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Abstract—Compressive sensing is a new signal acquisition tech-
nology with the potential to reduce the number of measurements
required to acquire signals that are sparse or compressible in
some basis. Compressive sensing reconstruction has been shown
to be robust to multi-level quantization of the measurements,
in which the reconstruction algorithm is modified to recover a
sparse signal consistent to the quantization measurements. In this
term paper, we discuss the limiting case of 1-bit measurements,
which preserve only the sign information of the random mea-
surements. Here, we formulate a convex optimization problem by
treating the 1-bit measurements as sign constraints and discuss
various cost functions associated to the optimization problem
which have been proven to work well in literature. We will
draw comparison between several methods of estimating the
sparse signal using 1-bit quantized measurements in terms of
performance, complexity and number of measurements required.
The methods we discuss here include maximum likelihood esti-
mation, regularized least squares method, sign-sketch procedure
and estimation by constraining the problem on unit sphere.

Index Terms—Compressive Sensing, maximum-likelihood esti-
mation, least squares estimation, quantization, support recovery.

I. INTRODUCTION

Compressed Sensing (CS) [1] is a new paradigm which
enables the reconstruction of compressible or sparse signals
with far fewer samples using a universal sampling procedure
compared to that with traditional sampling methods. In this
framework, a small collection of linear random projections
of a sparse signal contains sufficient information for signal
recovery. The fundamental premise is that certain classes of
signals, such as natural images or communications signals,
have a representation in terms of a sparsity inducing basis (or
sparsity basis for short) where most of the coefficients are
zero or small and only a few are large. For example, smooth
signals and piecewise smooth signals are sparse in a Fourier
and wavelet basis, respectively.

The quantization of CS measurements has been studied
recently and it has been shown that accurate and stable
signal acquisition is possible even when each measurement
is quantized to only one single bit which is termed 1-bit
Compressive Sensing. In the following paper we discuss
algorithms for solving the 1-bit compressive sensing prob-
lem in presence of uncertainty. In [2], the authors use two
different approaches to solve the problem. The first is the l1-
regularised Maximum Likelihood (ML) approach and other a
more naive method based on-regularized least squares. It has

been demonstrated that reconstruction from 1-bit compressive
sensing measurements can be significantly improved if the ap-
propriate measurement model is used in the reconstruction [3].
However, their approach is mostly applicable in the case where
measurements are inexpensive whereas precision quantization
is expensive. They have imposed the constraint ‖x‖2 = 1,
otherwise a minimization based reconstruction algorithm that
only requires consistency with the measurements will drive the
solution to x = 0. However in practice we always encounter
some noise in the observations,so we discuss a method using
Adaptive Outlier Pursuits for Robust 1-bit compressive sensing
[5] which uses an iterative procedure to estimate the the sparse
vector.

The problem of support recovery has received little attention
to date in the CS literature when corrupted by non-Gaussian
uncertainties. Majority of the work till now has treated the
uncertainty as noise. The methods discussed below attempts
the problem when measurements are corrupted by outliers in
addition to Gaussian noise and even subsequently quantized. In
[4] we discuss a method called Sign-Sketch procedure, which
is shown to be a robust and sufficiently accurate.

II. BACKGROUND

A. Compressive Sensing

Signals which are sparse or compressible in some sense can
be reconstructed using the newly developed method known as
compressive sensing [1], [6]. Let us assume that x ∈ RN . If
there are at most K non-zero coefficients αi in the expansion of
the basis x =

∑
i αibk which can be denoted as Bα, the signal

is said to be K-sparse in sparsity-inducing basis bi. Similarly,
the signal is called K-compressible if it can be well represented
by the K-most significant coefficients in the expansion.

M measurements are taken of the signal using measurement
vectors φi, i = 1, 2, ...,M such that:

yi = 〈x, φi〉

Above can be compactly denoted by y = Φx = ΦBα
where y is the measurement vector and Φ is the measurement
operator modelling the measurement system.

For all further discussion, signal is assumed to be sparse or
compressible in canonical basis, i.ie., B = I . Now if the signal
is sparse in any basis, we can easily apply the subsequent



results by substitutingΦ̄ = ΦB as the measurement system and
treating α, instead of x, as the sparse signal to be reconstructed.

According to the classical sampling theory,the set φi should
form a Riesz basis or a frame for robust linear reconstruction
of any signal x which makes it necessary to have N measure-
ments for recovery of signals. Whereas compressive sensing
allows us to use only M = O(Klog(N/K)) non-adaptive
measurements which is much less than N, to reconstruct K-
sparse or K-compressible signals linearly.

The reconstruction of the signal x from y leads to determin-
ing the sparsest signal that can explain the measurements y.
Although the strictest measure of sparsity is the l0 pseudonorm
of the signal which is defined as the number of non-zero
coefficients of the signal, compresssive enforcing ensures
sparsity by minimizing the l1 norm of the the reconstructed
signal, ||x||1 =

∑
i |xi| due to the combinatorially complexity

of the l0 pseudonorm.In the case of classical compressive
sensing reconstruction methods including many other cases,
minimizing the L1 norm has been theoretically proven to be
equivalent of minimizing the L0 pseudonorm of the signal.

Thus we obtain reconstruction from compressive sensing
measurements by solving the following minimization problem:

x̂ = arg min
x

||x1||s.t.y = Φx

Signal can be exactly recovered using the above equation
if proper Φ is used.To be more specific, measurement vectors
φi should be sufficiently incoherent with the sparsity basis bi
for exact recovery. The minimum number of measurements
required to ensure recovery using a random measurement
system is M = O(K logN/K)

B. Measurement Quantization
Quantization is modelled as measurement value added with

measurement noise denoted by n.
y = Q(Φx) = Φx + n,

where Q(.) is the quantizer and n is dependent on quanti-
zation accuracy and energy-bounded as follows:

||n||2 =

(∑
i

||ni||2
)1/2

≤ ε.

For a uniform linear quantizer with quantization interval
∆, ε ≤

√
M∆2/12

In the case when measurement is limited by norm such as
quantization,robust reconstruction can be obtained by solving:

x̂ = arg min
x

||x||1 s.t. ||y− Φx||2 ≤ ε

In this approach, the reconstruction error is limited by ||x−
x̂||2 ≤ Cε, where C is constant and dependent only on the
properties of the measurement system Φ.

Above optimization problem is often relaxed by following
problem which is more efficient to solve:

x̂ = arg min
x
||x||1 +

λ

2
||y− Φx||22

C. Consistent Reconstruction

Consistent Reconstruction emphasized the intutive idea that
solution obtained must be consistent with the prior knowledge
of the signal and its measurement process. This implies that if
reconstructed signal is measured using the same measurement
process and quantized using same quantization, we will get
the same measured value as was obtained to reconstruct the
signal.

Reconstruction is not consistent in the case when measure-
ment noise is due to quantization noise.

Specifically, when we use uniform linear quantization, all
noise components have magnitude |ni| ≤ ∆/2, which implies
that consistent reconstruction produces a signal which satisfies:

|(Φx̂− y)i| ≤
∆

2

For 1-bit quantization, the quantizer is often implemented as
a comparator to a voltage level l,which is usually zero. In our
method, consistent reconstruction requires that reconstructed
signal measurements is on the same side of the voltage level
as the measurements obtained from the measurement system
which can be mathematically expressed as:

sign ((Φx̂)i − l) = yi.

III. 1-BIT COMPRESSIVE SENSING
MEASUREMENTS

A. Measurement Model

As it was explained in the above section, each measurement
is simply the sign of the inner product of the sparse signal with
a measurement vector φi as follows:

yi = sign (〈φi, x〉) .

Clearly each quantized measurement multilied with the
measurement is always non-negative:

yisign (〈φi, x〉) ≥ 0.

Above two equations can also be expressed using matrix
and vector notations as:

y = sign (Φx) and

Y Φx ≥ 0.

where Y = diag(y) and the inequality is applied element-
wise.

B. Consistent Reconstruction

For consistent reconstruction using 1-bit measurements,the
measurements are seen as sign constraints which are enforced
in the reconstruction to recover the signal.l1 norm is enforced
as a sparsity measure in the reconstruction.

If x is consistent with the measurements then so is ax for
all 0 ≤ a < 1. Since ||ax1 = a‖x‖1 < ‖x‖1, a minimization
based reconstruction algorithm that only requires consistency



with the measurements will drive the solution to x = 0. To
enforce reconstruction at a non-trivial solution we need to
artificially resolve the amplitude ambiguity. Thus, we impose
an energy constraint that the reconstructed signal lies on the
unit l2-sphere:

‖x‖2 =

(∑
i

x2
i

)1/2

= 1 (1)

Note that this constraint significantly reduces the optimiza-
tion search space. This reduction plays an important role in
improving the reconstruction performance.

The sparsest signal on the unit sphere that is consistent with
the measurements is the solution to:

x̂ = arg min
x
||x||1 (2)

s.t. YΦx ≥ 0

and ‖x‖2 = 1.

To enforce the constraint we relax the problem using a cost
function f(x) that is positive for x < 0 and zero for x ≥ 0
and a relaxation parameter λ:

x̂ = arg min
x
||x||1 + λ

∑
i

f((YΦx)i) (3)

s.t. ‖x‖2 = 1.

Assuming that the original problem (2) is feasible, as λ
tends to infinity (2) and (3) have the same solution. The algo-
rithm we introduce by the authors in [2] minimizes problem
(2) for f(x) = x2

2 u(x), where u(x) is the unit step function.
The convexity and smoothness of function f(x) allows the

use of gradient descent and fixed-point methods to perform
the minimization.

For notational convenience, in the remainder of this paper
we use g(x) = ‖x‖1 to denote the l − 1 norm part of the
cost function, and f̄(YΦx) to denote the one-sided quadratic
penalty

f̄(x) =
∑
i

f(xi)f(xi)

such that the cost function is equal to:
Cost(x) = g(x) + λf̄(YΦx). (4)

C. Reconstruction Algorithm

The authors in [3] employ a variation of the fixed point
continuation (FPC) algorithm [7]. Specifically, we introduce
two modifications. The first modifies the computation of the
gradient descent step such that it computes the gradient of
the one-sided quadratic penalty projected on the unit sphere
‖x‖2 = 1. The second introduces a renormalization step after
each iteration of the algorithm to enforce the constraint that
the solution lies on the unit sphere. These modifications are
introduced to stabilize the reconstruction of sparse signal from
their zero crossings. The similarity is not coincidental. Both
sign measurements and zero crossings information eliminate
amplitude information from the signal. The main difference
between the two problems is that measurements of zero cross-
ings are signal-dependent, whereas compressive measurements
are signal-independent. Although it is possible to reformulate

the reconstruction from zero-crossings as reconstruction from
1- bit measurements, this reformulation is beyond the scope of
this paper. The algorithm computes and follows the gradient of
the cost function in (4). If the minimization is not constrained
on the sphere, then the gradient of the cost at the minimum is
0:

Cost′(x) = 0 = g′(x) + λ(YΦ)T f̄ ′(YΦx) (5)

⇒ g′(x)

λ
= −(YΦ)T f̄ ′(YΦx). (6)

It follows that if the sphere constraint is introduced then the
gradient of the cost function at the minimum is orthogonal to
the sphere. Thus, a gradient descent algorithm followed by
renormalization has the minimum of (4) on the unit sphere as
a fixed point.

The iterative steps to reconstruct the signal are presented
in Algorithm 1. The algorithm is seeded with an initial signal
estimate x̂0 and a gradient descent step size δ/λ. At every
iteration the algorithm computes the gradient of the one-sided
quadratic in Step 3, projects it on the sphere in Step 4 and
descends on that gradient in Step 5. Step 6 is a shrinkage step
using the soft threshold shrinkage function shown in the solid
line in Figure 1. Step 7 renormalizes the estimate to have unit
magnitude and the algorithm iterates from Step 2 until the
solution converges.

The shrinkage Step 6 is interpreted as a gradient descent
on the l1-norm component of the cost function. Specifically,
for |xi| ≥ δ/λ the magnitude of the coefficient is reduced by
δ/λ, which is the expected behavior of a gradient descent. For
|xi|δ/λ the discontinuity at zero makes the gradient descent
set the coefficient to 0.

The reconstruction algorithm should be executed with λ
large enough such that the relaxed minimization (3) converges
to the constrained minimization in (2). Unfortunately, the
larger the value of λ, the smaller the descent step δ/λ.



Furthermore, the value of λ that is sufficiently large is not
known in advance of the algorithm.

Both issues are resolved by wrapping the algorithm in an
outer iteration loop that executes the algorithm using a small
value λ0 until convergence and then restarts the algorithm with
a higher value λi = cλi−1, c > 1 using the previous estimate
as a seed for the next execution. The outer loop terminates
once the solution from the current iteration is not significantly
different from the solution of the previous iteration. Since the
minimization is performed on the unit sphere, the problem is
not convex. However, a good estimate of the solution can be
found using the algorithm.

IV. COMPRESSIVE SENSING WITH QUANTIZED
MEASUREMENTS

In this section we present the work by authors in [2]. We
start with noise corrupted z = Ax + v where A ∈ Rm×n is
the unquantized measurement vector and z ∈ Rm. v is IID
N (0, σ2) noise. Qi : R → Yi functions as the quantizer for
zi where Yi is a finite set of pre-defined key-words.
We get quantized measurement as follow:

yi = Qi(zi), i = 1, ...,m.

which is same as zi ∈ Q−1
i (yi).

We will work with the case in which Q−1
i (yi) ∈ [li, ui)

i.e., considering only the lower limit. The values li and ui are
thresholds associated with the quantized measurement yi and
they can take the values −∞ and ∞ respectively depending
on the interval.

Thus, for all our measurements,
l ≤ Ax + v ≥ u

where l and u are upper and lower limits respectively of the
corresponding keywords.

A. Method 1: l1 regularized Maximum Likelihood

The conditional probability of the codeword yi correspond-
ing to some x is given by:

p(yi|x) = Φ

(
−aTi x+ ui

σi

)
− Φ

(
−aTi x+ li

σi

)
where aTi is the ith row of A and

Φ(z) =
1√
2π

∫ z

−∞
exp
−t2

2
dt

is the cumulative distribution function of the standard nor-
mal distribution. The negative log-likelihood of given is given
by

−
m∑
i=1

log

(
Φ

(
−aTi x+ ui

σi

)
− Φ

(
−aTi x+ li

σi

))
which we can express as fml(Ax), where

fml(z)−
m∑
i=1

log

(
Φ

(
−zi + ui

σi

)
− Φ

(
−zi + li
σi

))

The negative log-likelihood function is a smooth convex
function. We add l1 regularization parameter in the fml
expression to incorporate sparsity prior and then minimize
fml(Ax) +λ||x||1 to get ML estimate of x and adjusting λ to
get desired sparsity in x, .

B. Method 2: l1 regularized Least Squares

This method ignores the quantization. In this method, un-
quantized real value is used for each quantization interval and
this real value is noise corrupted measurement.Corresponding
to each measurement yi, we assign ŷ ∈ R some value such as
centroid or mid point of the interval [li, ui). The centroid is

ŷ =

∫ ui

li
wp(w) dw∫ ui

li
p(w) dw

Measurement can thus be expressed as z = ŷ + q where q
is the quantization error.

Despite q being a function of Ax+v, we consider it to be a
random variable with zero mean and variance

σ̂2 =

∫ ui

li
(w − ŷ)2p(w) dw∫ ui

li
p(w) dw

σ̂2 = (ui − li)
2/12 for the case of a uniform (assumed)

distribution on zi.Now pretending that q is gaussian, we have
ŷ = Ax+v̂, where vi ∼ N (0, σ2+σ̂2). We can now use least-
squares to estimate x, by minimizing the (convex quadratic)
function fls(Ax) , where

fls(z) = −
m∑
i=1

1

2

(zi − ŷi)2

σ2 + σ̂2

Finally to obtain sparse estimate, we add l1 regularization
as in method 1 and minimize fls(z) + λ||x||1.

V. SIGN-SKETCH METHOD

The Sign-Sketch procedure employs sparse random mea-
surement matrices, and utilizes a computationally efficient
support recovery procedure that is a variation of a technique
from the sketching literature.

A. Problem Definition

The support S(x) of a x ∈ Rn is defined as the set of
positions in x where it is non-zero. To say that x̄ is k-sparse
means that |S| = k. For each vector x̄ we acquire ’m’
measurements of the form ’Ax’, where A is a m x n matrix.
The authors have considered two scenarios for inclusion of
uncertainty in the measurements

1) Corrupted by Gaussian Noise and Outliers
Measurements are of the form

y = Ax+ w + o (7)
w ∼ N (0, σ2Im) and o ∈ <m is a sparse vector ( whose
values may take arbitrary large values if non-zero)

2) Quantized Noisy Measurements
Measurements are of the form

y = sgn(Ax+ w + o) (8)



here w and o have the same definition as above and
sgn(z) denotes a scalar sign function defined as

sgn(z) =


−1 z < 0

0 z = 0

+1 z > 0

(9)

We aim to calculate Ŝ(y,A) which is an accurate estimate of
the true unknown signal support S.

B. Sparse Estimation

We propose to use the same structured random matrices,
similar to those proposed in the count-sketch procedure in
[9]. Matrices A ∼ A(R, T, n, ) are composed of the vertical
concatenation of T individual random matrices, denoted At
for t = 1, . . . , T, each having R rows and n columns.
Each At is a sparse matrix containing exactly n non-zero
values, one per column, where the location of the non-zero
component in each column is chosen uniformly at random
(with replacement) from the set {1, 2, ..., R}, and the non-
zero component takes the value ±α with probability 1

2 . For a
given realization, let ht,1, ..., ht,n, n ∈ {1, ..., R} denote which
entry of the corresponding column of At is non-zero, and we
let st,1, ..., st,n ∈ α,+α be the corresponding values, for t =
1, . . . , T. All random quantities are assumed independent in
the construction of At.
They start the estimation by forming ”estimates” x̃t ∈ Rn
, where x̃t,i = st,iyt,ht,i

. The procedure leverages the
observation that for the two uncertainty models described
above, the majority of the {x̃t,i}Tt=1 may have the same sign as
xi for indices i ∈ S, and their signs will otherwise be equally
likely for i ∈ Sc. The first step in the Sign-Sketch procedure
is to estimate the following

x̂ =
1

T

∑
sgn(x̃t)

here x̃ are as defined above and the support is estimated using
a threshold τ as

Ŝ = {i ∈ {1, 2, ..., n} : |x̃i| > τ} (10)

C. Important Results

The first results ensures the accuracy of the estimation
process of the support vector where observation might be
corrupted by Gaussian Noise and outliers.

Theorem 1 : Given that measurements of x are obtained
according to the model (7) where A ∼ A(R, T, n, ) for some
specified R, T ∈ N and α > 0, w ∼ N (0, σ2Im), and o ∈ Rm
is a vector of outliers whose entries take some unspecified (and
possibly large) value independently with probability q, and 0
otherwise.

Let the number of non-zero entries of x be k, and let xmin
denote the minimum amplitude of the non-zero components
of x (i.e., xmin = mini∈S |xi|). Define the quantities

p̃ :=
k − 1

R
+

1

2
exp(−α

2x2
min

2σ2
) + q

If the following a true:
• p̃ < 1/2
• τ is chosen such that 0 < τ < 1− 2p̃

• T satisfies for any λ > 0

T ≥ max{ 2

(τ − (1− 2p̃))2
log(4k(n−k)λ,

2

τ2
log(4(n−k)λ+1)}

then the estimate Ŝ as defined earlier satisfies the following
Pr(Ŝ 6= S) ≤ (n− k)−λ

We can deduce a few salient points from the above theorem.
First, the requirement that p̃ ≤ 1/2 implies that the following
are strictly necessary conditions:

1) for each matrix At, number of rows R > 2(k − 1)
2) the minimum signal amplitude xmin must be Ω(σ/α)
3) the probability of outliers must satisfy q < 1/2

Secondly, we can significantly adjust certain parameters to
offset the impact of other whilst still succeeding at recovering
the support. For example, provided that the parameters remain
within the allowable ranges (so that p̃ < 1/2), doubling R, and
thus the total number of measurements, offsets the effect of a
doubling of the outlier probability q, consistent with intuition.
Also, increasing R can permit recovery of signals with weaker
features (i.e., smaller values of xmin), and so on. Finally, note
that for a given q and xmin such that

1

2
exp(−α

2x2
min

2σ2
) + q < % < 1/2

the procedure will succeed provided R > k−1
1/2−% , implying

total number of measurements RT = O(max{k log(n −
k), k log k}).
The robustness of Sign-Sketch model can be inferred from the
fact that it utilizes only the sign of each measurement. Hence,
we can conclude that the results from Theorem 1 hold for the
case when observations are comprised of sign measurements
only i.e the Quantized Noisy Measurements.

VI. ROBUST 1-BIT COMPRESSIVE SENSING USING
ADAPTIVE OUTLIER PURSUIT

The problem definition followed here is the same as given in
background section. Binary iterative hard thresholding (BIHT
or BIHT-l2) in [8] is a high performance algorithm for solving
the 1-bit case when it is noise free, however when However
when there are a lot of sign flips, the performance of BIHT
and BIHT-l2 is worsened by the noisy measurements. There
is no method to detect the sign flips in the measurements,
but adaptively finding the sign flips and reconstructing the
signals can be combined together as in [22] to obtain better
performance. Let us assume first that the noise level (the ratio
of the number of sign flips over the number of measurements
for 1-bit compressive sensing) is provided. Based on this
information, we can choose a proper integer L such that
at most L elements of the total measurements are wrongly
detected (having sign flips). For measurements yi ∈ +1,−1m

Λ ∈ Rm is a binary vector denoting the correct data:

Λi =

{
1 if yi is correct
0 else

According to the assumption
∑M
i=1 Λi ≤ L. Introducing Λi

into the BIHT framework we get the following minimization
problem



minimize
x,Λ

M∑
i=1

Λiφ(yi, (φx)i)

st.

M∑
i=1

Λi ≤ L

Λi ∈ {0, 1}i = 1, 2, ...,M

||x||2 = 1, ||x||0 ≤ K
The above model can also be interpreted in the following
way. Let us consider the noisy measurements y as the signs
of φx with additive unknown noise n, i.e.y = sign(φx+ n).
Although the binary measurement is robust to noise as
long as the sign does not change, there exist some nis
such that the corresponding measurements change. In our
problem, only a few measurements are corrupted, and only
these corresponding ni’s are important. Therefore, can be
considered as sparse noise with non-zero entries at these
locations.
Note the problem defined above is non-convex and has both
continuous and discrete variables. It is difficult to find (xΛ)
together, thus we use alternating minimization method, which
separates the energy minimization over x and Λ into two steps.

The algorithm is described below

VII. CONCLUSION

Results in [3] demonstrate that reconstruction from 1-
bit compressive sensing measurements can be significantly
improved if the appropriate measurement model is used in
the reconstruction. Specifically, 1-bit measurements eliminate
amplitude information, and therefore the signal can only be
recovered within a positive scalar factor. Constraining the

reconstruction to be on the unit sphere resolves this ambiguity
and significantly reduces the reconstruction search space.
Similarly, treating each measurement as a constraint instead
of a value to be matched in a mean-squared sense allows
exploiting consistent reconstruction principles. Results in [3]
also demonstrate that both contributions significantly improve
the reconstruction performance from 1-bit measurements.

[2] considers the problem of estimating a sparse signal from
a set of quantized, Gaussian noise corrupted measurements,
where each measurement corresponds to an interval of values.
The authors in [2] give two methods for solving this problem,
each based on minimizing a differentiable convex function plus
an regularization term. According to the paper, using presented
methods, compressed sensing can be carried out even when the
quantization is very coarse, e.g., 1 or 2 bits per measurement.
Numerical simulations show that both methods work relatively
well, with the first method outperforming the second one for
coarsely quantized measurements.

In addition to above we discussed a method robust method
[5] which proposes an iterative method for detecting the
sign flips in measurements and recovering the signals from
correct measurements, this method is shown through numerical
simulations to obtain better results in both finding the noisy
measurements and recovering the signals, even when there are
a lot of sign flips in the measurements. We also discussed a
support estimation technique [4] using sketching for sparse
vectors which more general in its modelling of uncertainties. It
took into account the possibility of outliers along with gaussian
noise. Also the models used by the authors can be extended
to other noise specifications and also to the case of ’missing
data’.
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