, the only term that varies with the spin, depends only on the spin’s
magnitude, and not its sign. Thus, there is no difference between Roche limits
for prograde and retrograde fly-bys, leading to similar behavior. Note that
because the fly-by is tidally controlled, we can neglect the effect of changes in
spin rate.

An explanation of the fewer number of disruptions for prograde fly-bys, in
situations where the asteroid’s spin plays a crucial role, requires more under-
standing. In this case, a Roche-limit analysis carried out at periapse is found
to be insufficient as it predicts similar behaviors for prograde and retrograde
fly-bys. In the spin-controlled regime, changes in spin play an important role,
and these changes cannot be accounted for by considering only the encounter
geometry at periapse. Indeed, such an analysis would predict that an aster-
oid rotating in a prograde fashion will be spun up (down) at a φq of about
−45o (45o), whereas the same asteroid at those φq’s would be spun down
(up) if rotating retrograde. This would further imply that the statistics of
disruptions would not change, because for every fly-by in which a prograde
rotator is spun-up at φq ∼ −45o, there will be a corresponding fly-by with
φq ∼ 45o, where a retrograde spinner gets speeded up. We would then expect
the outcomes of retrograde fly-bys to look similar to Fig. 7 with the maximum
deformation occurring at φq ∼ 45o. This is not the case. Thus, in order to esti-
mate an asteroid’s changes in rotation we need to follow its history throughout
the periapse’s vicinity.

Such an analysis has been carried out by Scheeres (2001) in the context of
rigid asteroids. He showed that for the same fly-by paths, a prograde rotator
suffered much more drastic changes in spin than a retrograde one. Thus, his
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Fig. 14. Schematics of two fly-bys differing only in the asteroids initial spin direction.
Not shown is the angle θ that the asteroid’s long-axis makes with the horizontal.

analysis predicts that prograde fly-bys will disrupt to a greater extent than
retrograde ones. We will not repeat Scheeres’ (2001) analysis here, but instead
motivate the mechanics underlying his treatment through Fig. 14, which shows
two configurations that guarantee spinning up of asteroids during prograde
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and retrograde fly-bys, respectively. Note our sign convention, wherein φP is
measured from the line AA′ to PP ′ in the prograde case, and from PP ′ to
AA′ for a retrograde fly-by. In either case, the angle φP yields the orientation
of the asteroid’s long-axis with respect to the central planet, and equals φq at
periapse. From the sketch in Fig. 14 we see that at any point on its trajectory,
the torque experienced by an ellipsoid (asteroid), taken to have its rotation
normal to its orbit plane, is maximum for φP = 45o. In order to change the
asteroid’s rotation the most from its planetary engagement, the largest angular
impulse should be applied during its fly-by. This would be maximized if φP

throughout the asteroid’s passage were always 45o. However, Fig. 14 shows
that

φP = f − θ

for prograde fly-bys, and

φP = θ − f

for retrograde ones, where θ is the angle made by the asteroid’s long axis
with the horizontal and f is the true anomaly. Thus, φP generally varies
throughout an encounter because both the orbital position changes and the
asteroid rotates. Nonetheless, an asteroid’s spin can still be augmented, e.g.,
we are assured of an increase in an asteroid’s rotation if φP remains positive
throughout the asteroid’s planetary interaction so as to produce a positive
torque.

If we now assume that the line AA′ in Fig. 14 rotates at a rate θ̇, which is the
asteroid’s angular velocity, while the line PP ′ rotates at ḟ then we can write
φP ’s rate of change for prograde fly-bys as

φ̇P = ḟ − θ̇, (46)

while

φ̇P = θ̇ − ḟ

for retrograde fly-bys, which, because θ̇ < 0 for retrograde spins, becomes

φ̇P = −|θ̇| − ḟ . (47)

From Eqs. (46) and (47) we see that in any particular encounter, because ḟ is
always positive, while θ̇ is positive for prograde but negative for retrograde, φP

always changes more slowly for positive rotation than for retrograde. Thus, φP

remains positive for longer periods during prograde fly-bys, augmenting the
relative angle over which favorable tidal torques are “averaged” and thereby
increasing the chances of an asteroid being spun up during such interactions.

38



Hence, in any encounter a prograde-rotating body will be more affected than
will a retrograde-spinning body.

Finally, it is interesting to note that if the asteroid’s initial spin is very rapid,
the integrated effect of the torques is small because the asteroid will experience
both positive and negative torques during a single interaction. Thus, one would
expect very little difference between retrograde and prograde encounters, and
this has been pointed out recently by Scheeres et al. (2004). Furthermore, if
at pericenter φP = 45o, then the way to generate the greatest angular impulse
is to keep φP as close to this same angle as possible, namely to have θ and f
rotate at roughly the same rates. Thus, the above analysis would predict that
in order for angular impulse to be maximum in any encounter, it should not
only act on a prograde-spinning body, but also ḟ should roughly equal θ̇.

6.6 Different initial spin magnitudes

We have already explored how, depending on the spin, a fly-by may be tidal-
stress or spin-controlled. We further considered the effects of different initial
spins for a fixed encounter velocity (v∞ = 9 km/s) and periapse distance
(q = 1.8R⊕). The results, as expected, show that there is an increase in dis-
ruptive encounters with faster asteroid spin rates. Thus, while a fly-by with a
rotation period of three hours resulted in an S-type encounter, fly-by’s with
spin periods of six and nine hours resulted in M/N- and N-type encounters, re-
spectively. This is explained simply by the stronger centrifugal “force” tearing
the asteroid apart for a faster spin; hence, the failure zone along the asteroid’s
path expands.

7 Final remarks

We have employed a very simple model using volume-averaged methods to
investigate planetary fly-bys of asteroids. Our results agree well with previous
discrete particle simulations (Richardson et al. 1998). We further saw how
using a less stringent failure criterion would predict an increased number of
disruptions.

Two reasons accounted for the few variations between previously simulated re-
sults and ours. First, the laws governing the transition of the asteroid between
rigid and granular states were argued to be important. Additional considera-
tions provided insight into the mechanics of break-ups. Moreover, the reverse
transition (from a granular to a rigid state) is, perhaps, equally crucial and
should be investigated further.
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Second, we discussed the approximations involved when using volume-averaged
methods. This, however, may not be as important a factor as it seems at
first glance. We have already noted how the volume-averaged method recovers
verbatim Davidsson’s (2001) results for the Roche limit. It is also possible
to obtain Holsapple’s (2001) results about equilibrium of spinning ellipsoids
(Sharma et al. 2005). In particular, the assumption, inherent in a volume-
averaged approach, that the body fails simultaneously at all points was, in
fact, seen to be the case by Holsapple (2001) and by Davidsson (2001). Thus,
it seems that a volume-averaged theory may still provide good approximations
in simple dynamical situations, such as planetary fly-bys. In summary, we have
demonstrated that volume-averaged models are useful in studying the break-
up and the rotational dynamics of deformable, ellipsoidal asteroids because
these methods provide straightforward access to the underlying mechanisms
responsible for disruption and/or deformation during planetary fly-bys.
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