SGD and Friends

How to solve large-scale optimization problems?

Ketan Rajawat
February 24, 2020
Indian Institute of Technology Kanpur

Outline

(1) Context

(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Context

Outline

(1) Context

Problem Formulation: Online and Finite Sum

Examples

State-of-the-art and Oracle Complexity
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d

Problem Formulation

Consider the optimization problem:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right) \tag{P}
\end{equation*}
$$

Problem Formulation

Consider the optimization problem:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right) \tag{P}
\end{equation*}
$$

- $\mathcal{X} \subseteq \mathbb{R}^{d}$ where d is problem dimension

Problem Formulation

Consider the optimization problem:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right) \tag{P}
\end{equation*}
$$

- $\mathcal{X} \subseteq \mathbb{R}^{d}$ where d is problem dimension
- ξ_{i} indexes the data points/observations/samples

Problem Formulation

Consider the optimization problem:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right) \tag{P}
\end{equation*}
$$

- $\mathcal{X} \subseteq \mathbb{R}^{d}$ where d is problem dimension
- ξ_{i} indexes the data points/observations/samples
- N is the size of data set

Variants

- Online optimization or $N \rightarrow \infty$

$$
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\mathbb{E}_{\xi}[f(\mathbf{x}, \xi)]
$$

Variants

- Online optimization or $N \rightarrow \infty$

$$
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\mathbb{E}_{\xi}[f(\mathbf{x}, \xi)]
$$

- Use a regularizer h

$$
\min _{\mathbf{x} \in \mathcal{X}} R(\mathbf{x}):=F(\mathbf{x})+h(\mathbf{x})
$$

Variants

- Online optimization or $N \rightarrow \infty$

$$
\min _{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}):=\mathbb{E}_{\xi}[f(\mathbf{x}, \xi)]
$$

- Use a regularizer h

$$
\min _{\mathbf{x} \in \mathcal{X}} R(\mathbf{x}):=F(\mathbf{x})+h(\mathbf{x})
$$

- Distributed/decentralized setting with K nodes

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k=1}^{K} R_{k}(\mathbf{x})
$$

Challenges of Big Data

- Large dimension d
- Hessian inverse $\left[\nabla^{2} F(\mathbf{x})\right]^{-1}$ requires $\mathcal{O}\left(d^{3}\right)$ computations
- Approximate Hessian inverse still requires $\mathcal{O}\left(d^{2}\right)$ computations, e.g., BFGS
- Very large d : must store \mathbf{x} on the disk instead of RAM, write operation is bottleneck

Challenges of Big Data

- Large dimension d
- Hessian inverse $\left[\nabla^{2} F(\mathbf{x})\right]^{-1}$ requires $\mathcal{O}\left(d^{3}\right)$ computations
- Approximate Hessian inverse still requires $\mathcal{O}\left(d^{2}\right)$ computations, e.g., BFGS
- Very large d : must store \mathbf{x} on the disk instead of RAM, write operation is bottleneck
- Large dataset size N
- Even calculating the gradient $\nabla F(\mathrm{x})$ at every iteration impractical
- Cannot store entire data on a single machine
- Read/write operations become the bottleneck

Challenges of Big Data

- Large dimension d
- Hessian inverse $\left[\nabla^{2} F(\mathbf{x})\right]^{-1}$ requires $\mathcal{O}\left(d^{3}\right)$ computations
- Approximate Hessian inverse still requires $\mathcal{O}\left(d^{2}\right)$ computations, e.g., BFGS
- Very large d : must store \mathbf{x} on the disk instead of RAM, write operation is bottleneck
- Large dataset size N
- Even calculating the gradient $\nabla F(\mathrm{x})$ at every iteration impractical
- Cannot store entire data on a single machine
- Read/write operations become the bottleneck
- Ideally complexity should be $\mathcal{O}(d N)$

Outline

(1) Context

Problem Formulation: Online and Finite Sum

Examples

```
State-of-the-art and Oracle Complexity
```

(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d

Example: Lasso Regression

	Variables	Coefficient	
		Premenopausal	Postmenopausal
	Age	0.367	0.346
	Body mass index		0.935
	Age at menarche		-0.075
	Age at 1st give birth		0.141
	Number of parity	0.137	-0.184
Predictors for breast	Breast feeding		-0.110
cancer selected via	Oral contraceptive		-0.090
	hormone replace treatment		-0.710
LASSO regression	Case number of BCFDR	0.855	0.844
[Wang et al., 2016]	Benign breast diseases		0.296
[Wang et al., 2016]	Alcohol drinking	0.631	
	LAN	0.264	0.238
	Sleep quality	-0.256	-0.122
	Age ($20,30,40,50,60,70$, and >70 years old); body mass index (<18.5, 18.5-24, 24-27, and ≥ 27); age at menarche ($<12,12,13,14,15$, and $16 \sim$ years old); age at 1 st give birth ($<20,20-25$, and $25 \sim$ years old); number of parity ($0,1,2$, and >2); breast feeding duration ($\mathrm{no},<1,1-3$ and, >3 years); LAN (1, dark; 2, few light; and 3, little bright); sleep quality (1, good; 2, common; 3, poor; and 4, poor with sleep pill). BCFDR = breast cancer in first degree-relatives, LAN = light at night, LASSO $=$ least absolute shrinkage and selection operator, $S D=$ standard deviation.		

Example: Lasso Regression

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$ for each patient $i \in\{1, \ldots, N\}$

Example: Lasso Regression

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$ for each patient $i \in\{1, \ldots, N\}$
- Optimization problem formulated as

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{a}_{i}^{\top} \mathbf{x}, b_{i}\right)+\lambda\|\mathbf{x}\|_{1}
$$

Example: Lasso Regression

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$ for each patient $i \in\{1, \ldots, N\}$
- Optimization problem formulated as

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{a}_{i}^{\top} \mathbf{x}, b_{i}\right)+\lambda\|\mathbf{x}\|_{1}
$$

- Loss function ℓ could be least-squares, logistic, hinge loss, etc.

Example: Lasso Regression

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$ for each patient $i \in\{1, \ldots, N\}$
- Optimization problem formulated as

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{a}_{i}^{\top} \mathbf{x}, b_{i}\right)+\lambda\|\mathbf{x}\|_{1}
$$

- Loss function ℓ could be least-squares, logistic, hinge loss, etc.
- Non-zero entries of \mathbf{x} correspond to features that explain b_{i}

Example: Lasso Regression

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$ for each patient $i \in\{1, \ldots, N\}$
- Optimization problem formulated as

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{a}_{i}^{\top} \mathbf{x}, b_{i}\right)+\lambda\|\mathbf{x}\|_{1}
$$

- Loss function ℓ could be least-squares, logistic, hinge loss, etc.
- Non-zero entries of \mathbf{x} correspond to features that explain b_{i}
- ℓ_{1}-norm penalty "encourages" sparsity

Example: Visual Object Recognition

CIFAR-10 dataset contains 60000 labeled images of 10 objects [Krizhevsky, 2009]

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\operatorname{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and
- structure of NN() is defined by the neural network

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\operatorname{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and
- structure of NN() is defined by the neural network
- elements of x are weights/parameters of the network

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\operatorname{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and
- structure of NN() is defined by the neural network
- elements of x are weights/parameters of the network
- $\nabla_{\mathbf{x}} \mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ can be efficiently calculated via back-propagation

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\operatorname{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and
- structure of NN() is defined by the neural network
- elements of x are weights/parameters of the network
- $\nabla_{\mathbf{x}} \mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ can be efficiently calculated via back-propagation
- Deep Learning community focuses on designing NN

Example: Neural Networks

- Given feature-label pairs $\left(\mathbf{a}_{i}, b_{i}\right)$, optimization problem is

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)
$$

- Objective f is non-convex and may take the form

$$
f\left(\mathbf{x},\left(\mathbf{a}_{i}, b_{i}\right)\right)=\ell\left(\mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right), b_{i}\right)
$$

- Here, $\operatorname{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ is a non-linear function of \mathbf{x}, and
- structure of NN() is defined by the neural network
- elements of x are weights/parameters of the network
- $\nabla_{\mathbf{x}} \mathrm{NN}\left(\mathbf{a}_{i}, \mathbf{x}\right)$ can be efficiently calculated via back-propagation
- Deep Learning community focuses on designing NN
- Optimization community focuses on solving (GD) for general f

Example: Recommender Systems

Matt's
Amazon
Sign in to get your order status, balances and rewards.
Sign In

Recommended for you, Matt

Buy It Again in Grocery

Example: Non-negative Matrix Completion

- Given ratings matrix $\mathbf{M} \in \mathbb{R}^{m_{1} \times m_{2}}$ with observed entries $\left\{M_{i j}\right\}_{(i, j) \in \Omega}$

Example: Non-negative Matrix Completion

- Given ratings matrix $\mathbf{M} \in \mathbb{R}^{m_{1} \times m_{2}}$ with observed entries $\left\{M_{i j}\right\}_{(i, j) \in \Omega}$
- Find the complete matrix \mathbf{X}

Example: Non-negative Matrix Completion

- Given ratings matrix $\mathbf{M} \in \mathbb{R}^{m_{1} \times m_{2}}$ with observed entries $\left\{M_{i j}\right\}_{(i, j) \in \Omega}$
- Find the complete matrix \mathbf{X}
- If \mathbf{X} is suspected to be low-rank, solve [Recht et al., 2011]

$$
\min _{\mathbf{X} \in \mathbb{R}_{+}^{m_{1} \times m_{2}}} \frac{1}{|\Omega|} \sum_{(i, j) \in \Omega}\left(M_{i, j}-X_{i, j}\right)^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

Example: Non-negative Matrix Completion

- Given ratings matrix $\mathbf{M} \in \mathbb{R}^{m_{1} \times m_{2}}$ with observed entries $\left\{M_{i j}\right\}_{(i, j) \in \Omega}$
- Find the complete matrix \mathbf{X}
- If \mathbf{X} is suspected to be low-rank, solve [Recht et al., 2011]

$$
\min _{\mathbf{X} \in \mathbb{R}_{+}^{m} \times m_{2}} \frac{1}{|\Omega|} \sum_{(i, j) \in \Omega}\left(M_{i, j}-X_{i, j}\right)^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

- Here, $\|\mathbf{X}\|_{\star}$ encourages \mathbf{X} to be low-rank

Example: Non-negative Matrix Completion

- Given ratings matrix $\mathbf{M} \in \mathbb{R}^{m_{1} \times m_{2}}$ with observed entries $\left\{M_{i j}\right\}_{(i, j) \in \Omega}$
- Find the complete matrix \mathbf{X}
- If \mathbf{X} is suspected to be low-rank, solve [Recht et al., 2011]

$$
\min _{\mathbf{X} \in \mathbb{R}_{+}^{m} \times m_{2}} \frac{1}{|\Omega|} \sum_{(i, j) \in \Omega}\left(M_{i, j}-X_{i, j}\right)^{2}+\lambda\|\mathbf{X}\|_{\star}
$$

- Here, $\|\mathbf{X}\|_{\star}$ encourages \mathbf{X} to be low-rank
- High-dimensional problem: since $d=m_{1} m_{2} \gg|\Omega|=N$

Outline

(1) Context

Problem Formulation: Online and Finite Sum
 Examples

State-of-the-art and Oracle Complexity
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d

How to compare?

- Which is better: GD or SGD?

How to compare?

- Which is better: GD or SGD?
- Which variant of SGD should I use for a given problem?

How to compare?

- Which is better: GD or SGD?
- Which variant of SGD should I use for a given problem?
- Such questions arise in any field

How to compare?

- Which is better: GD or SGD?
- Which variant of SGD should I use for a given problem?
- Such questions arise in any field
- Sometimes left unanswered, e.g. in, Deep Learning

How to compare?

- Which is better: GD or SGD?
- Which variant of SGD should I use for a given problem?
- Such questions arise in any field
- Sometimes left unanswered, e.g. in, Deep Learning
- But, the landscape of SGD is much more structured

Oracle Complexity

- Given \mathbf{x}, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$

Oracle Complexity

- Given \mathbf{x}, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit

Oracle Complexity

- Given x, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit
- So an algorithm that makes fewer calls to the oracle is better!

Oracle Complexity

- Given \mathbf{x}, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit
- So an algorithm that makes fewer calls to the oracle is better!
- Oracle complexity is the cost required to obtain a desired accuracy

Oracle Complexity

- Given x, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit
- So an algorithm that makes fewer calls to the oracle is better!
- Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires $\mathcal{O}\left(\frac{L d}{\epsilon^{2}}\right)$ calls to oracle in order to achieve an optimality gap of ϵ.

Oracle Complexity

- Given \mathbf{x}, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit
- So an algorithm that makes fewer calls to the oracle is better!
- Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires $\mathcal{O}\left(\frac{L d}{\epsilon^{2}}\right)$ calls to oracle in order to achieve an optimality gap of ϵ.

- Terms within \mathcal{O} may be initialization dependent
- Notation hides away many complexities

Oracle Complexity

- Given \mathbf{x}, an oracle provides us $\nabla f\left(\mathbf{x}, \xi_{i}\right)$
- Call to an oracle costs 1 unit
- So an algorithm that makes fewer calls to the oracle is better!
- Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires $\mathcal{O}\left(\frac{L d}{\epsilon^{2}}\right)$ calls to oracle in order to achieve an optimality gap of ϵ.

- Terms within \mathcal{O} may be initialization dependent
- Notation hides away many complexities
- Gap measured by $\left\|\mathrm{x}-\mathrm{x}^{\star}\right\|^{2},\|\nabla F(\mathrm{x})\|^{2}$, or $F(\mathrm{x})-F\left(\mathrm{x}^{\star}\right)$

State-of-the-art in SGD

- New avenues for applying SGD emerge every year

State-of-the-art in SGD

- New avenues for applying SGD emerge every year
- Several variants of SGD are proposed every month

State-of-the-art in SGD

- New avenues for applying SGD emerge every year
- Several variants of SGD are proposed every month
- Papers analyzing performance of these variants come up everyday

State-of-the-art in SGD

- New avenues for applying SGD emerge every year
- Several variants of SGD are proposed every month
- Papers analyzing performance of these variants come up everyday
- Difficult to consolidate and maintain perspective

This Tutorial

- Unified view of many SGD variants

This Tutorial

- Unified view of many SGD variants
- Based on recent results, but readily accessible: "easy" math

This Tutorial

- Unified view of many SGD variants
- Based on recent results, but readily accessible: "easy" math
- First timers: do not try to understand it all, but do ask questions

This Tutorial

- Unified view of many SGD variants
- Based on recent results, but readily accessible: "easy" math
- First timers: do not try to understand it all, but do ask questions
- Up-and-comers: identify gaps and target them, also keep asking questions

This Tutorial

- Unified view of many SGD variants
- Based on recent results, but readily accessible: "easy" math
- First timers: do not try to understand it all, but do ask questions
- Up-and-comers: identify gaps and target them, also keep asking questions
- Experts: what new result am I unaware of?

This Tutorial

- Unified view of many SGD variants
- Based on recent results, but readily accessible: "easy" math
- First timers: do not try to understand it all, but do ask questions
- Up-and-comers: identify gaps and target them, also keep asking questions
- Experts: what new result am I unaware of?
- Later: get slides from my website

References

- Key reference text: [Beck, 2017]
- Introductory (deterministic): [Vandenberghe, 2019]
- [Bubeck et al., 2015] is good introduction to the topic
- Related course lecture notes: [Saunders, 2019, Chen, 2019]
- Sebastien Bubeck's blog: [Bubeck, 2019]
- This tutorial is an amalgamation of [Gorbunov et al., 2019], [Bottou et al., 2018], and [Recht et al., 2011]
- Inspired from the tutorial: https://www.youtube.com/watch?v=a05S0kL5u30

Background

Outline

(1) Context
(2) Background

Convexity
Smoothness
Subgradients, projection, and proximal operators
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Convex Functions: Zeroth Order Condition

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

Convex Functions: First and Second Order Conditions

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

Alternatively: eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \geq 0$

Strongly Convex Functions

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is μ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

where $\mu>0$. Alternatively, eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \geq \mu$

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is μ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

where $\mu>0$. Alternatively, eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \geq \mu$
ℓ_{2}-norm square example
The function $f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}$ is 1 -strongly convex

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is μ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

where $\mu>0$. Alternatively, eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \geq \mu$
ℓ_{2}-norm square example
The function $f(\mathrm{x})=\frac{1}{2}\|\mathrm{x}\|^{2}$ is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall
$R(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{a}_{i}^{\top} \mathbf{x}-b_{i}\right)^{2}+\lambda\|\mathbf{x}\|_{1}$.

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is μ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

where $\mu>0$. Alternatively, eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \geq \mu$
ℓ_{2}-norm square example
The function $f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}$ is 1 -strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall
$R(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{a}_{i}^{\top} \mathbf{x}-b_{i}\right)^{2}+\lambda\|\mathbf{x}\|_{1}$.
Show that for this case $\mu=$ smallest eigenvalue of $\frac{1}{N} \sum_{i=1}^{N} \mathbf{a}_{i} \mathbf{a}_{i}^{\top}$

Outline

(1) Context
(2) Background

Convexity
Smoothness
Subgradients, projection, and proximal operators
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Smooth Functions

Smooth Functions: Quadratic Upper Bound

Definition

A function F is L-smooth

$$
f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Alternatively: eigenvalues of $\left(\nabla^{2} F(\mathbf{x})\right) \leq L$

Bregman Divergence

- Bregman divergence over a function F is defined as

$$
D_{F}(\mathbf{x}, \mathbf{y})=F(\mathbf{y})-F(\mathbf{x})-\langle\nabla F(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

Bregman Divergence

- Bregman divergence over a function F is defined as

$$
D_{F}(\mathbf{x}, \mathbf{y})=F(\mathbf{y})-F(\mathbf{x})-\langle\nabla F(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

- Bregman divergence is not symmetric (and not a metric) but satisfies

$$
\frac{\mu}{2}\|\mathbf{x}-\mathbf{y}\|^{2} \leq D_{F}(\mathbf{x}, \mathbf{y}) \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Bregman Divergence

- Bregman divergence over a function F is defined as

$$
D_{F}(\mathbf{x}, \mathbf{y})=F(\mathbf{y})-F(\mathbf{x})-\langle\nabla F(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

- Bregman divergence is not symmetric (and not a metric) but satisfies

$$
\begin{aligned}
\frac{\mu}{2}\|\mathbf{x}-\mathbf{y}\|^{2} & \leq D_{F}(\mathbf{x}, \mathbf{y})
\end{aligned} \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2},
$$

Outline

(1) Context

(2) Background

Convexity
Smoothness
Subgradients, projection, and proximal operators
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Non-smooth convex functions

- If h is non-smooth convex, may still define subgradient $\mathbf{v}(\mathbf{x}) \in \partial h(\mathbf{x})$

Non-smooth convex functions

- If h is non-smooth convex, may still define subgradient $\mathbf{v}(\mathbf{x}) \in \partial h(\mathbf{x})$
- Satisfies first order convexity condition as usual

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{v}(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

Non-smooth convex functions

- If h is non-smooth convex, may still define subgradient $\mathbf{v}(\mathbf{x}) \in \partial h(\mathbf{x})$
- Satisfies first order convexity condition as usual

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{v}(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle
$$

- Optimality condition for $\mathbf{x}^{\star}=\underset{\mathbf{x}}{\arg \min } f(\mathbf{x})$:

$$
\mathbf{v}\left(\mathbf{x}^{\star}\right)=0 \in \partial h\left(\mathbf{x}^{\star}\right)
$$

Projection Operator

- Define the projection over a set \mathcal{X} as

$$
\mathcal{P}_{\mathcal{X}}(\mathbf{x})=\underset{\mathbf{y} \in \mathcal{X}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

Projection Operator

- Define the projection over a set \mathcal{X} as

$$
\mathcal{P}_{\mathcal{X}}(\mathbf{x})=\underset{\mathbf{y} \in \mathcal{X}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
$$

- Equivalent formulation

$$
\mathcal{P}_{\mathcal{X}}(\mathbf{x})=\underset{\mathbf{y}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\mathbf{1}_{\mathcal{X}}(\mathbf{x})
$$

where the indicator function is defined as

$$
\mathbb{1}_{\mathcal{X}}(\mathbf{x})= \begin{cases}0 & \mathrm{x} \in \mathcal{X} \\ \infty & \mathrm{x} \notin \mathcal{X}\end{cases}
$$

Proximal Operator

- Proximal operator generalizes projection

$$
\operatorname{prox}_{h}(\mathbf{x})=\mathbf{y}^{\star}=\underset{\mathbf{y}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+h(\mathbf{x})
$$

Proximal Operator

- Proximal operator generalizes projection

$$
\operatorname{prox}_{h}(\mathbf{x})=\mathbf{y}^{\star}=\underset{\mathbf{y}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+h(\mathbf{x})
$$

- Useful property: differentiate and equate to zero

$$
\mathbf{y}^{\star}-\mathbf{x}+\mathbf{v}\left(\mathbf{y}^{\star}\right)=0
$$

where $\mathbf{y}^{\star}=\operatorname{prox}_{h}(\mathbf{x})$ and $\mathbf{v}\left(\mathbf{y}^{\star}\right) \in \partial h\left(\mathbf{y}^{\star}\right)$

Vanilla Stochastic Gradient Descent: Large N

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent
Performance of Stochastic Grandient Descent
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Gradient Descent vs. Stochastic Gradient Descent

- Gradient descent for solving (\mathcal{P})

$$
\mathbf{x}_{t+1}=\mathcal{P}_{\mathcal{X}}\left(\mathbf{x}_{t}-\frac{\eta}{N} \sum_{i=1}^{N} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)\right)
$$

- N oracle calls per iteration

Gradient Descent vs. Stochastic Gradient Descent

- Gradient descent for solving (\mathcal{P})

$$
\mathbf{x}_{t+1}=\mathcal{P}_{\mathcal{X}}\left(\mathbf{x}_{t}-\frac{\eta}{N} \sum_{i=1}^{N} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)\right)
$$

- N oracle calls per iteration
- Stochastic gradient descent for solving (\mathcal{P})

$$
\mathbf{x}_{t+1}=\mathcal{P}_{\mathcal{X}}\left(\mathbf{x}_{t}-\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right)
$$

where $i_{t} \in\{1, \ldots, N\}$ is a random number.

Gradient Descent vs. Stochastic Gradient Descent

- Gradient descent for solving (\mathcal{P})

$$
\mathbf{x}_{t+1}=\mathcal{P}_{\mathcal{X}}\left(\mathbf{x}_{t}-\frac{\eta}{N} \sum_{i=1}^{N} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)\right)
$$

- N oracle calls per iteration
- Stochastic gradient descent for solving (\mathcal{P})

$$
\mathbf{x}_{t+1}=\mathcal{P}_{\mathcal{X}}\left(\mathbf{x}_{t}-\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right)
$$

where $i_{t} \in\{1, \ldots, N\}$ is a random number.

- Descent direction on average: expectation w.r.t. i_{t}

$$
\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}_{t}, \xi_{i}\right)=\nabla F\left(\mathbf{x}_{t}\right)
$$

Intuition

- SGD more efficient at accessing data

Intuition

- SGD more efficient at accessing data
- handles redundancy in dataset better

Intuition

- SGD more efficient at accessing data
- handles redundancy in dataset better
- consider lasso example: features $\mathbf{a}_{i} \in$ $\operatorname{span}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \mathbf{a}^{(3)}\right)$

History of SGD

- Given (X, Y) observations, let $\Phi(\mathrm{X})$ be a transformation
- SGD has been applied to specific problems

Algorithm	Loss	Gradient/Subgradient
LMS (Widrow-Hoff'60)	$\frac{1}{2}\left(\mathbf{Y}-\Phi(\mathbf{X})^{\top} \mathbf{x}\right)^{2}$	$\left(\Phi(\mathbf{X})^{\top} \mathbf{x}-\mathrm{Y}\right) \Phi(\mathbf{X})$

History of SGD

- Given (X, Y) observations, let $\Phi(\mathrm{X})$ be a transformation
- SGD has been applied to specific problems

Algorithm	Loss	Gradient/Subgradient
LMS (Widrow-Hoff'60)	$\frac{1}{2}\left(\mathrm{Y}-\Phi(\mathrm{X})^{\top} \mathbf{x}\right)^{2}$	$\left(\Phi(\mathrm{X})^{\top} \mathbf{x}-\mathrm{Y}\right) \Phi(\mathrm{X})$
Perceptron (Rosenblatt'57)	$[-\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle]_{+}$	$-\mathrm{Y} \Phi(\mathrm{X}) \mathbb{1}_{\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle \leq 0}$

History of SGD

- Given (X, Y) observations, let $\Phi(\mathrm{X})$ be a transformation
- SGD has been applied to specific problems

Algorithm	Loss	Gradient/Subgradient		
LMS (Widrow-Hoff'60)	$\frac{1}{2}\left(\mathrm{Y}-\Phi(\mathrm{X})^{\top} \mathbf{x}\right)^{2}$	$\left(\Phi(\mathrm{X})^{\top} \mathbf{x}-\mathrm{Y}\right) \Phi(\mathrm{X})$		
Perceptron (Rosenblatt'57)	$[-\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle]_{+}$	$-\mathrm{Y} \Phi(\mathrm{X}) \mathbb{1}_{\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle \leq 0}$		
SVM (Cortes-Vapnik'95)	$\frac{\lambda}{2}\\|\mathbf{x}\\|^{2}+[1-\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle]_{+}$	$\lambda \mathbf{x}-\mathrm{Y} \Phi(\mathrm{X}) \mathbb{1}_{\mathrm{Y}\langle\Phi(\mathrm{X}), \mathbf{x}\rangle \leq 1}$		

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent
Performance of Stochastic Grandient Descent
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d
(6) Conclusion

Assumptions

L-smoothness

$$
D_{F}(\mathbf{x}, \mathbf{y}) \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Assumptions

L-smoothness

$$
D_{F}(\mathbf{x}, \mathbf{y}) \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

μ-convexity

$$
D_{F}(\mathbf{x}, \mathbf{y}) \geq \frac{\mu}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Assumptions

L-smoothness

$$
D_{F}(\mathbf{x}, \mathbf{y}) \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

μ-convexity

$$
D_{F}(\mathbf{x}, \mathbf{y}) \geq \frac{\mu}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Bounded Variance

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}, \xi_{i_{t}}\right)\right\|^{2}\right] & \leq \sigma^{2}+c\|\nabla F(\mathbf{x})\|^{2} \\
\Rightarrow \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right] & \leq \sigma^{2}
\end{aligned}
$$

provided $\nabla F\left(\mathrm{x}^{\star}\right)=0$ and $c \geq 1$.
σ^{2} is the inherent data variance

Strong Convexity and Smoothness: Condition Number

(small $\kappa=L / \mu$)

(large $\kappa=L / \mu$)

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])
For L-smooth, μ-convex functions, SGD incurs oracle complexity of $\mathcal{O}\left(\frac{L}{\mu \epsilon}\right)$.

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])
For L-smooth, μ-convex functions, SGD incurs oracle complexity of $\mathcal{O}\left(\frac{L}{\mu \epsilon}\right)$.

For simplicity, consider unconstrained version: $\mathbf{x}_{t+1}-\mathbf{x}_{t}=\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)$
Proof: Step 1. Quadratic upper bound (L-smootheness):

$$
F\left(\mathrm{x}_{t+1}\right) \leq F\left(\mathrm{x}_{t}\right)+\left\langle\nabla F\left(\mathrm{x}_{t}\right), \mathrm{x}_{t+1}-\mathrm{x}_{t}\right\rangle+\frac{L}{2}\left\|\mathrm{x}_{t+1}-\mathrm{x}_{t}\right\|^{2}
$$

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])
For L-smooth, μ-convex functions, SGD incurs oracle complexity of $\mathcal{O}\left(\frac{L}{\mu \epsilon}\right)$.

For simplicity, consider unconstrained version: $\mathbf{x}_{t+1}-\mathbf{x}_{t}=\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)$
Proof: Step 1. Quadratic upper bound (L-smootheness):

$$
\begin{aligned}
F\left(\mathbf{x}_{t+1}\right) & \leq F\left(\mathbf{x}_{t}\right)+\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{x}_{t+1}-\mathbf{x}_{t}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{t+1}-\mathbf{x}_{t}\right\|^{2} \\
& =F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \nabla f\left(\mathbf{x}_{t}, \xi_{i t}\right)\right\rangle+\frac{\eta^{2} L}{2}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}
\end{aligned}
$$

Update Equation

$$
\mathbf{x}_{t+1}-\mathbf{x}_{t}=\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)
$$

SGD: Strongly Convex + Smooth

Step 2. Take expectation

$$
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right] \leq F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right]
$$

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use $\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\nabla F\left(\mathbf{x}_{t}\right)$

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right] & \leq F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& =F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right]
\end{aligned}
$$

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use $\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\nabla F\left(\mathbf{x}_{t}\right)$

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right] & \leq F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& =F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& \leq F\left(\mathbf{x}_{t}\right)-\eta\left(1-\frac{\eta L c}{2}\right)\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}+\frac{\eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& \leq \sigma^{2}+c\|\nabla F(\mathbf{x})\|^{2}
\end{aligned}
$$

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use $\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\nabla F\left(\mathbf{x}_{t}\right)$

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right] & \leq F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& =F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& \leq F\left(\mathbf{x}_{t}\right)-\eta\left(1-\frac{\eta L c}{2}\right)\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq F\left(\mathbf{x}_{t}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}+\frac{\eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

$\eta L c<1$

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use $\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\nabla F\left(\mathbf{x}_{t}\right)$

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right] & \leq F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& =F\left(\mathbf{x}_{t}\right)-\eta\left\langle\nabla F\left(\mathbf{x}_{t}\right), \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\frac{\eta^{2} L}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& \leq F\left(\mathbf{x}_{t}\right)-\eta\left(1-\frac{\eta L c}{2}\right)\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq F\left(\mathbf{x}_{t}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}+\frac{\eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

SGD: Strongly Convex + Smooth

Step 3. Relate $\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}$ with optimality gap:
subtract $F\left(\mathrm{x}^{\star}\right)$, and use strong convexity

$$
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right]-F\left(\mathbf{x}^{\star}\right) \leq F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{\eta^{2} \sigma^{2} L}{2}
$$

SGD: Strongly Convex + Smooth

Step 3. Relate $\left\|\nabla F\left(\mathrm{x}_{t}\right)\right\|^{2}$ with optimality gap:
subtract $F\left(\mathrm{x}^{\star}\right)$, and use strong convexity

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right]-F\left(\mathbf{x}^{\star}\right) \leq F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq(1-\mu \eta)\left(F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)\right)+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \frac{1}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \geq \mu\left(F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)\right)
\end{aligned}
$$

SGD: Strongly Convex + Smooth

Step 3. Relate $\left\|\nabla F\left(\mathrm{x}_{t}\right)\right\|^{2}$ with optimality gap:
subtract $F\left(\mathbf{x}^{\star}\right)$, and use strong convexity

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right]-F\left(\mathbf{x}^{\star}\right) & \leq F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq(1-\mu \eta)\left(F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)\right)+\frac{\eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

Set $\Delta_{t}=\mathbb{E}\left[F\left(\mathbf{x}_{t+1}\right)-F\left(\mathbf{x}^{\star}\right)\right]$

SGD: Strongly Convex + Smooth

Step 3. Relate $\left\|\nabla F\left(\mathrm{x}_{t}\right)\right\|^{2}$ with optimality gap:
subtract $F\left(\mathrm{x}^{\star}\right)$, and use strong convexity

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[F\left(\mathbf{x}_{t+1}\right)\right]-F\left(\mathbf{x}^{\star}\right) & \leq F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq(1-\mu \eta)\left(F\left(\mathbf{x}_{t}\right)-F\left(\mathbf{x}^{\star}\right)\right)+\frac{\eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

Set $\Delta_{t}=\mathbb{E}\left[F\left(\mathbf{x}_{t+1}\right)-F\left(\mathbf{x}^{\star}\right)\right]$
One-step inequality

$$
\Delta_{t+1} \leq(1-\mu \eta) \Delta_{t}+\frac{\eta^{2} \sigma^{2} L}{2}
$$

SGD: Strongly Convex + Smooth

One-step inequality

$$
\Delta_{t+1} \leq(1-\mu \eta) \Delta_{t}+\frac{\eta^{2} \sigma^{2} L}{2}
$$

Step 4. Obtain final inequality:

SGD: Strongly Convex + Smooth

One-step inequality

$$
\Delta_{t+1} \leq(1-\mu \eta) \Delta_{t}+\frac{\eta^{2} \sigma^{2} L}{2}
$$

Step 4. Obtain final inequality:
Apply recursively over $t=1, \ldots, T$:

$$
\Delta_{T+1} \leq(1-\mu \eta)^{T} \Delta_{1}+\frac{\eta^{2} \sigma^{2} L}{2} \frac{1}{\mu \eta}
$$

SGD: Strongly Convex + Smooth

Final inequality

$$
\Delta_{T+1} \leq(1-\mu \eta)^{T} \Delta_{1}+\frac{\eta \sigma^{2} L}{2 \mu}
$$

Step 5. Pick η :

SGD: Strongly Convex + Smooth

Final inequality

$$
\Delta_{T+1} \leq(1-\mu \eta)^{T} \Delta_{1}+\frac{\eta \sigma^{2} L}{2 \mu}
$$

Step 5. Pick η :

- Equate each term to $\epsilon \Rightarrow \eta=\mathcal{O}\left(\frac{\mu \epsilon}{\sigma^{2} L}\right)$ (ignore unimportant constants)

SGD: Strongly Convex + Smooth

Final inequality

$$
\Delta_{T+1} \leq(1-\mu \eta)^{T} \Delta_{1}+\frac{\eta \sigma^{2} L}{2 \mu}
$$

Step 5. Pick η :

- Equate each term to $\epsilon \Rightarrow \eta=\mathcal{O}\left(\frac{\mu \epsilon}{\sigma^{2} L}\right)$ (ignore unimportant constants)
- Solve for $T:(1-\mu \eta)^{T}=\epsilon$ and use $\log (1-\mu \eta) \approx-\mu \eta$ to obtain

$$
T=\mathcal{O}\left(\frac{\sigma^{2} L}{\mu \epsilon} \log \left(\frac{1}{\epsilon}\right)\right) \approx \mathcal{O}\left(\frac{\sigma^{2} L}{\mu \epsilon}\right)
$$

Practical Considerations

- With fixed η, SGD converges fast, but slows when optimality gap is $\mathcal{O}(\eta)$

Practical Considerations

- With fixed η, SGD converges fast, but slows when optimality gap is $\mathcal{O}(\eta)$
- Can select a diminishing step-size to obtain slight improvement

Practical Considerations

- With fixed η, SGD converges fast, but slows when optimality gap is $\mathcal{O}(\eta)$
- Can select a diminishing step-size to obtain slight improvement
- Other approach: half the step-size when progress stalls [Bottou et al., 2018]

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)
For L-smooth functions, SGD incurs oracle complexity of $\mathcal{O}\left(\frac{L}{\epsilon^{2}}\right)$.

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)
For L-smooth functions, SGD incurs oracle complexity of $\mathcal{O}\left(\frac{L}{\epsilon^{2}}\right)$.

Proof for unconstrained version: $\mathbf{x}_{t+1}-\mathbf{x}_{t}=\eta \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)$.
Recall from L-smoothness and $\eta L c<1$ (here: $\Delta_{t}=\mathbb{E}\left[F\left(\mathbf{x}_{t}\right)\right]-F\left(\mathrm{x}^{\star}\right) \geq 0$):

$$
\begin{aligned}
\Delta_{t+1} & \leq \Delta_{t}-\frac{\eta}{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{\eta^{2} \sigma^{2} L}{2} \\
& \leq \Delta_{1}-\frac{\eta}{2} \sum_{t=1}^{T}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}+\frac{T \eta^{2} \sigma^{2} L}{2}
\end{aligned}
$$

SGD: Smooth

- Rearrange to obtain:

$$
\min _{1 \leq t \leq T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}\right] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}\right] \leq \eta \sigma^{2} L+\frac{2 \Delta_{1}}{\eta T}
$$

SGD: Smooth

- Rearrange to obtain:

$$
\min _{1 \leq t \leq T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}\right] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|_{2}^{2}\right] \leq \eta \sigma^{2} L+\frac{2 \Delta_{1}}{\eta T}
$$

- Equate each term to ϵ to obtain $\eta=\frac{\epsilon}{\sigma^{2} L}$ and

$$
T=\mathcal{O}\left(\frac{\sigma^{2} L}{\epsilon^{2}}\right)
$$

oracle calls required to reach close to a first order stationary point

Variance-Reduced SGD: Moderate N

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent

Figure 2: Stochastic Gradient Descent

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent

Figure 2: Stochastic Gradient Descent

- Standard gradient descent requires $\mathcal{O}\left(\frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)$ iterations

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent

Figure 2: Stochastic Gradient Descent

- Standard gradient descent requires $\mathcal{O}\left(\frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)$ iterations
- But each iteration requires N oracle calls: so oracle complexity is $\mathcal{O}\left(\frac{L N}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)$

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent

Figure 2: Stochastic Gradient Descent

- Standard gradient descent requires $\mathcal{O}\left(\frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)$ iterations
- But each iteration requires N oracle calls: so oracle complexity is $\mathcal{O}\left(\frac{L N}{\mu} \log \left(\frac{1}{\epsilon}\right)\right)$
- In contrast, SGD requires $\mathcal{O}\left(\frac{L}{\mu \epsilon}\right)$ oracle calls: independent of N

Speeding up SGD?

Speeding up SGD?

Variance Reduction

- We consider the generic SGD algorithm:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \mathbf{g}_{t}
$$

where \mathbf{g}_{t} is an unbiased gradient approximation

Variance Reduction

- We consider the generic SGD algorithm:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \mathbf{g}_{t}
$$

where \mathbf{g}_{t} is an unbiased gradient approximation

- Example:

$$
\begin{align*}
& \mathbf{g}_{t}=\frac{1}{N} \sum_{i=1}^{N} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right) \tag{GD}\\
& \mathbf{g}_{t}=\nabla f\left(\mathbf{x}_{t}, \xi_{i t}\right) \tag{SGD}
\end{align*}
$$

(mini-batch)

Variance Reduction

- We consider the generic SGD algorithm:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \mathbf{g}_{t}
$$

where \mathbf{g}_{t} is an unbiased gradient approximation

- Example:

$$
\begin{align*}
& \mathbf{g}_{t}=\frac{1}{N} \sum_{i=1}^{N} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right) \tag{GD}\\
& \mathbf{g}_{t}=\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) \tag{SGD}\\
& \mathbf{g}_{t}=\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)
\end{align*}
$$

(mini-batch)

Effect of Mini Batching

- Consider b random variables $\left\{\mathrm{X}_{i}\right\}_{i=1}^{b}$ such that $\mathbb{V}_{i}\left(\mathrm{X}_{i}\right)=\sigma^{2}$

Effect of Mini Batching

- Consider b random variables $\left\{\mathrm{X}_{i}\right\}_{i=1}^{b}$ such that $\mathbb{V}_{i}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- Then it holds that $\mathbb{V}_{i}\left(\frac{1}{b} \sum_{i} \mathrm{X}_{i}\right)=\frac{\sigma^{2}}{b}$

Effect of Mini Batching

- Consider b random variables $\left\{X_{i}\right\}_{i=1}^{b}$ such that $\mathbb{V}_{i}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- Then it holds that $\mathbb{V}_{i}\left(\frac{1}{b} \sum_{i} \mathrm{X}_{i}\right)=\frac{\sigma^{2}}{b}$
- So

$$
\# \text { of iterations }=\mathcal{O}\left(\frac{L}{\mu b} \log \left(\frac{1}{\epsilon}\right)\right)
$$

Effect of Mini Batching

- Consider b random variables $\left\{\mathrm{X}_{i}\right\}_{i=1}^{b}$ such that $\mathbb{V}_{i}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- Then it holds that $\mathbb{V}_{i}\left(\frac{1}{b} \sum_{i} \mathrm{X}_{i}\right)=\frac{\sigma^{2}}{b}$
- So

$$
\# \text { of iterations }=\mathcal{O}\left(\frac{L}{\mu b} \log \left(\frac{1}{\epsilon}\right)\right)
$$

- But each iteration requires b oracle calls: oracle complexity still same

Effect of Mini Batching

- Consider b random variables $\left\{\mathrm{X}_{i}\right\}_{i=1}^{b}$ such that $\mathbb{V}_{i}\left(\mathrm{X}_{i}\right)=\sigma^{2}$
- Then it holds that $\mathbb{V}_{i}\left(\frac{1}{b} \sum_{i} \mathrm{X}_{i}\right)=\frac{\sigma^{2}}{b}$
- So

$$
\# \text { of iterations }=\mathcal{O}\left(\frac{L}{\mu b} \log \left(\frac{1}{\epsilon}\right)\right)
$$

- But each iteration requires b oracle calls: oracle complexity still same
- In practice: lesser wall-clock time if gradients can be calculated in parallel

Intuition: Shifted SGD

- Consider the loss functions

$$
\phi\left(\mathbf{x}, \xi_{i}\right)=f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}
$$

so that the overall objective remains the same, i.e.,

$$
\Phi(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}=F(\mathbf{x})
$$

provided that $\sum_{i} \mathbf{a}_{i}=0$.

Intuition: Shifted SGD

- Consider the loss functions

$$
\phi\left(\mathbf{x}, \xi_{i}\right)=f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}
$$

so that the overall objective remains the same, i.e.,

$$
\Phi(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}=F(\mathbf{x})
$$

provided that $\sum_{i} \mathbf{a}_{i}=0$.

- Note that $\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}$

Intuition: Shifted SGD

- Consider the loss functions

$$
\phi\left(\mathbf{x}, \xi_{i}\right)=f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}
$$

so that the overall objective remains the same, i.e.,

$$
\Phi(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}^{\top} \mathbf{x}=F(\mathbf{x})
$$

provided that $\sum_{i} \mathbf{a}_{i}=0$.

- Note that $\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}$
- Recall that SGD performance depends on variance at \mathbf{x}^{\star}

$$
\mathbb{V}_{i_{t}}\left[\left\|\nabla f\left(\mathrm{x}^{\star}, \xi_{i_{t}}\right)\right\|\right] \leq \sigma^{2}
$$

Intuition: Shifted SGD

Shifted gradient

$$
\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}
$$

- Goal: select \mathbf{a}_{i} so that $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]$ is small

Intuition: Shifted SGD

Shifted gradient

$$
\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}
$$

- Goal: select \mathbf{a}_{i} so that $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]$ is small
- Hypothetically, $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]=0$ requires

$$
\mathbf{a}_{i}=\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)
$$

Intuition: Shifted SGD

Shifted gradient

$$
\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}
$$

- Goal: select \mathbf{a}_{i} so that $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]$ is small
- Hypothetically, $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]=0$ requires

$$
\mathbf{a}_{i}=\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)
$$

- Not practical as x^{\star} unknown

Intuition: Shifted SGD

Shifted gradient

$$
\nabla \phi\left(\mathbf{x}, \xi_{i}\right)=\nabla f\left(\mathbf{x}, \xi_{i}\right)-\mathbf{a}_{i}
$$

- Goal: select \mathbf{a}_{i} so that $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]$ is small
- Hypothetically, $\mathbb{V}_{i_{t}}\left[\nabla \phi\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right]=0$ requires

$$
\mathbf{a}_{i}=\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)
$$

- Not practical as x^{\star} unknown
- Clue: availability of estimates of $\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)$ can help!

Unified Theory of Gradient Approximation

- A unified approach to approximating gradients [Gorbunov et al., 2019]

Unified Theory of Gradient Approximation

- A unified approach to approximating gradients [Gorbunov et al., 2019]
- Suppose the unbiased gradient approximation g_{t} satisfies:

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2} \\
\mathbb{E}_{t}\left[\sigma_{t+1}^{2}\right] & \leq(1-\rho) \sigma_{t}^{2}+2 C D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

where A, B, C, σ_{t}^{2}, and $\rho>0$ are some constants (depend on L, μ, N) and $\mathbb{E}_{t}[\cdot]$ is expectation with respect to the random data index at iteration t

Unified Theory of Gradient Approximation

- A unified approach to approximating gradients [Gorbunov et al., 2019]
- Suppose the unbiased gradient approximation g_{t} satisfies:

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2} \\
\mathbb{E}_{t}\left[\sigma_{t+1}^{2}\right] & \leq(1-\rho) \sigma_{t}^{2}+2 C D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

where A, B, C, σ_{t}^{2}, and $\rho>0$ are some constants (depend on L, μ, N) and $\mathbb{E}_{t}[\cdot]$ is expectation with respect to the random data index at iteration t

Lemma (Simplified version of [Gorbunov et al., 2019])

The following rate result holds:

$$
\mathbb{E}\left[\left\|\mathbf{x}_{T}-\mathbf{x}^{\star}\right\|^{2}\right] \leq\left(1-\frac{\rho}{2} \min \left\{\frac{2 \mu}{A \rho+2 B C}, 1\right\}\right)^{T} B_{0}
$$

where B_{0} depends only on the initialization.

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])
The following rate result holds:

$$
\mathbb{E}\left[\left\|\mathbf{x}_{T}-\mathbf{x}^{\star}\right\|^{2}\right] \leq\left(1-\frac{\rho}{2} \min \left\{\frac{2 \mu}{A \rho+2 B C}, 1\right\}\right)^{T} B_{0}
$$

where B_{0} depends only on the initialization.

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])
The following rate result holds:

$$
\mathbb{E}\left[\left\|\mathbf{x}_{T}-\mathbf{x}^{\star}\right\|^{2}\right] \leq\left(1-\frac{\rho}{2} \min \left\{\frac{2 \mu}{A \rho+2 B C}, 1\right\}\right)^{T} B_{0}
$$

where B_{0} depends only on the initialization.

Proof: Step 1: Expand the squares

$$
\begin{aligned}
\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2} & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}-\eta \mathbf{g}_{t}\right\|^{2} \\
& =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \mathbf{g}_{t}\right\rangle+\eta^{2}\left\|\mathbf{g}_{t}\right\|^{2}
\end{aligned}
$$

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])
The following rate result holds:

$$
\mathbb{E}\left[\left\|\mathbf{x}_{T}-\mathbf{x}^{\star}\right\|^{2}\right] \leq\left(1-\frac{\rho}{2} \min \left\{\frac{2 \mu}{A \rho+2 B C}, 1\right\}\right)^{T} B_{0}
$$

where B_{0} depends only on the initialization.

Proof: Step 1: Expand the squares and use unbiased property $\mathbb{E}_{t}\left[\mathbf{g}_{t}\right]=\nabla F\left(\mathbf{x}_{t}\right)$:

$$
\begin{aligned}
\left\|\mathrm{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2} & =\left\|\mathrm{x}_{t}-\mathbf{x}^{\star}-\eta \mathbf{g}_{t}\right\|^{2} \\
& =\left\|\mathrm{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \mathrm{g}_{t}\right\rangle+\eta^{2}\left\|\mathbf{g}_{t}\right\|^{2} \\
\Rightarrow \mathbb{E}_{t}\left[\left\|\mathrm{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathrm{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Variance Reduced SGD: Proof

$$
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right]=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
$$

Variance Reduced SGD: Proof

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \\
& \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Step 2: Use Strong Convexity

$$
\begin{aligned}
& D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+D_{F}\left(\mathbf{x}^{\star}, \mathbf{x}_{t}\right)= \\
& \left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle \geq \mu\|\mathbf{x}-\mathbf{y}\|^{2}
\end{aligned}
$$

Variance Reduced SGD: Proof

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \\
& \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Step 3: Use assumed bounds $\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2}$

$$
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+2 \eta(A \eta-1) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \eta^{2} \sigma_{t}^{2}
$$

Variance Reduced SGD: Proof

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \\
& \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Step 3: Use assumed bounds $\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2}$

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+2 \eta(A \eta-1) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \eta^{2} \sigma_{t}^{2} \\
& \frac{2 B \eta^{2}}{\rho} \mathbb{E}_{t}\left[\sigma_{t+1}^{2}\right] \leq \frac{2 B \eta^{2}}{\rho}(1-\rho) \sigma_{t}^{2}+\frac{2 B \eta^{2}}{\rho} 2 C D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

Variance Reduced SGD: Proof

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \\
& \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Step 3: Use assumed bounds $\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2}$

$$
+
$$

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+2 \eta(A \eta-1) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \eta^{2} \sigma_{t}^{2} \\
& \frac{2 B \eta^{2}}{\rho} \mathbb{E}_{t}\left[\sigma_{t+1}^{2}\right] \leq \frac{2 B \eta^{2}}{\rho}(1-\rho) \sigma_{t}^{2}+\frac{2 B \eta^{2}}{\rho} 2 C D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t+1}^{2}\right] \\
& \leq(1-\mu \eta)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+\left(1-\frac{\rho}{2}\right) \frac{2 B \eta^{2}}{\rho} \sigma_{t}^{2}+2 \eta^{2}\left(\frac{A \rho+2 B C}{\rho}-\frac{1}{\eta}\right) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

Variance Reduced SGD: Proof

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] & =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\mathbf{x}_{t}-\mathbf{x}^{\star}, \nabla F\left(\mathbf{x}_{t}\right)\right\rangle+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \\
& \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+\eta^{2} \mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{aligned}
$$

Step 3: Use assumed bounds $\mathbb{E}_{t}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 A D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \sigma_{t}^{2}$

$$
+
$$

$$
\begin{gathered}
\mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right] \leq(1-\eta \mu)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+2 \eta(A \eta-1) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)+B \eta^{2} \sigma_{t}^{2} \\
\frac{2 B \eta^{2}}{\rho} \mathbb{E}_{t}\left[\sigma_{t+1}^{2}\right] \leq \frac{2 B \eta^{2}}{\rho}(1-\rho) \sigma_{t}^{2}+\frac{2 B \eta^{2}}{\rho} 2 C D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{gathered}
$$

$$
\eta=\frac{\rho}{A \rho+2 B C}
$$

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t+1}^{2}\right] \\
& \leq(1-\mu \eta)\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+\left(1-\frac{\rho}{2}\right) \frac{2 B \eta^{2}}{\rho} \sigma_{t}^{2}+2 \eta^{2}\left(\frac{A \rho+2 B C}{\rho}-\frac{1}{\eta}\right) D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

Variance Reduced SGD: Proof

Take full expectation

$$
\mathbb{E}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t+1}^{2}\right] \leq\left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right) \mathbb{E}\left[\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t}^{2}\right]
$$

Variance Reduced SGD: Proof

Take full expectation and apply recursively

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t+1}^{2}\right] & \leq\left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right) \mathbb{E}\left[\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t}^{2}\right] \\
& \leq\left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right)^{t} \mathbb{E}\left[\left\|\mathbf{x}_{0}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{0}^{2}\right]
\end{aligned}
$$

Variance Reduced SGD: Proof

Take full expectation and apply recursively

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t+1}^{2}\right] & \leq\left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right) \mathbb{E}\left[\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{t}^{2}\right] \\
& \leq\left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right)^{t} \mathbb{E}\left[\left\|\mathbf{x}_{0}-\mathbf{x}^{\star}\right\|^{2}+\frac{2 B \eta^{2}}{\rho} \sigma_{0}^{2}\right]
\end{aligned}
$$

Equivalently, to get $\mathbb{E}\left[\left\|\mathbf{x}_{T+1}-\mathbf{x}^{\star}\right\|^{2}\right] \leq \epsilon$ needs

$$
T=\frac{\log \left(\frac{1}{\epsilon}\right)}{-\log \left(1-\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}\right)} \approx \frac{\log \left(\frac{1}{\epsilon}\right)}{\min \left\{\frac{\mu \rho}{A \rho+2 B C}, \frac{\rho}{2}\right\}}
$$

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N

SAGA and SVRG
State-of-the-art and Open Problems
(5) High-dimensional problems: large d
(6) Conclusion

SAGA

Pick i_{t} at random from $\{1,2, \ldots, N\}$

$$
\mathbf{h}_{t+1}^{j}= \begin{cases}\mathbf{h}_{t}^{j} & j \neq i_{t} \\ \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) & j=i_{t}\end{cases}
$$

SAGA

Pick i_{t} at random from $\{1,2, \ldots, N\}$

$$
\begin{aligned}
\mathbf{h}_{t+1}^{j} & = \begin{cases}\mathbf{h}_{t}^{j} & j \neq i_{t} \\
\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) & j=i_{t}\end{cases} \\
\mathbf{g}_{t} & =\mathbf{h}_{t+1}^{i_{t}}-\mathbf{h}_{t}^{i_{t}}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i}
\end{aligned}
$$

\mathbf{h}_{t}^{1}
\mathbf{h}_{t}^{2}
h_{t}^{3}
\mathbf{h}_{t}^{N}
$\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i}$

SAGA Approximation is Unbiased

Unbiased?

$$
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right]=\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t+1}^{i_{t}}\right]-\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t}^{i_{t}}\right]+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i}
$$

SAGA Approximation is Unbiased

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right]=\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t+1}^{i_{t}}\right]-\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t}^{i_{t}}\right]+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i} \\
& \\
& =\nabla F\left(\mathbf{x}_{t}\right) \\
& \left.\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]=\nabla F\left(\mathbf{x}_{t}\right)\right]
\end{aligned}
$$

SAGA Approximation is Unbiased

$$
\begin{array}{r}
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right]=\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t+1}^{i_{t}}\right]-\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t}^{i_{t}}\right]+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i} \\
=\nabla F\left(\mathbf{x}_{t}\right)-\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i} \\
\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t}^{i_{t}}\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i}
\end{array}
$$

SAGA Approximation is Unbiased

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right] & =\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t+1}^{i_{t}}\right]-\mathbb{E}_{i_{t}}\left[\mathbf{h}_{t}^{i_{t}}\right]+\frac{1}{N} \sum_{i=1}^{N} \mathbf{h}_{t}^{i} \\
& =\nabla F\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

SAGA Approximation: Variance

Since $\nabla F\left(\mathbf{x}^{\star}\right)=0$, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{array}{rcccc}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}\right] \\
& =\mathbf{Y} & - & \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array}
$$

SAGA Approximation: Variance

Since $\nabla F\left(\mathbf{x}^{\star}\right)=0$, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}\right] \\
& =\mathrm{Y} \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}^{i_{t}}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]
\end{aligned}
$$

$$
\mathbb{E}\left[\|\mathrm{X}+\mathrm{Y}-\mathbb{E}[\mathrm{Y}]\|^{2}\right] \leq 2 \mathbb{E}\left[\|\mathrm{X}\|^{2}\right]+2 \mathbb{E}\left[\|\mathrm{Y}\|^{2}\right]
$$

SAGA Approximation: Variance

Since $\nabla F\left(\mathbf{x}^{\star}\right)=0$, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{aligned}
& \mathbf{g}_{t}=\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}\right] \\
&=\begin{array}{c}
\mathbf{Y} \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{array} \\
&\left.\leq 2 \mathbb{E}_{i_{i_{t}}}[\| \nabla]\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right) \|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}^{i_{t}}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
&=\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\mathbf{h}_{t}^{i}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}
\end{aligned}
$$

SAGA Approximation: Variance

Since $\nabla F\left(\mathbf{x}^{\star}\right)=0$, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{aligned}
& \mathbf{g}_{t}=\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}\right] \\
& =\begin{array}{llllll}
\mathrm{X} & + & \mathrm{Y} & - & \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array} \\
& \mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}^{i_{t}}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
& =\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\mathbf{h}_{t}^{i}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2} \\
& \leq 4 L D_{F}\left(\mathrm{x}_{t}, \mathrm{x}^{\star}\right) \quad+2 \sigma_{t}^{2} \\
& L \text {-smoothness } \\
& \frac{1}{2 L}\left\|\nabla f\left(\mathrm{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathrm{x}^{\star}, \xi_{i}\right)\right\|^{2} \leq \\
& f\left(\mathbf{x}, \xi_{i}\right)-f\left(\mathbf{x}^{\star}, \xi_{i}\right)-\left\langle\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right), \mathbf{x}-\mathbf{x}^{\star}\right\rangle
\end{aligned}
$$

SAGA Approximation: Variance

Since $\nabla F\left(\mathbf{x}^{\star}\right)=0$, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{aligned}
& \mathbf{g}_{t}=\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\mathbf{h}_{t}^{i_{t}}\right] \\
&=\begin{array}{c}
\mathbf{Y} \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right]
\end{array} \\
& \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}^{i_{t}}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right] \\
&=\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\mathbf{h}_{t}^{i}-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2} \\
& \leq 2 \sigma_{t}^{2} \\
& 4 L D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right) \\
&
\end{aligned}
$$

SAGA Approximation: σ_{t}^{2}

Recall that

$$
\mathbf{h}_{t+1}^{j}= \begin{cases}\mathbf{h}_{t}^{j} & j \neq i_{t} \text { with prob. }\left(1-\frac{1}{N}\right) \\ \nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) & j=i_{t} \text { with prob. } \frac{1}{N}\end{cases}
$$

SAGA Approximation: σ_{t}^{2}

Recall that

$$
\begin{gathered}
\mathbf{h}_{t+1}^{j}= \begin{cases}\mathbf{h}_{t}^{j} & j \neq i_{t} \text { with prob. }\left(1-\frac{1}{N}\right) \\
\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) & j=i_{t} \text { with prob. } \frac{1}{N}\end{cases} \\
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right]=\frac{1}{N} \sum_{j=1}^{N} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}^{j}-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
=\frac{1}{N} \sum_{j=1}^{N}\left[\left(1-\frac{1}{N}\right)\left\|\mathbf{h}_{t}^{j}-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}+\frac{1}{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
\leq \quad \begin{array}{l}
\left(1-\frac{1}{N}\right) \sigma_{t}^{2} \\
\quad \begin{array}{l}
\frac{2 L}{N} D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{array} \\
\frac{1}{2 L}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2} \leq \\
f\left(\mathbf{x}, \xi_{i}\right)-f\left(\mathbf{x}^{\star}, \xi_{i}\right)-\left\langle\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right), \mathbf{x}-\mathbf{x}^{\star}\right\rangle
\end{array}
\end{gathered}
$$

SAGA Approximation: σ_{t}^{2}

Recall that

$$
\begin{gathered}
\mathbf{h}_{t+1}^{j}= \begin{cases}\mathbf{h}_{t}^{j} & j \neq i_{t} \text { with prob. }\left(1-\frac{1}{N}\right) \\
\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right) & j=i_{t} \text { with prob. } \frac{1}{N}\end{cases} \\
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right]=\frac{1}{N} \sum_{j=1}^{N} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}^{j}-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
=\frac{1}{N} \sum_{j=1}^{N}\left[\left(1-\frac{1}{N}\right)\left\|\mathbf{h}_{t}^{j}-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}+\frac{1}{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
\leq \quad\left(1-\frac{1}{N}\right) \sigma_{t}^{2} \\
\rho=\frac{2 L}{N} D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{gathered}
$$

SAGA: Summary

Plugging in $A=2 L, B=2, C=\frac{2 L}{N}$, and $\rho=\frac{1}{N}$ (ignoring constants)

$$
\mathcal{O}\left(\max \left\{N, \frac{L}{\mu}\right\} \log \left(\frac{1}{\epsilon}\right)\right)
$$

SAGA: Summary

Plugging in $A=2 L, B=2, C=\frac{2 L}{N}$, and $\rho=\frac{1}{N}$ (ignoring constants)

$$
\mathcal{O}\left(\max \left\{N, \frac{L}{\mu}\right\} \log \left(\frac{1}{\epsilon}\right)\right)
$$

Algorithm	Oracle Complexity				Storage	
GD	N	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SGD	1	\times	$\frac{L}{\mu}$	\times	$\frac{1}{\epsilon}$	d
SAGA	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	$d N$		

SAGA: Summary

Plugging in $A=2 L, B=2, C=\frac{2 L}{N}$, and $\rho=\frac{1}{N}$ (ignoring constants)

$$
\mathcal{O}\left(\max \left\{N, \frac{L}{\mu}\right\} \log \left(\frac{1}{\epsilon}\right)\right)
$$

Algorithm	Oracle Complexity				Storage	
GD	N	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SGD	1	\times	$\frac{L}{\mu}$	\times	$\frac{1}{\epsilon}$	d
SAGA	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	$d N$		

Improves over SGD when N is not too large but high storage

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]
- Pick i_{t} at random from $\{1,2, \ldots, N\}$ and set

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)+\nabla F\left(\mathbf{y}_{t}\right) \\
\mathbf{y}_{t+1} & = \begin{cases}\mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { and calculate } \nabla F\left(\mathbf{x}_{t}\right) \\
\mathbf{y}_{t} & \text { with prob. } 1-\frac{1}{N}\end{cases}
\end{aligned}
$$

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]
- Pick i_{t} at random from $\{1,2, \ldots, N\}$ and set

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)+\nabla F\left(\mathbf{y}_{t}\right) \\
\mathbf{y}_{t+1} & = \begin{cases}\mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { and calculate } \nabla F\left(\mathbf{x}_{t}\right) \\
\mathbf{y}_{t} & \text { with prob. } 1-\frac{1}{N}\end{cases}
\end{aligned}
$$

- On average, 3 gradients evaluated per iteration

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]
- Pick i_{t} at random from $\{1,2, \ldots, N\}$ and set

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)+\nabla F\left(\mathbf{y}_{t}\right) \\
\mathbf{y}_{t+1} & = \begin{cases}\mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { and calculate } \nabla F\left(\mathbf{x}_{t}\right) \\
\mathbf{y}_{t} & \text { with prob. } 1-\frac{1}{N}\end{cases}
\end{aligned}
$$

- On average, 3 gradients evaluated per iteration
- Unbiased gradient

$$
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right]=\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right]+\nabla F\left(\mathbf{y}_{t}\right)
$$

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]
- Pick i_{t} at random from $\{1,2, \ldots, N\}$ and set

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)+\nabla F\left(\mathbf{y}_{t}\right) \\
\mathbf{y}_{t+1} & = \begin{cases}\mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { and calculate } \nabla F\left(\mathbf{x}_{t}\right) \\
\mathbf{y}_{t} & \text { with prob. } 1-\frac{1}{N}\end{cases}
\end{aligned}
$$

- On average, 3 gradients evaluated per iteration
- Unbiased gradient

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right] & =\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right]+\nabla F\left(\mathbf{y}_{t}\right) \\
& =\nabla F\left(\mathbf{x}_{t}\right) \quad-\nabla F\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

Loopless SVRG

- Consider the loopless SVRG proposed in [Kovalev et al., 2019]
- A "loopless" modification of SVRG [Johnson and Zhang, 2013]
- Pick i_{t} at random from $\{1,2, \ldots, N\}$ and set

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)+\nabla F\left(\mathbf{y}_{t}\right) \\
\mathbf{y}_{t+1} & = \begin{cases}\mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { and calculate } \nabla F\left(\mathbf{x}_{t}\right) \\
\mathbf{y}_{t} & \text { with prob. } 1-\frac{1}{N}\end{cases}
\end{aligned}
$$

- On average, 3 gradients evaluated per iteration
- Unbiased gradient

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right] & =\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)\right]-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right]+\nabla F\left(\mathbf{y}_{t}\right) \\
& =\nabla F\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{aligned}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right] \\
& =\mathrm{X}
\end{aligned}
$$

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{array}{rlccc}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right] \\
& =\mathrm{Y} & \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array}
$$

$$
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]
$$

$$
\mathbb{E}\left[\|\mathrm{X}+\mathrm{Y}-\mathbb{E}[\mathrm{Y}]\|^{2}\right] \leq 2 \mathbb{E}\left[\|\mathrm{X}\|^{2}\right]+2 \mathbb{E}\left[\|\mathrm{Y}\|^{2}\right]
$$

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{array}{rlccc}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right] \\
& =\mathrm{X} & -\quad \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array}
$$

$$
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]
$$

$$
=\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}
$$

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{array}{rlcc}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right] \\
& =\mathrm{X} & -\quad \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array}
$$

$$
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]
$$

$$
=\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}
$$

$$
\leq \quad 4 L D_{F}\left(\mathrm{x}_{t}, \mathrm{x}^{\star}\right) \quad+\quad 2 \sigma_{t}^{2}
$$

L-smoothness

$$
\begin{aligned}
& \frac{1}{2 L}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2} \leq \\
& f\left(\mathbf{x}, \xi_{i}\right)-f\left(\mathbf{x}^{\star}, \xi_{i}\right)-\left\langle\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right), \mathbf{x}-\mathbf{x}^{\star}\right\rangle
\end{aligned}
$$

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract $\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)$ to write

$$
\begin{array}{rlcc}
\mathbf{g}_{t} & =\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)+\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\mathbb{E}_{i_{t}}\left[\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)\right] \\
& =\mathrm{X} & -\quad \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{array}
$$

$$
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] \leq 2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]+2 \mathbb{E}_{i_{t}}\left[\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i_{t}}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i_{t}}\right)\right\|^{2}\right]
$$

$$
=\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}+\frac{2}{N} \sum_{i=1}^{N}\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2}
$$

$$
\leq \quad 4 L D_{F}\left(\mathrm{x}_{t}, \mathrm{x}^{\star}\right) \quad+2 \sigma_{t}^{2}
$$

$$
A=2 L, B=2
$$

Loopless SVRG: σ_{t}^{2}

Recall that

$$
\mathbf{y}_{t+1}= \begin{cases}\mathbf{y}_{t} & \text { with prob. }\left(1-\frac{1}{N}\right) \\ \mathbf{x}_{t} & \text { with prob. } \frac{1}{N}\left(\text { calculate } \nabla F\left(\mathbf{x}_{t}\right)\right.\end{cases}
$$

Loopless SVRG: σ_{t}^{2}

Recall that

$$
\mathbf{y}_{t+1}= \begin{cases}\mathbf{y}_{t} & \text { with prob. }\left(1-\frac{1}{N}\right) \\ \mathbf{x}_{t} & \text { with prob. } \frac{1}{N}\left(\text { calculate } \nabla F\left(\mathbf{x}_{t}\right)\right.\end{cases}
$$

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right] & =\frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{y}_{t+1}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
& =\frac{1}{N} \sum_{j=1}^{N}\left[\left(1-\frac{1}{N}\right)\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}+\frac{1}{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
\leq & \left(1-\frac{1}{N}\right) \sigma_{t}^{2}
\end{aligned}
$$

L-smoothness

$$
\begin{aligned}
& \frac{1}{2 L}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{i}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right)\right\|^{2} \leq \\
& f\left(\mathbf{x}, \xi_{i}\right)-f\left(\mathbf{x}^{\star}, \xi_{i}\right)-\left\langle\nabla f\left(\mathbf{x}^{\star}, \xi_{i}\right), \mathbf{x}-\mathbf{x}^{\star}\right\rangle
\end{aligned}
$$

Loopless SVRG: σ_{t}^{2}

Recall that

$$
\mathbf{y}_{t+1}= \begin{cases}\mathbf{y}_{t} & \text { with prob. }\left(1-\frac{1}{N}\right) \\ \mathbf{x}_{t} & \text { with prob. } \frac{1}{N} \text { (calculate } \nabla F\left(\mathbf{x}_{t}\right)\end{cases}
$$

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right]=\frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{y}_{t+1}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
& =\frac{1}{N} \sum_{j=1}^{N}\left[\left(1-\frac{1}{N}\right)\left\|\nabla f\left(\mathbf{y}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}+\frac{1}{N}\left\|\nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)-\nabla f\left(\mathbf{x}^{\star}, \xi_{j}\right)\right\|^{2}\right] \\
& \leq \quad\left(1-\frac{1}{N}\right) \sigma_{t}^{2} \quad+\quad \frac{2 L}{N} D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right) \\
& \\
& \rho=\frac{1}{N}, C=\frac{2 L}{N}
\end{aligned}
$$

Loopless SVRG: Summary

Algorithm	Oracle Complexity					Storage
GD	N	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SGD	1	\times	$\frac{L}{\mu}$	\times	$\frac{1}{\epsilon}$	d
SAGA	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	$d N$		
L-SVRG	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d		

Loopless SVRG: Summary

Algorithm	Oracle Complexity					Storage
GD	N	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SGD	1	\times	$\frac{L}{\mu}$	\times	$\frac{1}{\epsilon}$	d
SAGA	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	$d N$		
L-SVRG	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d		

Loopless SVRG has almost same number of gradient calculations as SAGA but requires same storage as SGD

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N

SAGA and SVRG
State-of-the-art and Open Problems
(5) High-dimensional problems: large d
(6) Conclusion

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD
- Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD
- Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]
- But can it work for variance-reduced algorithms?

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD
- Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]
- But can it work for variance-reduced algorithms?
- Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD
- Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]
- But can it work for variance-reduced algorithms?
- Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
- Several variants since then, active area of research

Accelerated Variants

- Accelerated GD proposed by Nesterov in 1983: uses a momentum term
- But acceleration has not been achieved for classical SGD
- Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]
- But can it work for variance-reduced algorithms?
- Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
- Several variants since then, active area of research

Algorithm	Oracle Complexity				Storage	
GD	N	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
Accelerated GD	N	\times	$\sqrt{\frac{L}{\mu}}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SGD	1	\times	$\frac{L}{\mu}$	\times	$\frac{1}{\epsilon}$	d
L-SVRG	$\max \left\{N, \frac{L}{\mu}\right\}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d		
Accelerated SVRG	$\left(N+\sqrt{\frac{N L}{\mu}}\right)$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d		

Accelerated Variants: Smooth + Convex

Algorithm	Oracle Complexity				
GD	N	\times	L	\times	$\frac{1}{\epsilon}$
Accelerated GD	N	\times	\sqrt{L}	\times	$\frac{1}{\sqrt{\epsilon}}$
SGD	1	\times	L	\times	$\frac{1}{\epsilon^{2}}$
SAGA	$(N+L)$	\times	$\frac{1}{\epsilon}$		
SVRG+	$N \log \left(\frac{1}{\epsilon}\right)+\frac{L}{\epsilon}$				
Accelerated SVRG	$N \log \left(\frac{1}{\epsilon}\right)+\sqrt{\frac{N L}{\epsilon}}$				

Non-Convex Finite Sum: SPIDER

- Moderately large $N \leq \epsilon^{-2}$

Non-Convex Finite Sum: SPIDER

- Moderately large $N \leq \epsilon^{-2}$

Algorithm	Oracle Complexity		
GD	N	\times	ϵ^{-1}
SGD	1	\times	ϵ^{-2}
SVRG/SAGA	$N^{2 / 3}$	\times	ϵ^{-1}
SPIDER/SPIDERBoost	$N^{1 / 2}$	\times	ϵ^{-1}

Non-Convex Finite Sum: SPIDER

- Moderately large $N \leq \epsilon^{-2}$

Algorithm	Oracle Complexity		
GD	N	\times	ϵ^{-1}
SGD	1	\times	ϵ^{-2}
SVRG/SAGA	$N^{2 / 3}$	\times	ϵ^{-1}
SPIDER/SPIDERBoost	$N^{1 / 2}$	\times	ϵ^{-1}

- SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in terms of N and ϵ
- Open problem: Adaptive step-size variant of SPIDER?

Non-Convex Online: STORM

- SAGA/SVRG not meant for large N

Non-Convex Online: STORM

- SAGA/SVRG not meant for large N
- SARAH [Nguyen et al., 2017], SPIDER proposed calculating "checkpoint" gradients every ϵ^{-1} samples: mega batches hard to tune

Non-Convex Online: STORM

- SAGA/SVRG not meant for large N
- SARAH [Nguyen et al., 2017], SPIDER proposed calculating "checkpoint" gradients every ϵ^{-1} samples: mega batches hard to tune
- STORM uses momentum + adaptive step-size to achieve optimal rate using single loop

Non-Convex Online: STORM

- SAGA/SVRG not meant for large N
- SARAH [Nguyen et al., 2017], SPIDER proposed calculating "checkpoint" gradients every ϵ^{-1} samples: mega batches hard to tune
- STORM uses momentum + adaptive step-size to achieve optimal rate using single loop

Algorithm	Oracle Complexity
SGD	ϵ^{-2}
SVRG +	$\epsilon^{-5 / 3}$
SPIDER/SPIDERBoost	$\epsilon^{-3 / 2}$
STORM	$\epsilon^{-3 / 2}$

Non-Convex Online: STORM

- SAGA/SVRG not meant for large N
- SARAH [Nguyen et al., 2017], SPIDER proposed calculating "checkpoint" gradients every ϵ^{-1} samples: mega batches hard to tune
- STORM uses momentum + adaptive step-size to achieve optimal rate using single loop

Algorithm	Oracle Complexity
SGD	ϵ^{-2}
SVRG +	$\epsilon^{-5 / 3}$
SPIDER/SPIDERBoost	$\epsilon^{-3 / 2}$
STORM	$\epsilon^{-3 / 2}$

- Open problem: can STORM to handle \mathcal{X}, regularizers, etc?

Distributed Setting

- Consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

- Data points $\left\{\xi_{i}^{k}\right\}_{i=1}^{N}$ available only at k-th node
- Central server aids in parallelizing: K nodes can offer K-fold speedup in wall-clock time
- State-of-the-art: Parallel Restarted SPIDER matches centralized $\mathcal{O}\left(\epsilon^{-3 / 2}\right)$ for online non-convex
- Open problems: Distributed version of STORM? Accelerated variants?

Open Problem: Decentralized Setting

- Again consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

Open Problem: Decentralized Setting

- Again consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

- No central server, only communication between peers is allowed

Open Problem: Decentralized Setting

- Again consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

- No central server, only communication between peers is allowed
- All existing approaches are either suboptimal or cannot handle \mathcal{X}

Open Problem: Decentralized Setting

- Again consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

- No central server, only communication between peers is allowed
- All existing approaches are either suboptimal or cannot handle \mathcal{X}
- For non-convex, optimal $\mathcal{O}\left(\epsilon^{-3 / 2}\right)$ achieved in [Sun et al., 2019]

Open Problem: Decentralized Setting

- Again consider the problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{V}} F_{k}(\mathbf{x})
$$

- No central server, only communication between peers is allowed
- All existing approaches are either suboptimal or cannot handle \mathcal{X}
- For non-convex, optimal $\mathcal{O}\left(\epsilon^{-3 / 2}\right)$ achieved in [Sun et al., 2019]
- Open problem: can accelerated rates be obtained for convex decentralized case?

High-dimensional problems: large d

- When d is large, accessing $\nabla F(\mathbf{x})$ becomes difficult
- When d is large, accessing $\nabla F(\mathbf{x})$ becomes difficult
- E.g.: in matrix completion, $\nabla F(\mathbf{X}) \in \mathbb{R}^{m \times n}$ may be unwieldy $(d=m n)$
- When d is large, accessing $\nabla F(\mathrm{x})$ becomes difficult
- E.g.: in matrix completion, $\nabla F(\mathbf{X}) \in \mathbb{R}^{m \times n}$ may be unwieldy $(d=m n)$
- But a few coordinates of $\nabla F(\mathbf{X})$ may be available
- When d is large, accessing $\nabla F(\mathbf{x})$ becomes difficult
- E.g.: in matrix completion, $\nabla F(\mathbf{X}) \in \mathbb{R}^{m \times n}$ may be unwieldy $(d=m n)$
- But a few coordinates of $\nabla F(\mathbf{X})$ may be available
- Motivates coordinate descent and sketched gradient methods

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d

Gradient sketching
Hogwild!
(6) Conclusion

Sketched Gradient Descent

- Consider recently proposed SEGA [Hanzely et al., 2018]

Sketched Gradient Descent

- Consider recently proposed SEGA [Hanzely et al., 2018]
- Assumes availability of $\mathbf{P} \nabla F(\mathbf{x})$ where $\mathbf{P} \in \mathbb{R}^{p \times d}$ where $p \ll d$

Sketched Gradient Descent

- Consider recently proposed SEGA [Hanzely et al., 2018]
- Assumes availability of $\mathbf{P} \nabla F(\mathbf{x})$ where $\mathbf{P} \in \mathbb{R}^{p \times d}$ where $p \ll d$
- We look at the special case of $p=1$ and

$$
\mathbf{P}=\mathbf{e}_{i_{t}}^{\top}=\left[\begin{array}{lllllll}
0 & 0 & \ldots & 1 & \ldots & 0 & 0
\end{array}\right]
$$

where i_{t} is randomly selected from $\{1, \ldots, N\}$

Sketched Gradient Descent

- Consider recently proposed SEGA [Hanzely et al., 2018]
- Assumes availability of $\mathbf{P} \nabla F(\mathbf{x})$ where $\mathbf{P} \in \mathbb{R}^{p \times d}$ where $p \ll d$
- We look at the special case of $p=1$ and

$$
\mathbf{P}=\mathbf{e}_{i_{t}}^{\top}=\left[\begin{array}{lllllll}
0 & 0 & \ldots & 1 & \ldots & 0 & 0
\end{array}\right]
$$

where i_{t} is randomly selected from $\{1, \ldots, N\}$

- Sketched gradient is not an unbiased estimator!

SEGA: single coordinate update

- Unbiased gradient estimate must be maintained

SEGA: single coordinate update

- Unbiased gradient estimate must be maintained
- Starting with $\mathbf{h}_{1}=0$, we have

$$
\begin{aligned}
& h_{t+1}^{j}= \begin{cases}{\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} \\
& {\left[\mathbf{g}_{t}\right]_{j}= \begin{cases}d\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}+(1-d) h_{t}^{j} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} }
\end{aligned}
$$

SEGA: single coordinate update

- Unbiased gradient estimate must be maintained
- Starting with $\mathbf{h}_{1}=0$, we have

$$
\begin{aligned}
& h_{t+1}^{j}= \begin{cases}{\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} \\
& {\left[\mathbf{g}_{t}\right]_{j}= \begin{cases}d\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}+(1-d) h_{t}^{j} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} }
\end{aligned}
$$

- Maintain two $d \times 1$ vectors, but update only 1 coordinate at a time

SEGA: single coordinate update

- Unbiased gradient estimate must be maintained
- Starting with $\mathbf{h}_{1}=0$, we have

$$
\begin{aligned}
& h_{t+1}^{j}= \begin{cases}{\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} \\
& {\left[\mathbf{g}_{t}\right]_{j}= \begin{cases}d\left[\nabla F\left(\mathbf{x}_{t}\right)\right]_{j}+(1-d) h_{t}^{j} & j=i_{t} \\
h_{t}^{j} & j \neq i_{t}\end{cases} }
\end{aligned}
$$

- Maintain two $d \times 1$ vectors, but update only 1 coordinate at a time
- Can we get GD-like performance with such sporadic updates?

SEGA: Unbiased Gradient Estimate

- Let us write in compact form:

$$
\begin{aligned}
\mathbf{h}_{t+1} & =\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right) \\
\mathbf{g}_{t} & =\mathbf{h}_{t}+d \mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)
\end{aligned}
$$

where \odot denotes element-wise product

SEGA: Unbiased Gradient Estimate

- Let us write in compact form:

$$
\begin{aligned}
\mathbf{h}_{t+1} & =\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right) \\
\mathbf{g}_{t} & =\mathbf{h}_{t}+d \mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)
\end{aligned}
$$

where \odot denotes element-wise product

- Note that $\mathbb{E}\left[\mathbf{e}_{i_{t}}\right]=\frac{1}{d}$

SEGA: Unbiased Gradient Estimate

- Let us write in compact form:

$$
\begin{aligned}
\mathbf{h}_{t+1} & =\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right) \\
\mathbf{g}_{t} & =\mathbf{h}_{t}+d \mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)
\end{aligned}
$$

where \odot denotes element-wise product

- Note that $\mathbb{E}\left[\mathbf{e}_{i_{t}}\right]=\frac{1}{d}$
- Unbiased gradient:

$$
\mathbb{E}_{i_{t}}\left[\mathbf{g}_{t}\right]=\mathbf{h}_{t}+d \mathbb{E}_{i_{t}}\left[\mathbf{e}_{i_{t}}\right] \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)=\nabla F\left(\mathbf{x}_{t}\right)
$$

SEGA: Approximation Properties

Proceeding as earlier (since $\left.\nabla F\left(\mathrm{x}^{\star}\right)=0\right)$

$$
\begin{aligned}
\mathbf{g}_{t} & =d\left(\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right)-d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}+\mathbb{E}_{i_{t}}\left[d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right] \\
& =\mathbf{X}+\mathbf{Y} \quad-\quad \mathbb{E}_{i_{t}}[\mathrm{Y}]
\end{aligned}
$$

SEGA: Approximation Properties

Proceeding as earlier (since $\left.\nabla F\left(\mathrm{x}^{\star}\right)=0\right)$

$$
\begin{aligned}
\mathbf{g}_{t} & =d\left(\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right)-d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}+\mathbb{E}_{i_{t}}\left[d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right] \\
& =\mathrm{X}+\mathrm{Y} \quad-\quad \mathbb{E}_{i_{t}}[\mathrm{Y}] \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]+2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right\|^{2}\right]
\end{aligned}
$$

$$
\mathbb{E}\left[\|\mathrm{X}+\mathrm{Y}-\mathbb{E}[\mathrm{Y}]\|^{2}\right] \leq 2 \mathbb{E}\left[\|\mathrm{X}\|^{2}\right]+2 \mathbb{E}\left[\|\mathrm{Y}\|^{2}\right]
$$

SEGA: Approximation Properties

Proceeding as earlier (since $\left.\nabla F\left(\mathrm{x}^{\star}\right)=0\right)$

$$
\begin{array}{rlr}
\mathbf{g}_{t} & =d\left(\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right)-d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}+\mathbb{E}_{i_{t}}\left[d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right] \\
& =\mathbf{Y} \quad-\quad \mathbb{E}_{i_{t}}[\mathrm{Y}] \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]+2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right\|^{2}\right] \\
& =2 d\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} & +2 d\left\|\mathbf{h}_{t}\right\|^{2}
\end{array}
$$

SEGA: Approximation Properties

Proceeding as earlier (since $\left.\nabla F\left(\mathrm{x}^{\star}\right)=0\right)$

$$
\begin{array}{rlrl}
\mathbf{g}_{t} & =d\left(\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right)-d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}+\mathbb{E}_{i_{t}}\left[d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right] \\
& =\mathrm{X} & +\quad \mathrm{Y} & - \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]+2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right\|^{2}\right] \\
& =\quad 2 d\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} & + & 2 d\left\|\mathbf{h}_{t}\right\|^{2} \\
& \leq 4 d L D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right) & & 2 d \sigma_{t}^{2}
\end{array}
$$

L-smoothness

$$
\begin{aligned}
& \frac{1}{2 L}\left\|\nabla F\left(\mathrm{x}_{t}\right)-\nabla F\left(\mathrm{x}^{\star}\right)\right\|^{2} \leq \\
& F(\mathrm{x})-F\left(\mathrm{x}^{\star}\right)=D_{F}\left(\mathrm{x}_{t}, \mathrm{x}^{\star}\right)
\end{aligned}
$$

SEGA: Approximation Properties

Proceeding as earlier (since $\left.\nabla F\left(\mathrm{x}^{\star}\right)=0\right)$

$$
\begin{aligned}
\mathbf{g}_{t} & =d\left(\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right)-d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}+\mathbb{E}_{i_{t}}\left[d \mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right] \\
& =\mathrm{X} \quad+\quad \mathbf{Y} \quad-\quad \mathbb{E}_{i_{t}}[\mathbf{Y}] \\
\mathbb{E}_{i_{t}}\left[\left\|\mathbf{g}_{t}\right\|^{2}\right] & \leq 2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]+2 d^{2} \mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot \mathbf{h}_{t}\right\|^{2}\right] \\
& =2 d\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \\
\leq & 2 d\left\|\mathbf{h}_{t}\right\|^{2} \\
\leq & + \\
& 4 d L D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

SEGA Approximation: σ_{t}^{2}

$$
\text { Recall that } \mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right) \text {, so }
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right]
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right] & =\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}+\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right]
\end{aligned}
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right] & =\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}+\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}\right\|^{2}\right]+\mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)\right)\right\|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right]= \\
& \mathbb{E}_{i_{t}}\left[\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right]-\mathbb{E}_{i_{t}}\left[\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right]=0
\end{aligned}
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right] & =\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}+\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}\right\|^{2}\right]+\mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)\right)\right\|^{2}\right] \\
& =\left(1-\frac{1}{d}\right) \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}\right\|^{2}\right]+\frac{1}{d}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}
\end{aligned}
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right] & =\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}+\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \\
& =\mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}\right\|^{2}\right]+\mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)\right)\right\|^{2}\right] \\
& =\left(1-\frac{1}{d}\right) \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}\right\|^{2}\right]+\frac{1}{d}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \\
& \leq\left(1-\frac{1}{d}\right) \sigma_{t}^{2}+\frac{2 L}{d} D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
\end{aligned}
$$

$$
L \text {-smoothness }
$$

$$
\frac{1}{2 L}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \leq D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right)
$$

SEGA Approximation: σ_{t}^{2}

Recall that $\mathbf{h}_{t+1}=\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)$, so

$$
\begin{aligned}
& \mathbb{E}_{i_{t}}\left[\sigma_{t+1}^{2}\right]= \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t+1}\right\|^{2}\right]=\mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}+\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{h}_{t}\right)\right\|^{2}\right] \\
&= \mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}+\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top} \nabla F\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \\
&= \mathbb{E}_{i_{t}}\left[\left\|\left(\mathbf{I}-\mathbf{e}_{i_{t}} \mathbf{e}_{i_{t}}^{\top}\right) \mathbf{h}_{t}\right\|^{2}\right]+\mathbb{E}_{i_{t}}\left[\left\|\mathbf{e}_{i_{t}} \odot\left(\nabla F\left(\mathbf{x}_{t}\right)\right)\right\|^{2}\right] \\
&=\left(1-\frac{1}{d}\right) \mathbb{E}_{i_{t}}\left[\left\|\mathbf{h}_{t}\right\|^{2}\right]+\frac{1}{d}\left\|\nabla F\left(\mathbf{x}_{t}\right)\right\|^{2} \\
& \leq\left(1-\frac{1}{d}\right) \sigma_{t}^{2}+\frac{2 L}{d} D_{F}\left(\mathbf{x}_{t}, \mathbf{x}^{\star}\right) \\
& \rho=\frac{1}{d}, C=\frac{2 L}{d}
\end{aligned}
$$

SEGA Summary

- GD uses d gradient entries per iteration

SEGA Summary

- GD uses d gradient entries per iteration
- SEGA uses 1 gradient entry per iteration

SEGA Summary

- GD uses d gradient entries per iteration
- SEGA uses 1 gradient entry per iteration
- Equivalently, GD incurs $d \times$ per iteration cost

SEGA Summary

- GD uses d gradient entries per iteration
- SEGA uses 1 gradient entry per iteration
- Equivalently, GD incurs $d \times$ per iteration cost
- Define oracle complexity $=d \times$ number of gradients required to achieve ϵ-accuracy

SEGA Summary

- GD uses d gradient entries per iteration
- SEGA uses 1 gradient entry per iteration
- Equivalently, GD incurs $d \times$ per iteration cost
- Define oracle complexity $=d \times$ number of gradients required to achieve ϵ-accuracy

Algorithm	Oracle Complexity					Per-iteration cost
GD	d	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	d
SEGA	d	\times	$\frac{L}{\mu}$	\times	$\log \left(\frac{1}{\epsilon}\right)$	1

SEGA is competitive with GD even while looking at one entry at a time!

Outline

(1) Context
(2) Background
(3) Vanilla Stochastic Gradient Descent: Large N
(4) Variance-Reduced SGD: Moderate N
(5) High-dimensional problems: large d

Gradient sketching
Hogwild!
(6) Conclusion

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion
- Observations $\mathbf{Z} \in \mathbb{R}^{N_{r} \times N_{c}}$

$$
\min _{\mathbf{L}, \mathbf{R}}\left\|\mathbf{Z}-\mathbf{L R}^{\top}\right\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{L}\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{R}\|_{F}^{2}
$$

where $\mathbf{L} \in \mathbb{R}^{N_{r} \times r}$, and $\mathbf{R} \in \mathbb{R}^{N_{c} \times r}$

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion
- Observations $\mathbf{Z} \in \mathbb{R}^{N_{r} \times N_{c}}$

$$
\min _{\mathbf{L}, \mathbf{R}}\left\|\mathbf{Z}-\mathbf{L R}^{\top}\right\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{L}\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{R}\|_{F}^{2}
$$

where $\mathbf{L} \in \mathbb{R}^{N_{r} \times r}$, and $\mathbf{R} \in \mathbb{R}^{N_{c} \times r}$

- Low-rank assumption $\Rightarrow r \ll N_{c}, N_{r}$

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion
- Observations $\mathbf{Z} \in \mathbb{R}^{N_{r} \times N_{c}}$

$$
\min _{\mathbf{L}, \mathbf{R}}\left\|\mathbf{Z}-\mathbf{L R}^{\top}\right\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{L}\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{R}\|_{F}^{2}
$$

where $\mathbf{L} \in \mathbb{R}^{N_{r} \times r}$, and $\mathbf{R} \in \mathbb{R}^{N_{c} \times r}$

- Low-rank assumption $\Rightarrow r \ll N_{c}, N_{r}$
- Number of observations $N=N_{r} N_{c}$ is extremely large

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion
- Observations $\mathbf{Z} \in \mathbb{R}^{N_{r} \times N_{c}}$

$$
\min _{\mathbf{L}, \mathbf{R}}\left\|\mathbf{Z}-\mathbf{L R}^{\top}\right\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{L}\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{R}\|_{F}^{2}
$$

where $\mathbf{L} \in \mathbb{R}^{N_{r} \times r}$, and $\mathbf{R} \in \mathbb{R}^{N_{c} \times r}$

- Low-rank assumption $\Rightarrow r \ll N_{c}, N_{r}$
- Number of observations $N=N_{r} N_{c}$ is extremely large
- Number of variables $d=\left(N_{c}+N_{r}\right) r$ is also very large

Large N and d

- Large $N \Rightarrow$ cannot compute even one entry exactly
- Large $d \Rightarrow$ cannot compute full stochastic gradient
- Large-scale matrix completion
- Observations $\mathbf{Z} \in \mathbb{R}^{N_{r} \times N_{c}}$

$$
\min _{\mathbf{L}, \mathbf{R}}\left\|\mathbf{Z}-\mathbf{L R}^{\top}\right\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{L}\|_{F}^{2}+\frac{\mu}{2}\|\mathbf{R}\|_{F}^{2}
$$

where $\mathbf{L} \in \mathbb{R}^{N_{r} \times r}$, and $\mathbf{R} \in \mathbb{R}^{N_{c} \times r}$

- Low-rank assumption $\Rightarrow r \ll N_{c}, N_{r}$
- Number of observations $N=N_{r} N_{c}$ is extremely large
- Number of variables $d=\left(N_{c}+N_{r}\right) r$ is also very large
- Cannot load the variables or observations into the RAM

Curse of Parallelization: Beyond Oracle Complexity

- SGD is inherently serial

Curse of Parallelization: Beyond Oracle Complexity

- SGD is inherently serial
- Consider system with m cores or m distributed servers

Curse of Parallelization: Beyond Oracle Complexity

- SGD is inherently serial
- Consider system with m cores or m distributed servers
- SGD achives ϵ accuracy in $\mathcal{O}\left(\frac{\sigma^{2}}{\epsilon}\right)$ oracle calls

Curse of Parallelization: Beyond Oracle Complexity

- SGD is inherently serial
- Consider system with m cores or m distributed servers
- SGD achives ϵ accuracy in $\mathcal{O}\left(\frac{\sigma^{2}}{\epsilon}\right)$ oracle calls
- To use multi-core systems, one must parallelize, e.g., using minibatch

$$
\mathrm{m}-\mathrm{SGD} \quad \mathbf{x}_{t+1}=\mathbf{x}_{t}-\frac{\eta}{m} \sum_{j \in \mathcal{I}_{t}} \nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)
$$

where $m=\left|\mathcal{I}_{t}\right|$ stochastic gradients are computed in parallel

Curse of Parallelization: Beyond Oracle Complexity

- SGD is inherently serial
- Consider system with m cores or m distributed servers
- SGD achives ϵ accuracy in $\mathcal{O}\left(\frac{\sigma^{2}}{\epsilon}\right)$ oracle calls
- To use multi-core systems, one must parallelize, e.g., using minibatch

$$
\mathrm{m}-\mathrm{SGD} \quad \mathbf{x}_{t+1}=\mathbf{x}_{t}-\frac{\eta}{m} \sum_{j \in \mathcal{I}_{t}} \nabla f\left(\mathbf{x}_{t}, \xi_{j}\right)
$$

where $m=\left|\mathcal{I}_{t}\right|$ stochastic gradients are computed in parallel

- What is the wall-clock time?

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

SGD: Total wall-clock time $=\left(t_{g}+2 t_{r}\right) \times \sigma^{2} / \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

SGD: Total wall-clock time $=\left(t_{g}+2 t_{r}\right) \times \sigma^{2} / \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$
m-SGD: Total wall-clock time $=\left(t_{g}+(m+1) t_{r}\right) \times \sigma^{2} / m \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

SGD: Total wall-clock time $=\left(t_{g}+2 t_{r}\right) \times \sigma^{2} / \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$
m-SGD: Total wall-clock time $=\left(t_{g}+(m+1) t_{r}\right) \times \sigma^{2} / m \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$

- Gains due to parallelization offset by the limited memory throughput

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

SGD: Total wall-clock time $=\left(t_{g}+2 t_{r}\right) \times \sigma^{2} / \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$
m-SGD: Total wall-clock time $=\left(t_{g}+(m+1) t_{r}\right) \times \sigma^{2} / m \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$

- Gains due to parallelization offset by the limited memory throughput
- Synchronization requirement cause idling of cores

Curse of Parallelization: Wall Clock Time

- Let $t_{g}=$ time to calculate $\nabla f\left(\mathbf{x}, \xi_{j}\right)$ and $t_{r}=$ time to read/write \mathbf{x}_{t}
- If $t_{r} \ll t_{g}$, then

SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / \epsilon$
m -SGD: Total wall-clock time $=t_{g} \times \sigma^{2} / m \epsilon$

- If $t_{r} \approx t_{g}$, writes are not concurrent

SGD: Total wall-clock time $=\left(t_{g}+2 t_{r}\right) \times \sigma^{2} / \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$
m-SGD: Total wall-clock time $=\left(t_{g}+(m+1) t_{r}\right) \times \sigma^{2} / m \epsilon \approx \mathcal{O}\left(\sigma^{2} / \epsilon\right)$

- Gains due to parallelization offset by the limited memory throughput
- Synchronization requirement cause idling of cores
- Memory is locked while being written

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

- E.g., $\xi_{i}=\{1,3,4\}$ and $f\left(\mathbf{x}, \xi_{i}\right)$ depends on x_{1}, x_{3}, x_{4}

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

- E.g., $\xi_{i}=\{1,3,4\}$ and $f\left(\mathbf{x}, \xi_{i}\right)$ depends on x_{1}, x_{3}, x_{4}
- Sparsity: $\left|\xi_{i}\right| \ll d$

Figure 3: (a) Bipartite graph (b) conflict graph representation

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

- E.g., $\xi_{i}=\{1,3,4\}$ and $f\left(\mathbf{x}, \xi_{i}\right)$ depends on x_{1}, x_{3}, x_{4}
- Sparsity: $\left|\xi_{i}\right| \ll d$
- Function $f: \mathbb{R}^{n} \times \mathcal{E} \rightarrow \mathbb{R}$ depends only on the subset of variables in ξ_{i}

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

- E.g., $\xi_{i}=\{1,3,4\}$ and $f\left(\mathbf{x}, \xi_{i}\right)$ depends on x_{1}, x_{3}, x_{4}
- Sparsity: $\left|\xi_{i}\right| \ll d$
- Function $f: \mathbb{R}^{n} \times \mathcal{E} \rightarrow \mathbb{R}$ depends only on the subset of variables in ξ_{i}
- So only a few entries of $\nabla f\left(\mathbf{x}, \xi_{i}\right)$ are non-zero

Sparse Problem Structure

- Consider the problem [Recht et al., 2011]

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{i} \subseteq\{1, \ldots, n\}$ is an hyperedge

- E.g., $\xi_{i}=\{1,3,4\}$ and $f\left(\mathbf{x}, \xi_{i}\right)$ depends on x_{1}, x_{3}, x_{4}
- Sparsity: $\left|\xi_{i}\right| \ll d$
- Function $f: \mathbb{R}^{n} \times \mathcal{E} \rightarrow \mathbb{R}$ depends only on the subset of variables in ξ_{i}
- So only a few entries of $\nabla f\left(\mathbf{x}, \xi_{i}\right)$ are non-zero
- Indeed, $\left[\nabla f\left(\mathbf{x}, \xi_{i}\right)\right]_{j}=0$ for all $j \notin \xi_{i}$

Hogwild!

- Go hog wild: read and write x without locking

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
without synchronizing with other cores

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
without synchronizing with other cores

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
- evaluates $\nabla f(\mathbf{x}, \xi)$;
without synchronizing with other cores

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
- evaluates $\nabla f(\mathbf{x}, \xi)$;
- updates \mathbf{x}; and
without synchronizing with other cores

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
- evaluates $\nabla f(\mathbf{x}, \xi)$;
- updates \mathbf{x}; and
- writes x to memory one entry at a time without synchronizing with other cores

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
- evaluates $\nabla f(\mathbf{x}, \xi)$;
- updates \mathbf{x}; and
- writes x to memory one entry at a time
without synchronizing with other cores
- This will lead to inconsistent reads and overwrites: recipe for disaster?

Hogwild!

- Go hog wild: read and write x without locking
- Each core does the following:
- reads x from the memory;
- evaluates $\nabla f(\mathbf{x}, \xi)$;
- updates \mathbf{x}; and
- writes x to memory one entry at a time
without synchronizing with other cores
- This will lead to inconsistent reads and overwrites: recipe for disaster?
- Key idea: collisions rare if $\xi_{i} \cap \xi_{j}=\emptyset$ with high probability

Hogwild Algorithm

- Define $[\mathrm{x}]_{\xi} \in \mathbb{R}^{d \times 1}$ to contain only those entries that are in ξ, i.e.,

$$
\left([\mathbf{x}]_{\xi}\right)_{j}= \begin{cases}0 & j \notin \xi \\ x_{j} & j \in \xi\end{cases}
$$

Hogwild Algorithm

- Define $[\mathrm{x}]_{\xi} \in \mathbb{R}^{d \times 1}$ to contain only those entries that are in ξ, i.e.,

$$
\left([\mathbf{x}]_{\xi}\right)_{j}= \begin{cases}0 & j \notin \xi \\ x_{j} & j \in \xi\end{cases}
$$

- The full algorithm takes the form:

Hogwild Algorithm

- Define $[\mathrm{x}]_{\xi} \in \mathbb{R}^{d \times 1}$ to contain only those entries that are in ξ, i.e.,

$$
\left([\mathbf{x}]_{\xi}\right)_{j}= \begin{cases}0 & j \notin \xi \\ x_{j} & j \in \xi\end{cases}
$$

- The full algorithm takes the form:

```
Algorithm 3 Hogwild! (at each core, in parallel)
    repeat
    Sample an hyperedge \(\xi\)
    Let \([\hat{\mathbf{x}}]_{\xi}=\) an inconsistent read of \([\mathbf{x}]_{\xi}\)
    Evaluate \([\mathbf{u}]_{\xi}=-\eta \nabla f\left([\hat{\mathbf{x}}]_{\xi}, \xi\right)\)
    for \(v \in \xi\) do:
            \(x_{v} \leftarrow x_{v}+u_{v}\)
        end for
    8: until number of edges \(\leq T\)
```


Perturbed SGD

- Cannot write Hogwild in classical SGD form

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])
For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right]$

Perturbed SGD

- Cannot write Hogwild in classical SGD form
- Instead consider perturbed SGD with some random variable ξ_{t}

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)
$$

where $\hat{\mathbf{x}}_{t}=\mathbf{x}_{t}+\mathbf{n}_{t}$ with noise \mathbf{n}_{t} independent of ξ_{t}

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017]) For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right]$

Perturbed SGD

- Cannot write Hogwild in classical SGD form
- Instead consider perturbed SGD with some random variable ξ_{t}

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)
$$

where $\hat{\mathbf{x}}_{t}=\mathbf{x}_{t}+\mathbf{n}_{t}$ with noise \mathbf{n}_{t} independent of ξ_{t}

- Defining $\delta_{t}:=\mathbb{E}\left[\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|\right]$, then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017]) For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right.$

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right]$
Proof: Expand the optimality gap

$$
\begin{aligned}
& \left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\| \\
& =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}+2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle
\end{aligned}
$$

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right.$
Proof: Expand the optimality gap and add-subtract $\left\langle\hat{\mathbf{x}}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle$

$$
\begin{aligned}
& \left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\| \\
& =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}+2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle
\end{aligned}
$$

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right\rangle\right.$
Proof: Expand the optimality gap and add-subtract $\left\langle\hat{\mathbf{x}}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle$

$$
\begin{aligned}
& \left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\| \\
& =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}+2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle \\
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right]=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla F\left(\hat{\mathbf{x}}_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2} \\
& \quad+2 \eta \mathbb{E}\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle
\end{aligned}
$$

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, μ-convex functions f, perturbed SGD satisfies
$\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}\right]+2 \eta \mu \mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]+2 \eta \mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\mathbf{x}_{t}, \xi_{t}\right)\right]\right.$
Proof: Expand the optimality gap and add-subtract $\left\langle\hat{\mathbf{x}}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle$

$$
\begin{aligned}
& \left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\| \\
& =\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2}+2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle \\
& \mathbb{E}_{t}\left[\left\|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\right\|^{2}\right]=\left\|\mathbf{x}_{t}-\mathbf{x}^{\star}\right\|^{2}-2 \eta\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}^{\star}, \nabla F\left(\hat{\mathbf{x}}_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\|^{2} \\
& \quad+2 \eta \mathbb{E}\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle
\end{aligned}
$$

Lemma follows from using μ-strong convexity and triangle inequality:

$$
\left\langle\hat{\mathbf{x}}_{t}-\mathrm{x}^{\star}, \nabla F\left(\hat{\mathbf{x}}_{t}\right)\right\rangle \geq \mu\left\|\hat{\mathbf{x}}_{t}-\mathrm{x}^{\star}\right\|^{2} \geq \frac{\mu}{2}\left\|\mathrm{x}_{t}-\mathrm{x}^{\star}\right\|^{2}-\mu\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}
$$

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge
- Let $\overline{\mathbf{x}}_{t}$ be the contents before t-th read

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge
- Let $\overline{\mathbf{x}}_{t}$ be the contents before t-th read
- Also, recall that $[\mathbf{x}]_{\xi_{t}}$ is an inconsistent read, and define full vector $\hat{\mathbf{x}}_{t}$:

$$
\left[\hat{\mathbf{x}}_{t}\right]_{v}= \begin{cases}{\left[\hat{\mathbf{x}}_{t}\right]_{v}} & v \in \xi_{t}-\text { these are changed } \\ {\left[\overline{\mathbf{x}}_{t}\right]_{v}} & v \notin \xi_{t}-\text { these remain same as before the read }\end{cases}
$$

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge
- Let $\overline{\mathbf{x}}_{t}$ be the contents before t-th read
- Also, recall that $[\mathbf{x}]_{\xi_{t}}$ is an inconsistent read, and define full vector $\hat{\mathbf{x}}_{t}$:

$$
\left[\hat{\mathbf{x}}_{t}\right]_{v}= \begin{cases}{\left[\hat{\mathbf{x}}_{t}\right]_{v}} & v \in \xi_{t}-\text { these are changed } \\ {\left[\overline{\mathbf{x}}_{t}\right]_{v}} & v \notin \xi_{t}-\text { these remain same as before the read }\end{cases}
$$

- $\hat{\mathbf{x}}_{t}$ independent of ξ_{t} (can be relaxed)

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge
- Let $\overline{\mathbf{x}}_{t}$ be the contents before t-th read
- Also, recall that $[\mathbf{x}]_{\xi_{t}}$ is an inconsistent read, and define full vector $\hat{\mathbf{x}}_{t}$:

$$
\left[\hat{\mathbf{x}}_{t}\right]_{v}= \begin{cases}{\left[\hat{\mathbf{x}}_{t}\right]_{v}} & v \in \xi_{t}-\text { these are changed } \\ {\left[\overline{\mathbf{x}}_{t}\right]_{v}} & v \notin \xi_{t}-\text { these remain same as before the read }\end{cases}
$$

- $\hat{\mathbf{x}}_{t}$ independent of ξ_{t} (can be relaxed)
- Bounded gradients: $\|f(\hat{\mathbf{x}}, \xi)\| \leq M$ (can be relaxed)

Hogwild as Perturbed SGD

- Let ξ_{t} be the t-th sampled hyperedge
- Let $\overline{\mathbf{x}}_{t}$ be the contents before t-th read
- Also, recall that $[\mathbf{x}]_{\xi_{t}}$ is an inconsistent read, and define full vector $\hat{\mathbf{x}}_{t}$:

$$
\left[\hat{\mathbf{x}}_{t}\right]_{v}= \begin{cases}{\left[\hat{\mathbf{x}}_{t}\right]_{v}} & v \in \xi_{t}-\text { these are changed } \\ {\left[\overline{\mathbf{x}}_{t}\right]_{v}} & v \notin \xi_{t}-\text { these remain same as before the read }\end{cases}
$$

- $\hat{\mathbf{x}}_{t}$ independent of ξ_{t} (can be relaxed)
- Bounded gradients: $\|f(\hat{\mathbf{x}}, \xi)\| \leq M$ (can be relaxed)
- Key idea: after T updates are written to the memory:

$$
\mathbf{x}_{T}=\mathbf{x}_{1}-\eta \nabla f\left(\hat{\mathbf{x}}_{1}, \xi_{1}\right)-\eta \nabla f\left(\hat{\mathbf{x}}_{2}, \xi_{2}\right)-\ldots-\eta \nabla f\left(\hat{\mathbf{x}}_{T-1}, \xi_{T-1}\right)
$$

or

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\eta \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)
$$

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)
- τ can be proxy for number of cores: τ read-writes in parallel

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)
- τ can be proxy for number of cores: τ read-writes in parallel
- Consider, for instance, times i and j :

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)
- τ can be proxy for number of cores: τ read-writes in parallel
- Consider, for instance, times i and j :
- if $i<j$ and $\xi_{i} \cap \xi_{j}=\emptyset, \nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ written before $\hat{\mathbf{x}}_{j}$ read: contribution of $\nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ included into $\hat{\mathbf{x}}_{j}$ and \mathbf{x}_{j}

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)
- τ can be proxy for number of cores: τ read-writes in parallel
- Consider, for instance, times i and j :
- if $i<j$ and $\xi_{i} \cap \xi_{j}=\emptyset, \nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ written before $\hat{\mathbf{x}}_{j}$ read: contribution of $\nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ included into $\hat{\mathbf{x}}_{j}$ and \mathbf{x}_{j}
- If $i>j$ and $\xi_{i} \cap \xi_{j}=\emptyset$, then neither $\hat{\mathbf{x}}_{j}$ nor \mathbf{x}_{j} contain any contribution of $\nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$

Hogwild Abstractions: τ and Δ

- $\Delta=$ average degree of conflict graph
- Max. number of hyperedges that overlap with a given hyperedge $=\tau$
- $\tau=0$ implies no overlap (classical SGD)
- τ can be proxy for number of cores: τ read-writes in parallel
- Consider, for instance, times i and j :
- if $i<j$ and $\xi_{i} \cap \xi_{j}=\emptyset, \nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ written before $\hat{\mathbf{x}}_{j}$ read: contribution of $\nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$ included into $\hat{\mathbf{x}}_{j}$ and \mathbf{x}_{j}
- If $i>j$ and $\xi_{i} \cap \xi_{j}=\emptyset$, then neither $\hat{\mathbf{x}}_{j}$ nor \mathbf{x}_{j} contain any contribution of $\nabla f\left(\hat{\mathbf{x}}_{i}, \xi_{i}\right)$
- Edges $\xi_{i} \cap \xi_{j}=\emptyset$ if $|i-j|>\tau$

Hogwild: modeling inconsistent reads

- Let \mathbf{S}_{l}^{t} be diagonal matrix with entries in $\{-1,0,1\}$
- Define conflicting edges: $\mathcal{I}_{t}:=\{t-\tau, t-\tau+1, \ldots t-1, t+1, \ldots, t+\tau\}$
- Then, all possible update orders can be written as

$$
\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}=\eta \sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)
$$

- Models all patterns of possibly partial updates while ξ_{t} is being processed

Hogwild Analysis

Lemma

The following bounds hold:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & \leq \eta^{2} M\left(2 \tau+8 \tau^{2} \frac{\Delta}{d}\right) \\
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, e_{t}\right)\right\rangle\right] & \leq 4 \eta M^{2} \tau \frac{\Delta}{d}
\end{aligned}
$$

We use $\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{\iota}\right)\right\| \leq M$

$$
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right]=\eta \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right]
$$

Hogwild Analysis

Lemma

The following bounds hold:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & \leq \eta^{2} M\left(2 \tau+8 \tau^{2} \frac{\Delta}{d}\right) \\
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, e_{t}\right)\right\rangle\right] & \leq 4 \eta M^{2} \tau \frac{\Delta}{d}
\end{aligned}
$$

We use $\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{\iota}\right)\right\| \leq M$

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right] & =\eta \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right] \\
& \leq \eta M^{2} \sum_{\iota} \operatorname{Pr}\left[\xi_{\iota} \cap \xi_{t} \neq \emptyset\right]
\end{aligned}
$$

Hogwild Analysis

Lemma

The following bounds hold:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & \leq \eta^{2} M\left(2 \tau+8 \tau^{2} \frac{\Delta}{d}\right) \\
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, e_{t}\right)\right\rangle\right] & \leq 4 \eta M^{2} \tau \frac{\Delta}{d}
\end{aligned}
$$

We use $\left\|\nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{\iota}\right)\right\| \leq M$ and $\operatorname{Pr}\left(\xi_{\iota} \cap \xi_{t} \neq \emptyset\right)=\frac{2 \Delta}{d}$

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}, \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right] & =\eta \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \nabla f\left(\hat{\mathbf{x}}_{t}, \xi_{t}\right)\right\rangle\right] \\
& \leq \eta M^{2} \sum_{\iota} \operatorname{Pr}\left[\xi_{\iota} \cap \xi_{t} \neq \emptyset\right] \\
& \leq 2 \eta M^{2} \tau \frac{2 \Delta}{d}
\end{aligned}
$$

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that
$\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right]=\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right]$

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & =\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right] \\
& =\eta^{2} \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left\|\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \mathbf{S}_{\kappa}^{t} \nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\rangle\right]
\end{aligned}
$$

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & =\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right] \\
& =\eta^{2} \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left\|\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \mathbf{S}_{\kappa}^{t} \nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\rangle\right] \\
& \leq \eta^{2} \sum_{\iota} \mathbb{E}\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|\left\|\nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\| \mathbf{1}_{\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset}\right]
\end{aligned}
$$

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & =\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right] \\
& =\eta^{2} \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left\|\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \mathbf{S}_{\kappa}^{t} \nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\rangle\right] \\
& \leq \eta^{2} \sum_{\iota} \mathbb{E}\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|\left\|\nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\| \mathbf{1}_{\left.\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]}\right] \\
& \leq \eta^{2} M^{2}\left(2 \tau+4 \tau^{2} \operatorname{Pr}\left[\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]\right)=2 \eta^{2} M^{2} \tau(1+2 \tau(2 \Delta / d))
\end{aligned}
$$

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & =\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right] \\
& =\eta^{2} \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left\|\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \mathbf{S}_{\kappa}^{t} \nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\rangle\right] \\
& \leq \eta^{2} \sum_{\iota} \mathbb{E}\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|\left\|\nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\| \mathbb{1}_{\left.\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]}\right] \\
& \leq \eta^{2} M^{2}\left(2 \tau+4 \tau^{2} \operatorname{Pr}\left[\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]\right)=2 \eta^{2} M^{2} \tau(1+2 \tau(2 \Delta / d))
\end{aligned}
$$

Substituting all bounds,

$$
\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} M^{2} C_{1}
$$

where $C_{1}=1+8 \tau \Delta / d+4 \eta \mu \tau+16 \eta \mu \tau^{2} \Delta / d$.

Hogwild Analysis

Since $\|\mathbf{S u}\|_{2} \leq\|\mathbf{u}\|$, it holds that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|^{2}\right] & =\eta^{2} \mathbb{E}\left[\left\|\sum_{\iota \in \mathcal{I}_{t}} \mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}\right] \\
& =\eta^{2} \sum_{\iota \in \mathcal{I}_{t}} \mathbb{E}\left\|\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\langle\mathbf{S}_{\iota}^{t} \nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right), \mathbf{S}_{\kappa}^{t} \nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\rangle\right] \\
& \leq \eta^{2} \sum_{\iota} \mathbb{E}\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|^{2}+\eta^{2} \sum_{\iota \neq \kappa} \mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{\iota}, \xi_{\iota}\right)\right\|\left\|\nabla f\left(\hat{\mathbf{x}}_{\kappa}, \xi_{\kappa}\right)\right\| \mathbf{1}_{\left.\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]}\right] \\
& \leq \eta^{2} M^{2}\left(2 \tau+4 \tau^{2} \operatorname{Pr}\left[\xi_{\iota} \cap \xi_{\kappa} \neq \emptyset\right]\right)=2 \eta^{2} M^{2} \tau(1+2 \tau(2 \Delta / d))
\end{aligned}
$$

Substituting all bounds,

$$
\delta_{t+1} \leq(1-\eta \mu) \delta_{t}+\eta^{2} M^{2} C_{1}
$$

where $C_{1}=1+8 \tau \Delta / d+4 \eta \mu \tau+16 \eta \mu \tau^{2} \Delta / d$.
Yields $\mathcal{O}\left(\frac{L}{\mu \epsilon}\right)$ oracle complexity (same as SGD) provided τ is not too large

State-of-the-art for high-dimensional

- Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of Hogwild!

State-of-the-art for high-dimensional

- Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of Hogwild!
- Extensions to non-convex settings with more realistic assumptions [Cannelli et al., 2019]

State-of-the-art for high-dimensional

- Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of Hogwild!
- Extensions to non-convex settings with more realistic assumptions [Cannelli et al., 2019]
- Very large delays [Zhou et al., 2018]

State-of-the-art for high-dimensional

- Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of Hogwild!
- Extensions to non-convex settings with more realistic assumptions [Cannelli et al., 2019]
- Very large delays [Zhou et al., 2018]
- Proximal variants [Zhu et al., 2018]

State-of-the-art for high-dimensional

- Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of Hogwild!
- Extensions to non-convex settings with more realistic assumptions [Cannelli et al., 2019]
- Very large delays [Zhou et al., 2018]
- Proximal variants [Zhu et al., 2018]
- Decentralized variants? Skewed sparsity profile?

Conclusion

Summary

- Oracle complexity results for different SGD variants
- Intuition regarding variance reduction and coordinate descent
- When to apply which version?
- Unified and simplified proofs (extend to non-strongly convex settings also)
- State-of-the-art and open problems
(Allen-Zhu, Z. (2017).
Katyusha: The first direct acceleration of stochastic gradient methods.
The Journal of Machine Learning Research, 18(1):8194-8244.
围 Beck, A. (2017).
First-order methods in optimization, volume 25.
SIAM.
E- Bottou, L., Curtis, F. E., and Nocedal, J. (2018).
Optimization methods for large-scale machine learning. Siam Review, 60(2):223-311.

References if

围 Bubeck，S．（2019）．
Sebastien Bubeck＇s blog：I＇m a bandit．
https：／／blogs．princeton．edu／imabandit／2018／11／21／
a－short－proof－for－nesterovs－momentum／．
Accessed： 14 July 2019.
目 Bubeck，S．et al．（2015）．
Convex optimization：Algorithms and complexity．
Foundations and Trends in Machine Learning，8（3－4）：231－357．
䍰 Cannelli，L．，Facchinei，F．，Kungurtsev，V．，and Scutari，G．（2019）． Asynchronous parallel algorithms for nonconvex optimization． Mathematical Programming，pages 1－34．

References iif

國 Chen, Y. (2019).
Notes on large scale optimization for data science.
http://www.princeton.edu/~yc5/ele522_optimization/lectures.html.
Accessed: 23 June 2019.
围 Fang, C., Li, C. J., Lin, Z., and Zhang, T. (2018).
Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator.
In Advances in Neural Information Processing Systems, pages 689-699.
E Gorbunov, E., Hanzely, F., and Richtárik, P. (2019).
A unified theory of SGD: Variance reduction, sampling, quantization and coordinate descent.
arXiv preprint arXiv:1905.11261.

References iv

圊 Hanzely，F．，Mishchenko，K．，and Richtárik，P．（2018）．
SEGA：Variance reduction via gradient sketching．
In Advances in Neural Information Processing Systems，pages 2082－2093．
嗇 Johnson，R．and Zhang，T．（2013）．
Accelerating stochastic gradient descent using predictive variance reduction．
In Advances in neural information processing systems，pages 315－323．
嗇 Konevcnỳ，J．，Liu，J．，Richtárik，P．，and Takávc，M．（2015）．
Mini－batch semi－stochastic gradient descent in the proximal setting． IEEE Journal of Selected Topics in Signal Processing，10（2）：242－255．

围 Kovalev, D., Horváth, S., and Richtárik, P. (2019).
Don't jump through hoops and remove those loops: SVRG and Katyusha are better without the outer loop.
arXiv preprint arXiv:1901.08689.
圊 Krizhevsky, A. (2009).
Learning multiple layers of features from tiny images.
Master's thesis, University of Toronto.
Rin, H., Mairal, J., and Harchaoui, Z. (2015).
A universal catalyst for first-order optimization.
In Advances in neural information processing systems, pages 3384-3392.

References vi

(R. Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and Jordan, M. I. (2017).

Perturbed iterate analysis for asynchronous stochastic optimization.
SIAM Journal on Optimization, 27(4):2202-2229.
圊 Nguyen, L. M., Liu, J., Scheinberg, K., and Takávc, M. (2017).
Sarah: A novel method for machine learning problems using stochastic recursive gradient.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2613-2621.
Recht, B., Re, C., Wright, S., and Niu, F. (2011).
Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances in neural information processing systems, pages 693-701.

References vii

囯 Saunders, M. (2019).
Notes on first-order methods for minimizing smooth functions.
https://web.stanford.edu/class/msande318/notes/
notes-first-order-smooth.pdf.
Accessed: 23 June 2019.
Run, H., Lu, S., and Hong, M. (2019).
Improving the sample and communication complexity for decentralized non-convex optimization: A joint gradient estimation and tracking approach.
arXiv preprint arXiv:1910.05857.
围 Vandenberghe, L. (2019).
Optimization methods for large-scale systems.
http://www. seas.ucla.edu/~vandenbe/ee236c.html.
Accessed: 14 Aug. 2019.

References vili

Wang, F., Dai, J., Li, M., Chan, W.-c., Kwok, C. C.-h., Leung, S.-I., Wu, C., Li, W., Yu, W.-c., Tsang, K.-h., et al. (2016).

Risk assessment model for invasive breast cancer in Hong Kong women. Medicine, 95(32).
? Wang, Z., Ji, K., Zhou, Y., Liang, Y., and Tarokh, V. (2018).
Spiderboost: A class of faster variance-reduced algorithms for nonconvex optimization.

```
arXiv preprint arXiv:1810.10690.
```

回 Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye, Y., Li, L.-J., and Fei-Fei, L. (2018).

Distributed asynchronous optimization with unbounded delays: How slow can you go?
In International Conference on Machine Learning, pages 5970-5979.

References ix

击 Zhu, R., Niu, D., and Li, Z. (2018).
Asynchronous stochastic proximal methods for nonconvex nonsmooth optimization.
arXiv preprint arXiv:1802.08880.

