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Abstract 

 
 
The reverberation time (RT) is a very important measure that quantifies the 

acoustic properties of a room and provides information about the quality and 

intelligibility of speech recorded in that room. In a recent study, it has been 

shown that existing methods for blind estimation of the RT are highly sensitive to 

noise. In this paper, a novel method is proposed to blindly estimate the RT based 

on the decay rate distribution. Firstly, a data driven representation of the 

underline decay rates of several training rooms is obtained via the Eigen Value 

Decomposition of a specially tailored kernel. Secondly, the representation is 

extended to a room under test and used to estimate its decay rate and hence it’s 

RT. The presented results show that the proposed method outperforms a 

competing method and is significantly more robust to noise. 
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Introduction 
 
 

The reverberation time (RT) is a very important measure that quantifies the 
acoustic properties of a room. The RT is defined as the time it takes for the sound 
to decay by 60dB once the source has been switched off. The RT highly depends 
on the room geometry and the reflectivity of the surfaces in the room. In contrast 
to the room impulse response (RIR), the RT is independent of the source-
microphone configuration. An estimate of the RT of a room can serve as an 
indicator of the quality and the intelligibility of speech observed in that room. 

Both signal based and channel based methods have been developed to 
estimate the RT. The channel based method require an estimate of the RIR. 
Although, this provides accurate estimates of the RT, it may not always be 
practical or even possible to measure the RIR in a room. Therefore, it is desirable 
to be able to estimate the RT directly from an observed reverberant speech 
signal. Several methods have been proposed to blindly estimate the RT. Wen et 
al. proposed a method that blindly estimates the RT by analyzing the distribution 
of decay rates of the observed reverberant speech signal. The authors shown that 
the negative-side variance of the distribution can be related to the RT.  

In this paper, a novel method to blindly estimate the RT based on the decay 
rate distribution has been presented. Instead of using a specific characteristic of 
the distribution, the proposed method empirically reveals the most significant 
underlying parameter of the decay rates of the observed reverberant speech 
signal. It is shown that this parameter is strongly related to the decay rate of the 
room. Firstly, a data-driven representation of the underlying decay rates of 
several training rooms is obtained via the eigenvalue decomposition of a kernel. 
Unlike common kernel methods, this kernel is built based on a specially-tailored 
distance between the observable decay rate distributions of the reverberant 
speech and is shown to uncover intrinsic geometric information on the underlying 
parameter. Secondly, the representation is extended to a room under test and 
used to estimate its decay rate (and hence it’s RT). A major advantage of the 
proposed method is its robustness to additive noise.       

 

 



Project Report 2015 
 

Indian Institute of Technology, Kanpur 6 

 

 

Algorithm 
 

Training Stage 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Get several recording of reverberant speech from various 

training rooms 

Compute the decay rates of the reverberant speech signals in 

short time frames 

For each recording, compute a histogram of the obtained 

decay rates 

For each training room, compute the covariance matrix of 

the histograms of different recordings for this room  

                

Build a kernel between the histograms. Apply EVD on the 

kernel and view the values of its principal eigenvector  

as data-driven representation of the underlying 

decay rates of the training rooms. 
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Testing Stage for a single room 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

Obtain a single recording of reverberant speech signals  

From an unseen room. 

Compute the decay rates in short time frames and the 

corresponding histogram. 

Extend the representation to obtain a representation 

of the decay rate of the unseen room 

 

Build the non-symmetric kernel between the newly acquired 

histogram and the training histograms 
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Problem Formulation 

 
We assume that each room is characterized by merely a single decay rate 
value of the energy envelope, which is independent of the frequency. The 
characteristic decay rate λr of a room r is related to RT by 
 

 
We rely on the fact that there is a one-to-one mapping between the decay rate 
of a room and the RT. Estimating the decay rate of a room and estimating the 
RT are therefore considered equivalent tasks. 
Let R be a collection of training rooms with various known characteristic 
decay rates. In each room r ϵ R with a characteristic decay rate λr , we perform 
L recordings and collect a set of L reverberant speech signals, denoted by 

.  
Let λs be a random variable that represents the instantaneous decay rate of 
the energy envelope of an anechoic speech. The decay rates of the room and 
the anechoic speech are unobservable and may be estimated via the measured 
reverberant speech. Reverberant speech in an enclosure is usually modeled as 
the convolution of the anechoic speech signal and the RIR. Thus, the energy 
envelope of the reverberant speech signal can be viewed as a function of the   
energy envelopes of the anechoic speech signal and the RIR. Let λx denote the 
observable instantaneous decay rate of the energy envelope of the reverberant 
speech, which can be written as 

λx  =  g(λr , λs) 
where g is an arbitrary (possibly nonlinear) function. 
Our objective in this paper is to recover the decay rate (RT) of a room from λx 
without model assumptions. We assume that accurate estimates of λx can be 
obtained from the observable reverberant speech signal. The decay rates can 
be estimated in the time-frequency domain according to 
 

                                         
where, H῀(t , f) is the energy envelope of RIR at time t and frequency f.  λh (f) is 
the decay rate at frequency f and P(f) is the initial Power Spectral Density. 
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Decay Rate Distribution 
 

From each training recording xr(i)(n) we compute the decay rates in short time 
frames. Let hr(i) denote the histogram of the decay rates corresponding to the 
i-th recording in room r. We compute the empirical covariance matrix of the 
histograms from the same training room as follows 
 

                       
 
Where hr bar is the empirical mean of the histograms in r, for all r ϵ R. The 
natural variations of the decay rates in different recordings introduce 
variations of the corresponding histograms in the observable domain 
(histograms of the decay rates of the measured reverberant speech). We 
exploit these variations, as manifested in the covariance matrix Cr to 
empirically invert the function g and reveal the decay rates. 
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Model for training 
 
We define a symmetric distance function between pairs of training feature 
vectors (histograms) as 

                
for each r; ρ ϵ R for all i, j. 
 
This distance is termed as the Mahalanobis distance and has two important 
properties. The Mahalanobis distance is invariant to linear transformations. Thus, 
according to the analysis in previous section, in the features (histograms) domain, 
this distance is invariant to the distortions imposed on the decay rate by the 
anechoic speech and noise. 
 
Given the pairwise distances between the desired values, we recover the values 
themselves through the eigenvalue decomposition (EVD) of an appropriate 
Laplace operator. Let WR be an affinity matrix (kernel) between pairs of feature 
vectors, whose (n, m)-th element is given by 

 
Where Ɛ is the kernel scale and 𝑛 = 𝑟𝐿 + 𝑖  and 𝑚 = 𝜌𝐿 + 𝑗.  
 
Let D be a diagonal normalization matrix whose diagonal elements are 

        Dnn  = ∑ 𝑊𝑚
nmR . 

 
Let 

            ŴR = 𝐷−
1

2 WR 𝐷
−

1

2    
 
be a normalized kernel that shares the eigenvectors with the normalized 
graph-Laplacian 𝐼 − ŴR . 
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It can be shown that the eigenvectors Φk of ŴR reveal the underlying structure 
of the data. In the following, we assume that the decay rate of the room is the 
most significant underlying parameter of the decay rates of the observed 
reverberant speech signal. 
 
In particular, the n-th coordinate of the principal eigenvector relates to the 
decay rate as 

Φ(n)
1 = f(λ(i)

r) 
Where, 
𝑛 = 𝑟𝐿 + 𝑖 and f is a monotonic function. 
 
Thus, the principal eigenvector organizes the feature vectors according to the 
values of the decay rates of the rooms up to a monotonic scaling. Furthermore, 
since the decay rates of the training rooms are known, we are able to use them 
for calibrating the values of the eigenvectors to the values of the decay rates. 
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Estimating the Reverberation Time 
 

Let U denote a collection of “unseen” rooms with unknown RTs. From each such 
unseen room u ϵ U, we obtain a single reverberant speech recording xu(n). Based 
on the reverberant speech, we compute the histograms (feature vectors) hu for  
u ϵ U of the decay rates of the energy envelopes of the signal in short time 
frames. Now, we present the simultaneous estimation of the RTs of all the unseen 
rooms, which includes the case of a single unseen room as well. 
 
We define a non-symmetric distance function between feature vectors from the 
unseen rooms and the training rooms as 

 
For each r ϵ R, u ϵ U, and i = 1, ..., L.  
 
Now we define a corresponding non-symmetric affinity matrix A using a Gaussian 
as- 

    
Where  𝑛 = 𝑟𝐿 + 𝑖.  
We note that the construction of A relies merely on the observed and training 
data. 
 

Let  Ã=Da
-1A ⍵-1,  where Da is a diagonal matrix whose diagonal elements are 

the sum of rows of A, and ⍵ is a diagonal matrix whose diagonal elements the 

sum of columns are of  Da
-1𝐴. 

  
 
Also,   

ŴR = ÃTÃ, 
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Thus, the eigenvectors Φk of ŴR, which represent the training rooms, can be 
obtained from the right singular vectors of Ã. 
 
 
 
Define a new affinity matrix between feature vectors of the unseen rooms as, 

 
WU = Ã ÃT 

 
The principal eigenvector of WU represents the underlying desired decay rates of 
the unseen rooms. 
 
By definition of SVD, 

                                ψk  = (
1

√𝜇𝑘
) Ã Φk  …(1) 

 
where 𝜇𝑘 is the k-th eigenvalue of WU and ψk  is the k-th eigenvector of WU (and 
the left singular vector of Ã). 
Thus, for k = 1, we obtain the extension of the representation of the underlying 
desired decay rates of the unseen rooms. 
 
The decay rates (RTs) of all the training rooms are known and can be used to 
estimate the decay rates (RTs) of the unseen rooms. The SVD expresses the 
relationship between the representation of the decay rates of the training and 
unseen rooms. Since the true decay rates of the training rooms are known, we 
exploit the same relationship to estimate the decay rates of the unseen rooms. 
Substituting the training decay rates into (1) and setting k = 1 yields 
   

λU = (
1

𝜇1
)Ã λR 

 

where  λR  and λU are vectors consisting of the known decay rates of the training 

rooms and the obtained estimates of the decay rates of the unseen rooms, 
respectively. 
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Results 

 
 
 
 

‘Decay rate’ distributions (histograms) 
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And, the final primary eigenvector shows 
monotonic variation of reverberation times: 
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