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Abstract The melting transition of a Lennard-Jones (LJ)

system confined in slit pores of variable pore size, H, is

studied using molecular dynamics simulations. We exam-

ine various mechanisms to locate the pore melting tem-

perature under confinement using molecular simulations.

Three types of structure-less pore walls are considered,

namely strongly attractive walls, weakly attractive walls,

and repulsive walls. In particular, we present details of the

density–temperature hysteresis, Lindemann parameter, and

non-Gaussian parameter for various pore sizes ranging

from 8 to 3 molecular diameters. The methods as used in

this work are found applicable for repulsive, weak, and

moderately attractive pores. Using the above criteria, we

estimated the melting temperature for various pore surfaces

and pore sizes. The melting temperature, for an attractive

surface, is observed to be elevated or depressed depending

on the pore size. In contrast, depression in the melting

temperature is observed in the case of weakly attractive and

repulsive surfaces. Crossover behavior from three-dimen-

sional to two-dimensional for weakly attractive and

repulsive surfaces is proposed using the relation

DTm * H-m, with m ranging from 0.66 to 0.81 and 1.59 to

2.1 for 2D and 3D, respectively. The methods, viz.,

Lindemann and non-Gaussian parameters, however, fail in

predicting melting temperature for ewf [ 8 and a[ 4 for LJ

6-12 and LJ 9-3, surfaces, respectively.

Keywords Melting � Confined solids � Molecular

dynamics � Lindemann parameter � Non-Gaussian

parameter

1 Introduction

Melting, the phenomenon of phase transition from a crys-

talline solid state to a liquid state, is a common occurrence

in nature. Since the dawn of industrial development,

investigations of the melting of solids have been of

importance for science and technology. As one of the most

important phase transformations in the processing and

applications of materials, the melting process plays an

important role in materials science and engineering [1].

Furthermore, the melting of solids is important in the

natural environment, biology, and many other fields. In

recent years, a greater attention has been given for studying

melting/freezing phenomena in confinement. The physics

behind confined systems plays a vital role in various fields

of modern technology such as microfluidics, lubrication,

adhesion, and nanotechnology [2]. The conformation of a

system is changed in confinement, and depends on the scale

of the confinement and the nature of the confined surface.

Therefore, the properties of a confined system are different

from those of bulk systems.

Several experimental studies have been reported on

melting and freezing in well-characterized porous materials

[3–5]. Studies on porous Vycor glass show a lowering of

the melting point compared to that in the bulk. The melting

point of the confined solid also depends on the attractive or

repulsive natures of surfaces, and the hysteresis associated

with the transition [6, 7]. For example, on narrowing the

channel size of a colloidal suspension system (confined in a

flat channel), the system behavior changes from three-
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dimensional (3D) to two-dimensional (2D) behavior, and a

colloidal monolayer system displays continuous 2D melt-

ing [8–11]. Lowering of the freezing temperature, based on

the Gibbs–Thomson thermodynamic equation, is observed

for oxygen in sol–gel glasses of pore size distribution

2.2–18.7 nm [12]. Because of the presence of inhomoge-

neity and finite size effects for small pore sizes, this ther-

modynamic relationship does not hold. Large effects on the

freezing and melting temperatures of indium in porous

silica glasses have also been reported [4]. In contrast to

these results for glasses, some other experiments have

identified a significant increase in the melting temperatures

of cyclohexane and octamethylcyclotetrasiloxane confined

between mica surfaces, using a surface force apparatus [5].

In certain confined cases, liquids are fluid down to a film

thickness of a few molecular layers. On further reducing

the wall separation by a single molecular layer, the films

experience an abrupt transition, becoming solid-like, and

can sustain a finite shear stress for macroscopic times. This

is familiar as surface-induced phase transitions from liquid-

like to solid-like [5, 13, 14].

Molecular simulation studies are also useful for inves-

tigating such processes. The homogeneous and heteroge-

neous melting phenomena of different metals with different

crystalline structures have been discussed in light of dif-

ferent melting mechanisms [15–17]. The freezing transition

and phase diagrams of hard sphere confined in hard slit and

cylindrical pores have been discussed using molecular

simulations [18] and free-volume theory [19]. Miyahara

and Gubbins reported the freezing of a Lennard-Jones (LJ)

solid under confinement [20]. Considering the slit pore

geometry, they showed a decrease in freezing point with

decreasing slit separation. They also reported that the ele-

vation/depression in the freezing point depends on the

strength of the wall–fluid interaction, and the width of the

hysteresis also depends on the nature of the surfaces. They

did not find any kind of phase transition or hysteresis loop

for a pore size of H \ 5 molecular diameters. Depression

in the freezing point is also observed in weakly attractive

cylindrical pores of diameter 1.5–3.5 nm [21]. Evidence of

transition from a 2D liquid phase to a hexatic phase is

observed for simple fluids in narrow slit pores [22]. Both

experimental and simulation studies of fluids confined in

cylindrical silica pores (involving free-energy calculations)

suggest that for pore diameters smaller than 20 molecular

diameters, the confined phase does not crystallize into a

homogeneous solid phase, and for diameters smaller than

12 molecular diameters, the confined solid phase was

amorphous throughout the pores [23]. In case of mixtures,

both an increase and a decrease in the freezing temperature

are observed, depending on the mole fractions of the

components [24]. The freezing/melting behaviors of con-

fined fluids have been reported to be related to variations in

the ratio of wall–fluid and fluid–fluid interactions [25, 26].

Recently, Kaneko et al. [27] performed molecular

dynamics (MD) simulations of LJ particles confined in

parallel slit pores with widths from 2 to 6 molecular

diameters. The authors estimated the freezing/melting

point when the LJ fluid was cooled/heated by observing

sudden jumps in the potential energy and density, and

observed an abnormality in the freezing/melting point

corresponding to differences in the crystal structure; the

results were in good agreement with calculations using the

Clausius–Clapeyron equation for the slit system [28].

Bulk melting/freezing phenomena have been reported

by many simulation groups. Most of the work is based on

the Lindemann parameter (bulk) [29, 30], Born criteria

(bulk) [31], non-Gaussian parameter (bulk) [29], static

order parameter [17], free-energy calculations [21, 25, 32],

structure factor [20, 33–36], radial distribution function,

and orientational correlation function [21, 23].

Although these theories and criteria have been suc-

cessfully implemented for bulk systems, they are of limited

application for freezing and melting in confined systems.

Miyahara and Gubbins [20] successfully used a structure

factor criterion to determine the freezing temperature under

confinement. Radhakrishnan et al. [23, 26] summarized the

differences between the freezing/melting temperatures in a

confined system and that of a bulk system on the basis of

the Landau free energy, radial distribution function, and

orientational correlation function. Earlier studies [5, 12, 20,

22, 27, 32] showed that elevation and depression in melt-

ing/freezing temperatures are more or less linearly related

to the inverse of the pore gap. Mostly their attentions were

limited to freezing transition on quenching the system.

Moreover, most of the earlier studies were reported based

on positional/orientational correlation function. Recent

work of Kaneko et al. [27], based on cooling/heating

simulations, reports an oscillatory behavior of melting and

freezing temperatures with pore size and casted doubt on

the earlier believed linear nature of the melting/freezing

temperature with decreasing pore size. Motivated from the

aforementioned result, this work aims to provide more

clarity in the nature of melting behavior of confined solids

from a different approach.

In this work, we first analyze density hysteresis loop,

Lindemann parameter, and non-Gaussian parameter for

evaluating the melting temperatures of confined fluids. We

present the melting temperature of an LJ solid for slit sep-

arations (pore sizes) ranging from 8 to 3 molecular diam-

eters. Further, we investigate the role of surface affinity on

the melting temperature. The rest of the paper is organized

as follows. The model and method are described in Sect. 2.

In Sect. 3, some details of the simulations are provided, and

in Sect. 4, the results are presented and discussed. Finally,

concluding remarks are presented in Sect. 5.
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2 Model and methods

2.1 Potential models

For fluid–fluid interactions, the LJ potential is used in the

following form:

Uff rð Þ ¼ 4eff
rff

r

� �12

� rff

r

� �6
� �

; ð1Þ

where rff is the particle diameter, eff is the interaction well

depth, and r is the distance between two corresponding

particles. All quantities are reduced with respect to eff and

rff, that is, these LJ parameters are fixed to unity.

In this work, the pore is modeled as a slit pore with

structure-less walls. Interactions between the walls and

fluid particles are the same as the LJ (12–6) potential. In

the case of a weakly interactive wall, we use a potential

well depth ewf = 1, and for a moderate attractive wall, the

potential well depth is ewf = 3. The diameter of the wall

particle is considered to be of the same order as the system

particles.

For stronger wall-particle interaction, we also use the

integrated form of LJ (12-6) potential, that is, LJ 9-3

potential [7]. The potential form is as follows:

Uwf rð Þ ¼ 2

3
pqwewf r

3
wf

2

15

rwf

r

� �9

� rwf

r

� �3
� �

; ð2Þ

where qw is the number density of atoms in the wall and

rwf and ewf are the cross parameters for the wall-fluid

interaction. In this work, we fix rff = 1, eff = 1,

rww = 0.8924, qw = 6.3049, rwf = (rff ? rww)/2 as per

Ref. [7] and [20]. The strength of interaction of the wall-

fluid relative to fluid–fluid interaction is defined by the

coefficient, a = qwewfrwf
3 /eff. In this work, we change ewf to

vary a, keeping all other parameters fixed.

For a repulsive wall, we use the Weeks–Chandler–

Anderson (WCA) potential, which is a purely repulsive

interaction potential. The potential is formed by truncating

the LJ (12-6) potential at 21/6r and shifted upward so that it

goes to zero smoothly at the cutoff radius. The potential

form is as follows:

Uwf rð Þ ¼ 4ewf
r
r

� �12

� r
r

� �6
� �

; r\21=6r ð3Þ

Fluid–fluid potential model is truncated and shifted at

3.0r. In case of soft wall potentials, that is, LJ 6-12 and LJ

9-3, the potential models are also truncated and shifted at 3r.

2.2 Simulation methodologies

There are thermodynamic routes for evaluating the true

freezing/melting temperature, which are summarized by

Monson and Kofke [37]. In this work, we adopt a dif-

ferent route, based on the Lindemann parameter and the

non-Gaussian parameter, to locate the melting tempera-

ture. These parameters are very temperature sensitive

particularly near the melting temperature. Hence, the

computed melting temperature using the Lindemann and

non-Gaussian parameters is considered to be relatively

more accurate than those obtained using other melting

criteria such as the Born [31] or Hansen–Verlet [33]

criteria.

2.2.1 Lindemann parameter

The Lindemann criterion [38] is widely used to determine

the melting temperature of a solid; it states that melting is a

vibrational lattice instability initiated when the root-mean-

square (RMS) displacement of atoms reaches a critical

fraction of the interatomic distance:

ffiffiffiffiffiffiffiffiffiffiffi
Dr2h i

p
¼ dLa ð4Þ

where dL is the Lindemann parameter, a is the nearest

neighbor distance, and Dr ¼ ri tð Þ � Rij j; ri is the instanta-

neous position of atom i and Ri is the equilibrium position

of atom i. The nearest neighbor distance can be considered

as the position of the first peak of the radial distribution

function. The value of the Lindemann parameter for the

melting of bulk face-centered cubic (FCC) crystals is 0.22

and for body-centered cubic (BCC) crystals it is 0.18 [7,

29, 39, 40].

2.2.2 Non-Gaussian parameter

Large deviations of solid particles near the melting tem-

perature can be expressed using the non-Gaussian

parameter, which is a simple correlation of the second and

fourth moments of a 3D distribution in the form

Dr ¼ ri tð Þ � Rij j½ � with time t. The non-Gaussian parameter

is defined as:

a2 tð Þ ¼
3 Dr4
� �

5 Dr2h i2
� 1 ð5Þ

The value of a2(t) is very small and is weakly dependent

on temperature at lower temperatures. At a certain

temperature, a2(t) suddenly jumps as a result of the

strong deviation of atoms from their equilibrium lattice

position. This is an indication of the melting temperature.

Subsequently, a2(t) drops to zero, indicating complete loss

of crystallinity in a random liquid [29]. The non-Gaussian

parameter can also be used to detect the melting point of a

solid, as shown by Jin et al. [29].
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2.2.3 In-plane pair correlation function and coordination

number

The in-plane correlation function is typically used to ana-

lyze the structure and phase of a confined molecular sys-

tem. The in-plane pair correlation function, or in-plane

radial distribution function, can be estimated for each layer

of a confined liquid/solid using the following expression:

gi rð Þ ¼ A zi�1 � zið Þ
2pDr zi�1 � zið Þ

N r; zi�1; zið Þh i
N zi�1; zið Þh i

¼ N r; zi�1; zið Þh i
2prDrCi

;

ð6Þ

where A(zi-1-zi) is the cross-sectional area and N(r; zi-1,

zi) indicates the total number of particles at a distance

between r - Dr/2 and r ? Dr/2 in the ith layer between

zi-1 and zi. Ci is the 2D density. The average number of

neighbors, Nc, in the 2D plane, up to a distance rc, the first

minimum of the in-plane pair correlation function (first

coordination shell), is evaluated from the in-plain

correlation function using the following formula:

Nc ¼ 2p
N

V

Zrc

0

rg rð Þdr ð7Þ

The nearest neighbor distance, a, calculated from the

in-plane pair correlation function, can be used to calculate

the Lindemann parameter using Eq. (4).

2.2.4 In-plane structure factor

The structure factor is also used as a freezing/melting

transition criterion in the bulk phase. According to Hansen

and Verlet [33], freezing/melting occurs when S(k0), the

first peak of the structure factor, reaches a value of 2.7 for

quenching/heating, respectively.

For a 2D system, the structure factor S(k) is also an

important criterion for freezing and melting. The value of

S(k0) for a 2D system is higher than the bulk value. The

value is around 4.4–5.0, as reported in earlier studies

[34–36, 41]. These results are for purely 2D systems.

In general, the structure factor for a 3D system is defined

as:

S kð Þ ¼ 4pq
Z1

0

J0 krð Þ g rð Þ � 1ð Þr2dr ð8Þ

For 2D systems, the formula is:

S kð Þ ¼ 1þ 2pCN

Z1

0

J0 krð Þ gN rð Þ � 1ð Þrdr ð9Þ

where J0 is the zeroth-order Bessel function of the first

kind.

2.2.5 In-plane order parameter

Changes in the crystal structure with slit separation can

also be analyzed using bond-order parameters. We calcu-

lated the in-plane bond-order parameter in the following

manner for each layer from the MD configuration data:

Wk ¼
1

Nb

XNb

j¼1

exp ikhj

	 

�����

�����

* +
ð10Þ

where Nb is the total number of near neighbors at a distance

of 1.5 in each layer, hj is the angle formed by a particle

with its nearest neighbor atom. We calculated W4 and W6.

Wk = 1 indicates that there is complete k-time symmetry in

the layer and Wk = 0 means there is no symmetry at all

in the layer. A high value of W4 indicates square symmetry

in the plane and of W6 indicates triangular symmetry.

3 Simulation details

The NPT MD is performed using LAMMPS [42]. The

velocity-Verlet algorithm is used to integrate the equation

of motion with a time step (DT) of 0.004. The temperature

and pressure are controlled using a Nosé–Hoover thermo-

stat and barostat with relaxation times of 2.0 and 5.0 for

temperature and pressure, respectively. In the current work,

the model fluid is confined between two structure-less

parallel slit surfaces separated by a distance H. H is varied

from 3 to 8 molecular diameters. Approximately

4,000–7,200 particles are used to run the simulations.

Wall–particle interactions are the same as the particle–

particle interactions described in the potential section, IIA.

The periodic boundary condition is applied in two direc-

tions other than the fixed wall direction. We maintain a

constant pressure P = 1 along the periodic boundary

directions. Similar methodology has been adopted by ear-

lier workers [27, 43]. In the case of quenching, the initial

liquid configurations are taken as perfect FCC structures at

a temperature of 1.2. Cooling is performed in a step-by-

step procedure after each 2,500,000 MD time steps; the

temperature T is reduced in steps of 0.05 from 1.2 to 0.3.

During the heating process, we have taken the last con-

figuration of the quenching process as the initial configu-

ration. Heating is also performed using a step-by-step

procedure. After 2,500,000 MD time steps, the temperature

T is increased by 0.05, and heating is continued until the

solid has completely lost its crystallinity. During both

quenching and heating cycle, the density is calculated at

every temperature. In addition, we separately perform
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another simulation to determine the melting temperature of

the bulk LJ system.

For the Lindemann parameter (dL) and non-Gaussian

parameter (a2(t)), an additional NPT simulation is carried

out with temperature increases in 0.00042 after each 2,500

MD time steps, according to Jin et al. [29], from an initial

temperature of 0.3 to a final temperature of 1.2; the rest of

the procedure is as described earlier. At every intermediate

temperature, we calculate the Lindemann parameter and

non-Gaussian parameter.

4 Results and discussion

4.1 Weakly interacting surface

We start our discussion with the weakly interactive LJ 12-6

wall case, with ewf = 1. Figure 1 shows a plot of the

density against the temperature for quenching and heating

cases. As the liquid is quenched, the density gradually

increases and at a certain temperature the density rises

sharply. In the case of heating, the density decreases and at

a particular temperature the density drops sharply. The

hysteresis loop, as shown in Fig. 1, indicates a first-order

phase transition. A wide meta-stable region is observed

around the true phase-transition point. The melting point is

adjacent to this meta-stable region. We performed the same

analysis for different slit separations. Our main observation

with regard to the slit separation is that the width of the

hysteresis region decreases with decreasing slit separation,

as shown in Fig. 1. Interestingly, we also observe a clear

phase transition and hysteresis for 3 B H B 5. This result

is in contrast to the previous report by Miyahara and

Gubbins [20], in which hysteresis and transition are not

observed below H = 5. The difference is primarily due to

the stronger surface-fluid interaction (represented by a

different potential model) used by earlier authors. The

hysteresis in narrow pores H \ 5, however, disappears

with increase in surface-fluid interaction strength. This is

discussed in detail later in this article.

Hysteresis is also observed for the potential energy, as

shown in the inset of Fig. 1, and the hysteresis region is

found to be precisely the same as that of the density.

Determination of exact melting temperature or true ther-

modynamic transition point is not entirely feasible from the

hysteresis data. However, hysteresis temperature range can

indicate the region where true thermodynamic transition

point might exist. We also calculated the local density at

every temperature, as shown in Fig. 2. At lower tempera-

tures, sharp distinct peaks are observed. As the temperature

increases, the heights of the peaks decrease and the peaks

become flatter. From the change in the peak height and

shape, we can distinguish between the solid and liquid

phase and also estimate approximately the melting tem-

perature. Determination of the true melting transition point

requires calculation of the grand free energy for both the

solid and liquid phases. Though some work has been done

in this direction using thermodynamic integration method

[44] but such method requires finding a reversible path

without running into intermediate phases. Unfortunately,

the method fails for strong surfaces (a[ 0.48) as the path

runs into first-order phase transition, at an intermediate

stage [26]. Radhakrishnan et al. [26] have circumvented the

above problem using Landau theory and spacially averaged

order parameter.

Fig. 1 Density as a function of temperature for solid and liquid

phases at Pxx = Pyy = 1.0 for pore widths, H = 3, H = 5 and H = 7

for ewf = 1. Open symbols are representation of quenching and filled
symbols for heating. Symbols triangle, circle, and square stand for

H = 7, 5, and 3, respectively. The solid (top curve) progressively

heated from T = 0.3 to 1.2, while the liquid (bottom) is quenched

progressively from T = 1.2 to 0.3 where it solidifies. Inset presents

the corresponding behavior for potential energy/particle (u)

Fig. 2 Local density (qL) as a function of pore distance for H = 7.0

and ewf = 1.0 for the heating case. X = 0 indicates center of the pore

Theor Chem Acc (2013) 132:1351 Page 5 of 13
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Figure 3 presents the in-plane pair correlation function

gi(r) for a contact layer of pore size 7 molecular diameters

for a wide range of temperature from 0.3 to 0.9. As the

temperature increases, the first peak height decreases;

however, the positions of the first peaks remain constant.

At lower temperatures, the second peak splits, which is an

indication of a crystalline structure. At a temperature of

0.80, the second peak becomes flatter, smooth, and iso-

tropic in nature, which indicates complete loss of crystal-

linity and appearance of the liquid phase. However, this

temperature is not the true thermodynamic melting tem-

perature. To use gi(r) to predict the melting temperature, a

rigorous study would be required to evaluate the in-plane

pair correlation function for each layer separately. How-

ever, such an approach is tedious and is not considered in

this work.

Figure 4 presents the 2D structure factor S(k) of the

contact layer. The height of the first peak corresponds

closely to an in-plane pair correlation function. A promi-

nent split in the second peak is observed at lower tem-

peratures. As the temperature decreases, the rapid drop in

the first peak and the split in the second peak vanish. At the

melting transition, the peak height is around 4.4–5.0. From

a temperature of 0.80 to 0.85, an approximately 50 %

decrease in the peak height is observed. However, different

layers have different peak heights at the same temperature.

Hence, it is clear that the melting transition point obtained

from the structure factor, which can be used for the bulk

solid, is relatively difficult to predict for the confined solid.

To identify the melting point, we analyze the much-used

Lindemann criterion and non-Gaussian parameter. The

Lindemann parameter dL (Eq. 4) requires calculation of the

RMS displacement of a particle (at ri) from its equilibrium

position (Ri), Dr2
� �1=2

, and the averaged nearest neighbor

distance. The nearest neighbor distance is the position of

the first peak of the radial distribution function. The nearest

neighbor distance can also be calculated using the relation

rnn ¼ 4X Tð Þ½ �1=3
. ffiffiffi

2
p

, where X(T) is the mean atomic

volume at that particular temperature [29]. The distance of

the first peak position of the in-plane pair correlation

function remains constant over a wide temperature range.

The mean-square displacement is taken for a particular

time step, s0 ¼ r
ffiffiffiffiffiffiffi
m=e

p
, which is equivalent to 610 MD

time steps or 2.4 reduced time unit [39], based on Ar data.

MSD is converged enough for repulsive/weak and mod-

erately attractive walls, as shown in Fig. 5a, b, to imple-

ment the Lindemann criterion for the confined solid.

Figure 5c presents the MSD versus time for a strongly

attractive pore where MSD does not converge for any

specific time. Hence, Lindemann criterion is not valid for

such cases. We have done rigorous analysis for LJ 6-12 and

LJ 9-3 walls and found that for ewf [ 8 and a[ 4, for LJ

6-12 and LJ 9-3, respectively, this method fails and local

instabilities dominate the system.

Another route for identifying the melting temperature is

to track the displacement of particles from the equilibrium

lattice position, which is captured by the non-Gaussian

parameter, a2(t) [29] (Eq. 5). As the melting temperature

is approached, the non-Gaussian parameter increases as a

result of strong deviation of particles from their equilib-

rium lattice positions, and display a single distinguishable

large peak. Figure 6 presents a2(t) and dL as a function of

temperature for three cases, namely bulk, and confined

states with H = 4.5 and 7.0. The Lindemann parameter

value is calculated corresponding to the largest peak value

of a2(t) for the bulk fluid and found to be 0.22, which is

used as the critical value. The same is used by Jin et al.

[29] to estimate the melting temperature of the bulk

crystal.

Fig. 3 In-plane pair correlation function gi(r) for H = 7 and

ewf = 1.0 for the heating case. Each curve is shifted upward for

better clarity. Vertical dotted line indicates position of the first peak

Fig. 4 Effect of temperature on the 2D structure factor, S(k), of the

contact layer for H = 7.5 and ewf = 1.0 for the heating case
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In the bulk case, our calculated melting temperature

value is 0.79, as shown in Fig. 6, and is in good agreement

with earlier works [45, 46]. In this work, the melting

temperature of confined crystal is evaluated at the tem-

perature where the height of the peak of a2(t) is maximum.

Further, we also look at the Lindemann parameter at the

peak of a2(t). Interestingly, Lindemann parameter based on

the value at the maximum of the non-Gaussian parameter is

not sensitive to the pore size, and found to be around 0.22.

The peaks in a2(t) appear over a small time range for the

bulk [29] and then suddenly drops to zero. In case of

confinement, the time range over which the peaks exist is

greater than that in the bulk system (Fig. 6b, c), as different

layers melt at different temperatures as a result of the

effects of confinement. This phenomenon may be consid-

ered as pre-melting, akin to that seen for the case of

quenching, where different layers freeze at different tem-

peratures and is considered as pre-freezing behavior [23,

47]. Nevertheless, a2(t) displays one single distinguishable

large peak which is considered to be the melting temper-

ature. Further, at the reported pore melting temperature,

significant percentage of number of particles behaves

liquid-like as discussed below.

Liquid-like particles are detected by applying the

Lindemann liquid-like criterion, that is, the particle pos-

sesses a Lindemann parameter greater than its critical

value. Figure 7 presents the percentage of Lindemann

liquid-like particles for bulk and confined cases. At higher

temperatures, all the particles are in the liquid state for the

confined and bulk states, as expected. However, with

reduction in the pore size, the percentage of Lindemann

liquid-like particle near the melting temperature increases

as clearly evident from Fig. 7. At around T = 0.3, the

percentage of Lindemann liquid-like particles for H = 4.5

and 7 coincide, but the values are still higher than that for

the bulk state. At around the melting temperature, depicted

by the vertical line, the percentage of Lindemann liquid-

like particles is around 45–60 %, with the bulk value being

toward the lower side. Figure 7 also indicates that the

melting temperature for H = 4.5 should be less than that

for H = 7 as the percentage of Lindemann particles for

Fig. 5 Mean-square displacement (MSD) during heating the system

as a function of time for H = 8 for different wall-fluid interactions:

a repulsive surface (WCA), b moderately attractive surface

(a = 2.32), and c strongly attractive surface (a = 4.27). Convergence

is seen until 5 time units for repulsive and moderate attractive surface.

In contrast to these for strongly attractive surface MSD does not

converges even at lower temperature

Fig. 6 The Lindemann parameter, dL, and non-Gaussian parameter,

a2(t), as a function of temperature for weak attractive pore, ewf = 1.0.

Vertical dotted arrow line from the bottom indicates the melting

temperature, where non-Gaussian parameter (a2(t)) is maximum. Firm

horizontal arrow lines represent the corresponding axes. Horizontal
dotted line represents the critical Lindemann parameter for a bulk,

b H = 4.5, and c H = 7.0

Fig. 7 Percentage of the Lindemann particles (particles posses the

Lindemann parameter greater than its critical value) as a function of

temperature for bulk, H = 4.5 and H = 7.0 for ewf = 1.0. Melting

temperature is lower for H = 4.5 as suggested by relatively higher

percentage of the Lindemann particles at any temperature. Vertical
dash lines represent the estimated melting temperatures
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H = 4.5 is higher at any temperature than that for H = 7.

This is in line with the melting temperature based on a2(t).

Table 1 summarizes the estimated melting temperatures,

based on a2(t), for different slit separations considered in

this work. It is noted that melting temperature estimated

from the a2(t) is lower than that observed from the sudden

change in the density-/energy-temperature plot. We notice

that the solid loses its crystallinity much earlier than the

temperature at which the overall order parameter such as

density drops. This, however, is reflected much earlier in

a2(t). In case of bulk solid, the thermodynamic melting

temperature and non-Gaussian melting temperature are in

close proximity. This is also reflected in the narrow range

of peaks in the bulk non-Gaussian plot. On the other hand,

for confined solids, broad range of a2(t) peaks suggests

local loss of structure (as in different confined layers) much

earlier than the drop in overall density of the system.

The melting temperature of a solid confined inside a

weakly attractive pore at Pxx = Pyy = 1 is lower than that

of the bulk at P = 1. We observe that the depression in the

melting point increases with increasing reduction in the

pore size as also evident from Table 1. It is also observed

that the depression behavior of the melting temperature

differs with pore size which is discussed in detail in Sect.

4.6.

4.2 Strongly interacting surface

We now turn our attention to strongly attractive LJ 12-6

pores, represented by the surface–fluid interaction well

depth ewf = 3.0. Figure 8 presents plots of density versus

temperature for quenching and heating. The notable dif-

ference from the case of weakly attractive pores is the

disappearance of the hysteresis loop for H \ 5. Lack of

hysteresis is an indication of superimposition of freezing

and melting temperature at lower slit separation. The

potential energy behavior, shown in the inset of Fig. 8, is

akin to that seen for the density. The melting temperatures

for strongly attractive pores based on non-Gaussian

parameter with variable pore sizes are listed in Table 1. It

is clear that the melting temperature is enhanced for some

pore sizes, compared to the bulk value, when the pores are

strongly attractive. For example, the melting temperatures

for H = 4.5 and H = 7.0 are 0.83 and 0.84, respectively.

The corresponding melting temperatures for the weakly

attractive pores are 0.64 and 0.73. Interestingly, elevation

of the melting temperature is not observed for all separa-

tions, and an oscillatory behavior is observed, as shown in

Fig. 9. The oscillation in melting temperature indicates

incommensurability of the crystal structures with the space

available in the pores. These abnormalities in melting

temperature agree well with the work of Kaneko et al. [27]

and Radhakrishnan et al. [26]. Elevation of the melting

temperature for confined systems has also been investi-

gated by Klein and Kumacheva [5], and their results are in

agreement with our results. Both elevation and depression

in the melting temperature are observed for strongly

attractive pores. The non-monotonous change in the melt-

ing temperature for strongly attractive pores is mainly

caused by the structural changes in the crystal with pore

size, as also reported by Kaneko et al. [27] In the case of an

exact integral number of molecular diameter wall separa-

tion, the elevated melting temperature is linearly related to

the wall separation, as shown in Fig. 9. Integral wall sep-

aration allows solid phase to attain a relative stable struc-

ture, in this case hexagonal lattice-based phase, as also

Table 1 Estimated melting temperature, Tm, for different pore size,

H, with variable wall-fluid interaction strength

H Tm

Wall (LJ 12-6/WCA) Wall (LJ-93)

ewf = 1 ewf = 3 WCA a = 0.481 a = 1.362 a = 2.32

3.0 0.59 0.67 0.55 0.72 0.74 0.76

3.5 0.60 0.74 0.56 0.72 0.66 0.70

4.0 0.62 0.89 0.59 0.72 0.81 0.78

4.5 0.64 0.83 0.61 0.74 0.78 0.77

5.0 0.66 0.87 0.65 0.71 0.70 0.70

5.5 0.67 0.80 0.66 0.78 0.68 0.81

6.0 0.71 0.85 0.71 0.75 0.78 0.74

6.5 0.72 0.74 0.71 0.74 0.78 0.82

7.0 0.73 0.84 0.72 0.70 0.82 0.76

7.5 0.74 0.78 0.73 0.73 0.81 0.75

8.0 0.75 0.83 0.74 0.78 0.82 0.82

Bulk melting temperature at P = 1 is 0.79

Fig. 8 Density as a function of temperature for strongly attractive

pore, ewf = 3.0. Open symbols represent quenching and filled symbols
represent heating. Symbols triangle, circle, and square represent

H = 7, 5, and 4.5, respectively. Inset presents the corresponding

behavior for potential energy/particle (u)
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reflected in the bond orientational order parameter in

Fig. 10; and hence, found to have higher melting temper-

ature compared to the non-integral pore size. Free-energy

calculation as a function of pore size would address the

above observation more convincingly. Such an exercise is

planned for a future work.

4.3 Repulsive surface

We now turn out attention to repulsive pore surfaces,

modeled using the WCA potential. Using the methodolo-

gies described in this work, we calculated the melting

temperatures for different pore sizes. We observed hys-

teresis loops for density as well as potential energy for all

separations in the range 8–3 molecular diameters (figure

not shown). This clearly indicates that as the pore becomes

inert to repulsive, the hysteresis across the transition from a

liquid to a solid persists. As in the earlier cases, the non-

Gaussian parameter is used for the estimation of the

melting temperatures. The melting temperatures for

H = 4.5 and 7 are found to be 0.61 and 0.72, which are

lower than those seen for weakly attractive pores. As seen

for the earlier cases of weakly and strongly attractive pores,

there are considerably more Lindemann liquid-like parti-

cles for H = 4.5 than for H = 7.0, for a wide range of

temperatures (figure not shown). In the case of repulsive

pores, depression in the melting temperature is observed.

The depression in Tm increases as the slit width decreases,

as shown in Table 1 and Fig. 9. Reduction in the pore

width enhances the confinement effect on the melting

behavior. It is evident that the depression in Tm in repulsive

pores is lower than that in weakly attractive pores. For

strongly attractive pores, we observe an oscillatory

behavior of the melting temperature with pore size. In the

case of repulsive pores, depression in the melting temper-

ature is observed for all pore sizes, which is not linear in

nature. In fact, there appears to be two distinct regions with

different slopes, and may suggest some crossover behavior

with change in the pore size. This is discussed in detail in

Sect. 4.6.

4.4 LJ 9-3 surface

In this study, we have used three values of a = 2.32, 1.362,

and 0.481 corresponding to wall-fluid interaction strengths

(ewf) 0.4348, 0.255 and 0.09, respectively. Hysteresis loop

for density vs. temperature is observed for all the three

cases for higher wall separation, and the loop disappears at

H = 4.5 akin to the behavior seen for the stronger wall-

fluid interaction of LJ 12-6 surface (figure not shown).

Potential energy behavior for cooling/heating cycle is

observed to be similar in nature. Estimated melting tem-

peratures for different pore sizes, for all three wall-fluid

interaction cases, are listed in Table 1. In case of LJ 9-3

surface, a\ 0.5 wall-fluid interaction is an example of

weakly attractive surface where the melting temperature

under confinement is depressed relative to that of the bulk

solid. However, melting temperature is found to be non-

linear function of pore sizes, and shows an oscillatory

behavior. LJ 9-3 surface compared to LJ 12-6 is a strong

surface and even for a\ 0.5, the surface starts affecting

the melting behavior dramatically compared to the weaker

LJ 12-6 surface. With a[ 1.0, the surface is extremely

strong and for both the two cases considered in this work,

we observed depression as well as elevation in the melting

temperature as shown in Fig. 11. The non-monotonity

nature of melting temperature is similar to that for the

stronger LJ 12-6 wall-fluid interaction. This does not agree

with the results of Radhakrishnan and co-workers [26]

based on Landau theory and orientational order parameter

Fig. 9 Melting temperature for different wall-fluid interactions (LJ

6-12 and WCA walls) as a function of the pore size, H. The symbols

square, circle, and triangle represent weakly attractive (ewf = 1.0),

strongly attractive (ewf = 3.0), and repulsive (WCA) pores,

respectively

Fig. 10 In-plane order parameter of the contact layer for weakly

attractive wall-fluid interaction (ewf = 1.0) at T = 0.5. The behavior

is seen similar for ewf = 1.0 and WCA. See also Table 2
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formulation, which suggest that melting temperature

should elevate for a[ 1.15. This difference in observation

primarily could be for two reasons. First, the current

melting temperature is not the thermodynamic melting

temperature. Second, the model used in this work is

different from that in the work of Radhakrishnan and

co-workers.

The current work based on the dynamical heterogeneity

of the system suggests that local instability is seen to

dominate the system particular for attractive pores, as

reflected in variable structures and corresponding melting

temperatures akin to the observation of Kaneko et al. [27]

for a = 0.44.

4.5 Melting temperature for different wall-fluid

interaction

This work clearly suggests that the melting temperature of

a confined system is usually found to shift with respect to

that of the bulk. However, the magnitude and the nature of

the shift (i.e., elevated or depressed) are found to depend

on the wall–fluid interactions and the pore size. Both ele-

vation and depression are observed for strongly attractive

surfaces. This abnormality has also investigated by Kaneko

et al. [27]. Recent simulation studies by Kaneko et al. on

melting/freezing phenomena in attractive smooth slit pores

(9-3 LJ) show similar types of oscillatory behavior in

melting/freezing temperatures [27]. These abnormalities

are the result of crystal structure variations with slit sepa-

ration, and the influence of strong wall–fluid interactions.

However, in the case of weakly attractive and repulsive

pores, depression is observed for the pore sizes considered

in this work.

Figure 12 shows the 2D CN (of the contact layer) as a

function of the temperature for the case of weak LJ 6-12

pore. Figure 12 also includes 3D CN (or global) CN which

is calculated using 3D radial distribution function (i.e.,

considering all the layers in the system). Coordination

number indicates the total number of particles directly

connected with a particle. For bulk or 3D FCC crystals, the

global CN is 12, and for 2D square and hexagonal lattices,

2D CN is 4 and 6, respectively. It is clearly observed in

Fig. 12 that global CN does not indicate any structural

identity (hexagonal or square lattices) except that it

decreases with decrease in pore size. Further, there is a

distinct change in the global CN which is similar to that

seen for density against temperature behavior. However,

the structural identity is displayed by the 2D CN of the

contact layer, which is found to be 6, that is, hexagonal

lattice structures, for all the pore sizes except for H = 5.5.

On the other hand, for a pore size of 5.5, the structure is a

square lattice with 2D CN = 4. We also rigorously studied

the structure of confined crystals for all separation for

already mentioned wall-fluid interaction. We present the

change in crystal structure with wall separation in Table 2.

The structures 3S, 3T, 4S, and 4T, etc. are different solid

phases for different wall separations. Hereafter, nS indi-

cates the n-layered solid of square-like symmetry in each

layer, basically these are FCC(100) plane, and nT repre-

sents the n-layered solid of triangular- or hexagonal-like

symmetry in each layer, which are mainly FCC(110) or

FCC(111) plane of orientation. Figure 13 presents exam-

ples of different structures seen under confinement.

The pore size dependence of the in-plane order param-

eter for LJ 9-3 pores is presented in Fig. 14. We observe

that the value of W6 is always greater than that of W4 for

H [ 4.5 for a = 1.362 and 2.32. However, at a lower

a = 0.481, crystal structures appears to have periodic

appearance with H. In case of lower H \ 4.5, even for

Fig. 11 Melting temperature as a function of pore size for different

LJ 9-3 fluid-wall interactions

Fig. 12 In-plane coordination number (2D-CN) and global coordi-

nation number (CN) of the contact layer for weakly attractive wall-

fluid interaction (ewf = 1.0), for different pore sizes during heating

run
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strongly attractive pores crystal structure changes from

triangular symmetry to square symmetry. For example, for

a = 1.361 at H = 4.5 4T transforms to 4S at H = 4, and at

H = 3.5 it is back to triangular structure 3T. This type of

transformation between square and triangular lattices over

a short range of pore size was also observed by earlier

workers [48]. Although we only present the in-plane bond-

order data for the contact layer, all the inner layers also

have the same in-plane bond-order parameter dependence

on the pore size.

The type of structures observed in this work is similar to

that seen by earlier workers [27, 43, 48]. In particular, we

notice that the structures observed at lower H is similar to

that seen by Kaneko et al. [27]; however, it differs from

that seen by Ayappa et al. [48] who have employed 10-4-3

wall potential, a much stronger potential with the minima

at a larger z (distance from the wall surface) distance

compared to that of 9-3 potential. Further, at H [ 4, for

stronger interacting pores with a = 1.362 and 2.32, only

nT structures are seen. Similarly, for weaker 9-3 pore

(a = 0.481) and 12-6 pores, for H [ 6.0, only nT struc-

tures are seen. In conclusion, it is clear that wall-fluid

interaction affects the solid structure dramatically. In this

work, it is also seen that melting temperature value of nS

structures could be higher than that of nT. For example, Tm

for 3S (H = 3) structure for the case of a C 1.362 is higher

than that of 3T (H = 3.5). On the contrary, Tm for 5S

(H = 5.5, ewf = 3.0) has lower Tm compared to that for 5T

Table 2 Crystal structures for different pore widths

H Structures

Wall (LJ 12-6/WCA) Wall (LJ-93)

ewf = 1 ewf = 3 WCA a = 0.481 a = 1.362 a = 2.32

3.0 3T 3T 3T 3S 3S 3S

3.5 3T 3T 3T 3T 3T 3T

4.0 4T 4T 4T 4T 4S 4S

4.5 4T 4T 4T 4T 4T 4T

5.0 5T 5T 5T 5S 5T 5T

5.5 5S 5S 5S 5T 5T 5T

6.0 6T 6T 6T 6S 6T 6T

6.5 6T 6T 6T 6T 6T 6T

7.0 7T 7T 7T 7T 7T 7T

7.5 7T 7T 7T 7T 7T 7T

8.0 8T 8T 8T 8T 8T 8T

Fig. 13 Representation of snapshots for LJ particles confined in

parallel slit pores. a The side view and the top view of the snapshot for

the 8T structure at H = 8, T = 0.7, a = 2.32; plane of orientation

resemble to FCC(111) plane. b The side view and the top view of the

snapshot for the 4S structure at H = 4, T = 0.7, a = 2.32; plane of

orientation resemble to FCC(100) plane. c The top view of the

snapshot for the 6T structure at H = 6, T = 0.7, a = 2.32; plane of

orientation resemble to FCC(110) plane. d The top view of the

snapshot for the 7T structure at H = 7.5, T = 0.7, a = 2.32; plane of

orientation resemble to FCC(110) plane
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(H = 5.5, ewf = 3.0). Kaneko et al. have seen the latter

behavior more commonly in their work. The structural

observation as seen in Table 2 is also supported clearly by

the corresponding bond orientation order parameter which

is presented in Fig. 14. Based on these results, it is not

clear if a direct relation between structures and melting

temperature exists.

4.6 Shift in melting temperature and crossover from 3D

behavior to 2D behavior

This work visibly suggests that the melting temperature of

a confined system is usually found to shift with respect to

that of the bulk. However, the magnitude and the nature of

the shift (i.e., elevated or depressed) are found to depend

on the wall–fluid interactions and the pore size. Both

elevation and depression are observed for strongly attrac-

tive surfaces. These abnormalities are the result of crystal

structure variations with slit separation, and the influence

of strong wall–fluid interactions. It is well known that

melting behavior in 2D and 3D is not comparable. Various

works have been done to understand the differences [8, 10]

based on correlation functions [11]. In this work, however,

we address if change in the melting temperature reflects

any crossover in the nature of melting behavior as the pore

size is shrunken from H = 8 to 3 molecular diameter. To

this end, we introduce and effective wall separation as

Heff = [H - (rff ? rwf)/2]/rff in order to analysis the shift

in the melting temperature with respect to the bulk fluid at

P = 1. Figure 15 presents a log–log plot of the scaled shift

in Tm [(Tmb - Tmc)/Tmb] against the effective wall separa-

tion. The melting temperatures in strongly attractive pores

are oscillatory in nature, both elevation and depression are

observed. In the case of repulsive and weakly attractive

pores, we obtain the relationship (Tmb - Tmc) = kHeff
-m,

where m is an exponent, k is a proportionality constant, Tmb

is the bulk melting temperature, and Tmc is the melting

temperature under confinement. Figure 15 clearly shows

two different regions with two different slopes, which

depend on the wall–fluid interaction strength. The change

in the slope, from m[ 1 to m\ 1, in both cases, that is,

repulsive and weakly attractive pores, occurs at about

H = 5.5. Typically, m is referred to as critical exponent,

and is based on the power law predicted by Fisher and

Nakanishi [49] to identify the dimensionality of the state.

The same has also been utilized for vapor–liquid transitions

in confined geometries [50]. However, characteristic criti-

cal exponent does not exist for solid–liquid transition.

Hence, the m obtained in this work represents just a fitting

variable to the data, which may be specific to the current

system.

It is evident that a structural change occurs at H = 5.5,

which may be the reason for the change in the slope of the

shift in the melting point, which also occurs at H = 5.5, as

seen in Fig. 15. Based on the above analysis, we propose

that the melting behavior of a solid confined in weak/inert

or repulsive pore changes from bulk-like or 3D with m[ 1

to 2D with m\ 1; and the critical pore size for the cross-

over behavior based on this study for weak to inert pore is

around 5.5 molecular diameters with a structural change

via a route which involves a square symmetry.

5 Conclusion

In this work, we present the melting behavior of LJ solids

confined in slit pores of different pore sizes, for weak,

attractive, and repulsive wall interactions. Lindemann and

the non-Gaussian parameters are explored to estimate the

Fig. 14 In-plane order parameter of the contact layer versus H, for LJ

9-3, at T = 0.5 for different a values. The curves fitted to the data are

guide to the eye

Fig. 15 Shift in melting temperature reduced by the bulk melting

temperature as a function of the effective pore size, Heff for weakly

attractive (ewf = 1.0) and WCA pores. The dotted and firm lines are

guide to the eye. Symbols square and circle are for weakly attractive

surface and repulsive surface, respectively

Page 12 of 13 Theor Chem Acc (2013) 132:1351

123



pore melting temperature of the confined solids. The hys-

teresis region that appears in the density plot is also visible

in the potential energy plot. In the case of a strongly

attractive surface, the hysteresis is absent for H \ 5. In

contrast, hysteresis is observed for H = 3–8 for weakly

attractive and repulsive surfaces. The melting transition is

strongly dependent on the pore size and the interactions

between the wall and the fluid. In case of strongly attractive

surfaces, melting temperature is found to decrease or

increase, with respect to that of the bulk, depending on the

pore size. The elevation in the melting temperature for

integer wall separation is a linear function of the inverse of

the wall separation. We observe an abnormality in the

melting temperature for strongly attractive surfaces, where

elevation and depression are both observed for different

pore sizes. We attribute this behavior to significant changes

in the crystal structure as a result of confinement and the

strongly attractive surface. A depression in the melting

temperature, on the other hand, is observed for the other

two cases, that is, weak and repulsive pores, where the

depressed temperature is a non-monotonic function of the

inverse of the wall separation. A change in the slope of

the plot of the shift in the melting temperature against the

pore size is clearly distinguishable. Using the correlation

DTm * Heff
-m for the repulsive and weakly attractive pores,

the crossover behavior is analyzed. We propose that the

crossover from 3D to 2D occurs around H = 5.5 and 2D

behavior is seen with m\ 1.0 and a higher pore sizes

results in a 3D-like solid with m[ 1.0.

The criteria used in this work utilize the overall behavior

of confined crystals and hence cannot be used to identify

melting temperature of confined layers. The methods fur-

ther have limitation to explore melting behavior for very

attractive surfaces as localized instabilities are dominant for

such cases. The methods fail for ewf [ 8 and a[ 4 for LJ

6-12 and LJ 9-3, surfaces, respectively. The reason behind

the failure of the method, for strongly attractive pores, is

mainly due to the instabilities in the nature of MSD and

hence cannot be used for obtaining the Lindemann and non-

Gaussian parameters. The instability is also seen for the

bulk (where it is insignificant) or weak pores, however, that

is at a larger time scale, hence such criterions are applicable

for repulsive, weak, and moderately attractive pores.
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