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Abstract. We answer some questions about two cardinal invariants associated

with separating and almost disjoint families and a partition relation involving
indecomposable countable linear orderings.

1. Introduction

The aim of this paper is to prove some results about two cardinals invariants
and partition relations. These cardinal invariants (denoted ls(c) and la(c)) were
introduced by Higuchi, Lempp, Raghavan and Stephan in [2]. The primary motivation
behind studying them was to shed some light on the order dimension of the Turing
degrees.

Definition 1.1 ([2]). Let κ be an infinite cardinal.

(1) ls(κ) is the least cardinality of a family F ⊆ P(κ) that separates countable
subsets of κ from points in the following sense: For every countable A ⊆ κ
and α ∈ κ \A, there exists X ∈ F such that α ∈ X and A ∩X = ∅.

(2) la(κ) is the least cardinal λ such that cf(λ) ≥ ω1 and there exists an almost
disjoint family A ⊆ [λ]cf(λ) with |A| ≥ κ. Here X,Y ∈ A are almost disjoint
iff |X ∩ Y | < cf(λ).

In [2], the authors showed ω1 ≤ ls(κ) ≤ la(κ) for every uncountable cardinal κ
and asked if this inequality could be strict when κ is the successor of a cardinal of
uncountable cardinality. This question also appears in [5] (Question 5.3) for the
case κ = c = ω3. We positively answer it by showing the following.

Theorem 1.2. Assume V |= GCH. Then there is a ccc forcing P such that
V P |= ls(ω3) = ω1 < la(ω3) = ω2 < c = ω3.

In the next section, we generalize our construction to separate la(κ) and a
stronger variant of ls(κ) defined as follows.

Definition 1.3. Let ω ≤ θ ≤ µ ≤ κ be cardinals. ls(κ, µ, θ) is the least cardinality
of a family F ⊆ P(κ) that is a (µ, θ)-separating family on κ which means the
following: For every A ∈ [κ]<µ and B ∈ [κ \ A]<θ, there exists X ∈ F such that
B ⊆ X and A ∩X = ∅.

It is easy to check that ls(κ) = ls(κ, ω1, ω) for every infinite κ.

Theorem 1.4. Suppose µ < κ, κ is Mahlo and λ > 2κ. There is a < µ-closed κ-cc
forcing P such that the following hold in V P.
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(1) κ = µ+.
(2) ls(λ, κ, µ) = κ.
(3) la(λ) ≥ κ+.

An order-theoretic variant of ls(κ) defined in [5] is los(κ). It equals the order
dimension of the Turing degrees when κ = c (see Corollary 2.11 in [5]).

Definition 1.5. Let κ be an infinite cardinal. Define los(κ) to be the least cardinality
of a family F of linear orders on κ that separates countable subsets of κ from points
in the following sense: For every countable A ⊆ κ and α ∈ κ \A, there exists ≺ in
F such that for every β ∈ A, β ≺ α.

Note that los(κ) ≤ ls(κ) ≤ la(κ) and each of these two inequalities can be strict
at κ = ω3 (by Theorem 1.2 above and Lemma 5.1 in [5]). So we ask the following.

Question 1.6. Is it consistent to have los(κ) < ls(κ) < la(κ) for some infinite
cardinal κ? What if κ = ω3?

1.1. Partition relations.

Definition 1.7. An order type ϕ is unionwise indecomposable iff for every linear
ordering (L,≺) of type ϕ and a partition L = A t B, at least one of (A,≺) and
(B,≺) contains a subordering of type ϕ.

Let ϕ,ψ, ϕ0, ϕ1, ψ0, ψ1 be order types. Recall that we write(
ψ
ϕ

)
−→

(
ψ0 ψ1

ϕ0 ϕ1

)
to denote the following statement: Whenever (X,≺0) and (Y,≺1) are linear orderings
of type ψ and ϕ respectively and c : X × Y → 2, there exist A ⊆ X and B ⊆ Y
such that one of the following holds.

(a) (A,≺0) has type ψ0, (B,≺1) has type ϕ0 and c � (A×B) is constantly 0.
(b) (A,≺0) has type ψ1, (B,≺1) has type ϕ1 and c � (A×B) is constantly 1.

The following questions were raised by Klausner and Weinert (Questions (C)
and (D) in [4]).

Question 1.8 ([4]). Does the following hold for all countable ordinals α and
unionwise indecomposable countable order types ϕ?(

ω1

ϕ

)
−→

(
α α
ϕ ϕ

)
Question 1.9 ([4]). Is it consistent to have the following for all countable ordinals
α and unionwise indecomposable countable order types ϕ?(

ω1

ϕ

)
−→

(
ω1 α
ϕ ϕ

)
In the final section, we will show that the answer to both of these questions is

yes. In fact, we have the following.

Theorem 1.10. Let c : ω1 × L → K where K < ω and (L,≺L) is a unionwise
indecomposable countable linear order. Then for each α < ω1, there exist A ∈ [ω1]α

and B ⊆ L such that (B,≺L) ∼= (L,≺L) and c � (A×B) is constant.
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Theorem 1.11. Assume Martin’s axiom plus c > ω1. Let c : ω1 × L → K where
K < ω and (L,≺L) is a unionwise indecomposable countable linear order. Then
there exist A ∈ [ω1]ω1 and B ⊆ L such that (B,≺L) ∼= (L,≺L) and c � (A × B) is
constant.

2. Consistency of ls(ω3) < la(ω3)

A natural attempt to get a model of ls(ω3) = ω1 < la(ω3) = ω2 would be to start
with a model of GCH and add ω3 subsets of ω1 using countable or finite conditions.
Both of these fail.

Fact 2.1. Assume V |= GCH. Let P consist of all partial functions from ω3 to
2 such that either (∀p ∈ P)(|dom(p)| < ω) or (∀p ∈ P)(|dom(p)| < ω1). Then
V P |= ls(ω3) = la(ω3).

Proof. Note that both of these forcings preserves all cofinalities (and hence cardinals).
If P consists of all finite partial functions from ω3 to 2, then Lemma 5.1 in [5] implies
that V P |= la(ω3) = ls(ω3) = ω2. So assume that P consists of all countable partial
functions from ω3 to 2. Then P does not add any new countable set of ordinals.
Since V |= 2ω = ω1, it follows that V ∩ 2<ω1 = V P ∩ 2<ω1 has size ω1 in V P.
Furthermore, as V P |= 2ω1 ≥ ω3 we can find a family F ∈ V P consisting of ω3

distinct subsets of ω1. For each A ∈ F , define SA = {1A � α : α < ω1}. Observe
that {SA : A ∈ F} is a mod countable almost disjoint family of subsets of 2<ω1 .
Since V P |= |2<ω1 | = ω1, it follows that V P |= la(ω3) ≤ ω1. As ω1 ≤ ls(ω3) ≤ la(ω3),
it follows that V P |= ls(ω3) = la(ω3) = ω1. �

An infinite ordinal δ is (additively) indecomposable iff for each X ⊆ δ, either
otp(X) = δ or otp(δ \X) = δ. Recall that the following are equivalent.

(i) δ is infinite and indecomposable.
(ii) Whenever A,B are sets of ordinals of order type < δ, otp(A ∪B) < δ.

(iii) δ = ωα (ordinal exponentiation) for some α ≥ 1.

Definition 2.2. For an uncountable cardinal κ and an indecomposable ordinal
δ < κ, define the forcing Qκ,δ as follows. p ∈ Qκ,δ iff the following hold.

(i) p is a function, dom(p) ⊆ κ and range(p) ⊆ 2.
(ii) otp(dom(p)) < δ.

(iii) {α ∈ dom(p) : p(α) = 1} is finite.

For p, q ∈ Qκ,δ, define p ≤ q iff q ⊆ p.

The following lemma shows that if δ ≥ ω1, then Qκ,δ collapses ω1.

Lemma 2.3. Let ω1 ≤ δ < κ be indecomposable. Then V Qκ,δ |= |δ| = ω.

Proof. Suppose V |= |δ| = θ ≥ ω1. Choose α < θ+ such that δ = ωθ+α =
θ · ωα = θ · γ where γ = ωα. Let G be Qκ,δ-generic over V and F =

⋃
G. Then

F : κ → 2. Define W = {β < δ : F (β) = 1}. An easy density argument shows
that otp(W ) = ω. For each k < ω, let αk be the kth member of W . Choose ξk < θ
and jk < γ such that αk = θ · jk + ξk. Define h : ω → θ by h(k) = ξk. Another
density argument shows that for every X ∈ V ∩ [θ]θ, range(h) ∩X 6= ∅. It follows
that V [G] |= |θ| = ω. �

Recall that a forcing Q has ω1 as a precaliber iff for every uncountable A ⊆ Q,
there exists an uncountable B ⊆ A such that every finite set of conditions in B has
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a common extension in Q. It is easy to see that if Q has ω1 as a precaliber, then it
satisfies ccc.

Lemma 2.4. Suppose κ is uncountable, δ < ω1 is indecomposable and Qκ,δ is as
in Definition 2.2. Then Qκ,δ has ω1 as a precaliber.

Proof. Let 〈pi : i < ω1〉 be a sequence of conditions in Q. Put Di = dom(pi),
Ai = {α ∈ Di : pi(α) = 0}, Bi = {α ∈ Di : pi(α) = 1} and D =

⋃
{Di : i < ω1}.

Let γ = otp(D). Clearly, γ < ω2. Let h : γ → D be the order preserving bijection.
By replacing each Di with h−1[Di], we can assume that Di ⊆ γ. By induction on
γ, we will show that there exists X ∈ [ω1]ω1 such that for every i, j ∈ X, pi and pj
are compatible (and hence pi ∪ pj ∈ Qκ,δ as otp(Di ∪Dj) < δ). This suffices since
any finite set S of conditions in 〈pi : i ∈ X〉 has a common extension (namely its
union) in Qκ,δ.

Case 1: γ is a successor ordinal. Let γ = ξ + 1. Applying the inductive
hypothesis to the sequence 〈pi � ξ : i < ω1〉, we can find Y ∈ [ω1]ω1 such that for
every i, j ∈ Y , pi � ξ and pj � ξ are compatible. Choose X ∈ [Y ]ω1 and k < 2
such that either (∀i ∈ X)(ξ /∈ Di) or (∀i ∈ X)(ξ ∈ Di ∧ pi(ξ) = k). Then X is as
required.

Case 2: cf(γ) = ω. Since each Bi is a finite subset of γ and cf(γ) = ω, we can
choose Y ∈ [ω1]ω1 and γ′ < γ such that for every i ∈ Y , Bi ⊆ γ′. Applying the
inductive hypothesis to 〈pi � γ′ : i ∈ Y 〉, we can find X ∈ [Y ]ω1 such that for every
i, j ∈ X, pi � γ′ and pj � γ′ are compatible. Since for every i ∈ X, pi � [γ′, γ) is
constantly 0, it follows that for every i, j ∈ X, pi and pj are compatible.

Case 3: cf(γ) = ω1. Let 〈γξ : ξ < ω1〉 be a continuously increasing cofinal
sequence in γ. Since Di’s are countable subsets of γ, we can choose a club E ⊆ ω1

consisting of limit ordinals such that for every ξ ∈ E and i < ξ, Di ⊆ γξ.
Let F = {ξ ∈ E : (∀i > ξ)(Di ∩ γξ is unbounded in γξ)}. We claim that F is

countable. Suppose not and fix a strictly increasing sequence 〈ξ(i) : i < ω1〉 in F .
Choose j such that ξ(δ) < j < ω1. Then sup(Dj ∩ γξ(i)) = γξ(i) for every i < δ.
Define f : δ → Dj by f(i) = min([γξ(i), γξ(i+1)) ∩Dj . Then f is strictly increasing
and hence otp(range(f)) = δ. But this implies that otp(Dj) ≥ otp(range(f)) = δ
which is impossible. So F must be countable.

Next fix a club C ⊆ E \F and a function h : C → ω1 such that for every ξ ∈ C,
h(ξ) > ξ and sup(Dh(ξ) ∩ γξ) < γξ. It follows that the function g : C → ω1 defined
by g(ξ) = min({ξ′ < ξ : sup(Dh(ξ) ∩ γξ) < γξ′}) is regressive on C. By Fodor’s
lemma, we can find a stationary S ⊆ C and ξ? < ω1 such that min(S) > ξ? and for
every ξ ∈ S, Dh(ξ) ∩ γξ ⊆ γ? = γξ? . Let T ∈ [S]ω1 be such that for every ξ1 < ξ2
in T , ξ1 < h(ξ1) < ξ2 < h(ξ2). Put Y = h[T ] and note that for every i < j in
Y , Di ∩ Dj ⊆ γ?. Applying the inductive hypothesis to 〈pi � γ? : i ∈ Y 〉, choose
X ∈ [Y ]ω1 such that for every i, j ∈ X, pi � γ? and pj � γ? are compatible. Since
for every i < j in X, Di ∩Dj ∩ [γ?, γ) = ∅, it follows that 〈pi : i ∈ X〉 has pairwise
compatible functions.

As γ < ω2, there are no more cases and we are done. �

Lemma 2.5. Let κ be an uncountable cardinal. Let P be the finite support product
of Qκ,δ’s where δ runs over the set of indecomposable ordinals < ω1. Then the
following hold.

(1) P has ω1 as a precaliber.
(3) V P |= ls(κ) = ω1.
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Proof. (1) Let 〈pi : i < ω1〉 be a sequence in P. By the ∆-system lemma, we can
find Y ∈ [ω1]ω1 and a finite set R of indecomposable countable ordinals such that
for every i < j in Y , dom(pi) ∩ dom(pj) = R. Using Lemma 4.4, we can choose
X ∈ [Y ]ω1 such that for every i, j ∈ X and δ ∈ R, pi(δ) and pj(δ) are compatible in
Qκ,δ. It follows any finite set of conditions in 〈pi : i ∈ X〉 has a common extension
in P. Therefore P has ω1 as a precaliber.

(2) Let G be P-generic over V . By Clause (1), all cofinalities (and hence
cardinals) from V are preserved in V [G]. Since κ ≥ ω1, it is easy to see that
ls(κ) ≤ ω1 – For any countable F ⊆ P(κ), consider A = {min(X) : X ∈ F} and
α ∈ κ \A. For the other inequality, we’ll show that in V [G], there is a family F of
size ω1 that separates countable subsets of κ from points. For each indecomposable
δ < ω1, define Xδ = {α < κ : (∃p ∈ G)(δ ∈ dom(p)∧α ∈ dom(p(δ))∧p(δ)(α) = 1)}.
Put F = {Xδ : δ < ω1 is indecomposable}. We claim that F separates countable
subsets of κ from points. For suppose A ⊆ κ is countable and α ∈ κ \ A. Since P
satisfies ccc, there exists B ∈ V ∩ [κ]<ω1 such that A ⊆ B and α /∈ B. Now a simple
density argument shows that there exists p ∈ G and δ ∈ dom(p) with δ > otp(B)
such that B ∪ {α} ⊆ dom(p(δ)), (∀β ∈ B)(p(δ)(β) = 0) and p(δ)(α) = 1. This
means that α ∈ Xδ and Xδ ∩ A = ∅. Hence F separates countable subsets of κ
from points. �

Theorem 2.6. Suppose ω1 ≤ θ and 2θ < κ = κω. Let P be the finite support
product of Qκ,δ’s where δ runs over the set of indecomposable ordinals < ω1. Then
V P |= c = κ, ls(κ) = ω1 and θ < la(κ).

Proof. Since P satisfies ccc and |P| = κω = κ, an easy name counting argument
shows that V P |= c = |P(ω)| ≤ κ. To see that V P |= c ≥ κ, just note that Qκ,ω l P
and Qκ,ω is the forcing for adding κ Cohen reals. Furthermore, Lemma 2.5 implies
that V P |= ls(κ) = ω1. So we only need to check that V P |= θ < la(κ).

Towards a contradiction, assume V P |= la(κ) ≤ θ. Then we can find p ∈ P, λ ≤ θ
and 〈Åi : i < κ〉 such that the following hold.

(i) cf(λ) = µ ≥ ω1.

(ii) For every i < κ, p 
 Åi ∈ [λ]µ.

(iii) For all i < j < κ, p 
 |Åi ∩ Åj | < µ.

For each i < κ, define Bi = {ξ < λ : (∃q ≤ p)(q 
 ξ ∈ Åi)}. Since P satisfies ccc,
it is easy to see that for every i < κ, |Bi| = µ. Furthermore, each Bi ∈ V ∩ P(λ)

and p 
 Åi ⊆ Bi. As V |= |P(λ)| = 2λ ≤ 2θ < κ, we can find X ∈ [κ]κ and B? ⊆ λ
such that for every i ∈ X, Bi = B?. Fix a bijection h : B? → µ. Since P satisfies ccc
and µ is regular uncountable, for every i < j in X, we can choose ξ(i, j) < µ such

that p 
 h[Åi ∩ Åj ] < ξ(i, j). As V |= κ > 2θ ≥ 2µ, by the Erdős-Rado theorem,

we can find Y ∈ [X]µ
+

and ξ? < µ such that for every i < j in Y , ξ(i, j) = ξ?.
Choose α ∈ B? such that ξ? < h(α) < µ. For each i ∈ Y , choose qi ≤ p such that

qi 
 α ∈ Åi. Now note that no two conditions in {qi : i ∈ Y } are compatible.
Since |Y | = µ+ > µ ≥ ω1, this contradicts the fact that P satisfies ccc. Hence
V P |= la(κ) > θ. �

Corollary 2.7. Assume V |= 2ωk = ωk+1 for k < 3. Let P be the finite support
product of Qω3,δ’s where δ runs over the set of indecomposable ordinals < ω1. Then
V P |= c = ω3, ls(ω3) = ω1 and la(ω3) = ω2.
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Proof. By Theorem 2.6, V P |= c = ω3, ls(ω3) = ω1 and la(ω3) > ω1. Since there is
an almost disjoint family in [ω2]ω2 of size ω3, we must have V P |= la(ω3) = ω2. �

3. Stronger separating families

Definition 3.1. Let µ < δ ≤ λ be infinite cardinals such that µ, δ are regular and
δ = δ<µ. Define a forcing Qλ,δ,µ as follows. p ∈ Qλ,δ,µ iff the following hold.

(i) p is a function, dom(p) ⊆ λ and range(p) ⊆ 2.
(ii) |dom(p)| < δ.

(iii) |{ξ ∈ dom(p) : p(ξ) = 1}| < µ.

For p, q ∈ Qλ,δ,µ, define p ≤ q iff q ⊆ p.

Lemma 3.2. Let Q = Qλ,δ,µ be as in Definition 3.1. Then the following hold.

(1) Q is < µ-closed.

(2) For every X ∈ [Q]δ
+

, there exists Y ∈ [X]δ
+

such that for any F ∈ [Y ]<µ,
there exists p ∈ Q such that (∀q ∈ F )(p ≤ q). So Q satisfies δ+-cc.

(3) V Q |= |δ| = µ.
(4) Forcing with Q preserves all cardinals ≤ µ and ≥ δ+ and collapses every

cardinal in (µ, δ+) to µ.

Proof. That Q is < µ-closed is easy to see. This implies that all cardinals ≤ µ are
preserved.

Next, suppose 〈pi : i < δ+〉 is a sequence of conditions in Q. Put Ai = dom(pi),
Bi = {ξ ∈ dom(pi) : pi(ξ) = 1} and A =

⋃
{Ai : i < δ+}. Then |A| ≤ δ+. WLOG,

we can assume A ⊆ δ+. Fix a club E ⊆ δ+ such that for each γ ∈ E and i < γ,
Ai ⊆ γ. Let S = {γ ∈ E : cf(γ) = δ}. Then S is stationary in δ+ and the function
h : S → δ+ defined by h(γ) = sup(Aγ ∩ γ) is regressive. By Fodor’s lemma, we can
find T ⊆ S and γ? < δ+ such that T is stationary in δ+ and h � T is constantly
γ?. Observe that, as T ⊆ E, for every i < j in T , Ai ∩ Aj ⊆ γ?. Since |γ?| ≤ δ
and δ<µ = δ, we can find B? ∈ [γ?]

<µ and W ⊆ T such that W is stationary in δ+

and for every i ∈W , Bi ∩ γ? = B?. It follows that 〈pi : i ∈W 〉 consists of pairwise
compatible functions. Clause (2) follows.

To see (3), suppose G is Q-generic over V . Put F =
⋃
G. Then F : λ→ 2. Let

W = {ξ < δ : F (ξ) = 1}. Fix a partition δ =
⊔
{Wi : i < δ} in V such that each

Wi ∈ [δ]δ. An easy density argument shows that otp(W ) = µ and for every i < δ,
W ∩Wi 6= ∅. It follows that V [G] |= |δ| = µ.

By Clause (1) all cardinals ≥ δ+ are preserved and by Clause (1) all cardinals
≤ µ are preserved. Hence Clause (4) follows from Clauses (1)-(3). �

Definition 3.3. Suppose ω ≤ µ = cf(µ) < κ < λ and S? = {δ : µ < δ <
κ and δ is inaccessible} is stationary in κ (so κ is Mahlo). Let Pλ,κ,µ be the Easton-
support product of 〈Qλ,δ,µ : δ ∈ S?〉. So p ∈ Pλ,κ,µ iff

(a) p is a function with dom(p) ⊆ S?,
(b) for every δ ∈ S? ∪ {κ}, sup(dom(p) ∩ δ) < δ and
(c) for every δ ∈ dom(p), p(δ) ∈ Qλ,δ,µ.

For p, q ∈ Pλ,κ,µ, define p ≤ q iff dom(q) ⊆ dom(p) and for every δ ∈ dom(q),
p(δ) ≤Qλ,δ,µ q(δ).

Lemma 3.4. Let µ, κ, λ, S? and P = Pλ,κ,µ be as above. Then the following hold.

(1) Forcing with P collapses all cardinals in the interval (µ, κ) to µ.
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(2) P is < µ-closed and κ-cc. So all cardinals ≤ µ are preserved and V P |= κ =
µ+.

Proof. For each δ ∈ S?, Qλ,δ,µ l P. Therefore Clause (1) follows from Lemma 3.2.
It is also clear that P is < µ-closed.

Let us check that P satisfies the κ-cc. Towards a contradiction, suppose 〈pi : i <
κ〉 is a sequence of pairwise incompatible conditions in P. Choose a club E ⊆ κ such
that for every γ ∈ E and i < γ, sup(dom(pi)) < γ. Since the function h : E∩S? → κ
defined by h(δ) = sup(dom(pδ) ∩ δ) is regressive, by Fodor’s lemma, we can find a
stationary subset T ⊆ E∩S? and γ? < κ such that for every δ ∈ T , h(δ) < γ?. Note
that for any δ1 < δ2 in T , dom(pδ1)∩dom(pδ2) ⊆ γ?. Define a coloring c : [T ]2 → γ?
by c({δ1, δ2}) is the least γ ∈ dom(pδ1) ∩ dom(pδ2) such that pδ1(γ) and pδ2(γ) are
incompatible in Qλ,γ,µ. Put θ = |γ?|++. Since |T | = κ is inaccessible and θ < κ,
using Erdős-Rado theorem, we can find X ∈ [T ]θ and γ < γ? such that c � [X]2

takes the constant value γ. But this means that {pδ(γ) : δ ∈ X} is an antichain of
size θ > γ+ in Qλ,γ,µ which is impossible by Lemma 3.2. �

Lemma 3.5. Let µ, κ, λ, S? and P = Pλ,κ,µ be as above. Then the following hold
in V P.

(1) There is a family F ⊆ P(λ) such that |F| = κ and for any A ∈ [λ]<κ and
B ∈ [λ]<µ, if A ∩ B = ∅, then there exists X ∈ F such that B ⊆ X and
A ∩X = ∅.

(2) If µ = ω, then ls(λ) = ω1. If µ ≥ ω1, the ls(λ) = µ.
(3) If λ > 2κ, then there is no family A ⊆ [κ]κ such that |A| = λ and for every

X 6= Y in A, |X ∩ Y | < κ.

Proof. (1) Let G be P-generic over V . For each δ ∈ S?, define

Xδ = {ξ < λ : (∃p ∈ G)(p(δ)(ξ) = 1)}.
Put F = {Xδ : δ ∈ S?}. Then |F| = κ. We claim that F is as required. For
suppose A ∈ [λ]<κ and B ∈ [λ]<µ. Since P is < µ-closed, B ∈ V . Since P satisfies
κ-cc, we can find C ⊆ V ∩ [λ \ B]<κ such that A ⊆ C. Now observe that the set
of conditions p ∈ P satisfying the following is dense in P: There exists δ ∈ dom(p)
such that (a)-(c) below hold.

(a) |C| < δ.
(b) (∀ξ ∈ B)(p(δ)(ξ) = 1).
(c) (∀ξ ∈ C)(p(δ)(ξ) = 0).

Choose such a p ∈ G and a witnessing δ ∈ dom(p). It follows that B ⊆ Xδ and
C ∩Xδ = A ∩Xδ = ∅.

(2) Recall that forcing with P preserves all cardinals ≤ µ and ≥ κ and collapses
all cardinals in the interval (µ, κ) to µ. So V P |= κ = µ+. First suppose µ = ω.
Then by (1), V P |= ls(λ) ≤ κ = µ+ = ω1. Since λ is uncountable, we also have
ls(λ) ≥ ω1. Therefore V P |= ls(λ) = ω1.

Next assume µ ≥ ω1. Fix δ ∈ S? and a bijection h : λ× δ → λ such that h ∈ V .
Let G be P-generic over V . For each i < δ, define

Xi = {ξ < λ : (∃p ∈ G)(p(δ)(h(ξ, i)) = 1)}.
Put F = {Xi : i < δ}. An easy density argument shows that for every A ∈

[λ]<δ ∩ V and B ∈ [λ \ A]<µ ∩ V , there exists i < δ such that A ∩ Xi = ∅ and
B ⊆ Xi. Since P is < µ-closed, forcing with P does not add new countable subsets
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of λ. Hence V [G] |= F separates countable subsets of λ from points. Since V [G] |=
|F| = |δ| = µ, it follows that ls(λ) ≤ µ.

Finally, to see that V P |= ls(λ) ≥ µ, towards a contradiction, fix p ∈ P, θ < µ

and 〈Åi : i < θ〉 such that (∀i < θ)(p 
 Åi ∈ P(λ)) and p 
 {Åi : i < θ} separates

countable subsets of λ from points. Define B̊ξ = {i < θ : ξ ∈ Åi}. As P is < µ-

closed, p 
 B̊ξ ∈ P(θ) ∩ V . Since V |= 2θ < κ < λ, we can choose X̊ ∈ [λ]λ ∩ V P,

q ∈ P and B? ∈ P(θ) ∩ V such that q ≤ p and q 
 (∀ξ ∈ X̊)(B̊ξ = B?). Choose

q ≤ p and ξ1 < ξ2 < λ such that q 
 {ξ1, ξ2} ⊆ X̊. Then q 
 B̊ξ1 = B̊ξ2 = B?.
Now observe that for every i < θ,

q 
 (ξ1 ∈ Åi ⇐⇒ i ∈ B̊ξ1 ⇐⇒ i ∈ B? ⇐⇒ i ∈ B̊ξ2 ⇐⇒ ξ2 ∈ Åi).

Therefore q 
 {Åi : i < θ} does not separate countable subsets of λ from points.
Hence V P |= ls(λ) = µ.

(3) Towards a contradiction, fix p ∈ P and 〈Åi : i < λ〉 such that

p 
 (∀i < λ)(Åi ∈ [κ]κ) and (∀i < j < λ)(|Åi ∩ Åj | < κ).

Since P satisfies the κ-cc, we can find c : [λ]2 → κ in V such that for every

i < j < λ, p 
 sup(Åi ∩ Åj) < c({i, j}). Since V |= λ > 2κ, by the Erdős-Rado

theorem, there are H ∈ [λ]κ
+

and γ < κ such that for every i < j in H, c({i, j}) = γ.

It now follows that p 
 {Åi \ γ : i ∈ H} is a family of κ+ pairwise disjoint sets in
[κ]κ which is impossible since all cardinals ≥ κ are preserved in V P. �

Theorem 3.6. Suppose µ < κ, κ is Mahlo and λ > 2κ. There is a < µ-closed κ-cc
forcing P such that

(1) V P |= κ = µ+.
(2) V P |= ls(λ, κ, µ) = κ.
(3) V P |= la(λ) ≥ κ+.

Proof. Readily follows from Lemmas 3.4 and 3.5. �

4. Partition relations

Let (L,≺) be a linear ordering. Throughout this section, we will assume that
|L| ≥ 2. Recall that (C0, C1) is a cut in (L,≺) iff C0 is downward closed in L, C1

is upward closed in L and L = C0 t C1.

Definition 4.1. A linear ordering (L,≺) is additively indecomposable iff for every
cut (C0, C1) in (L,≺), at least one of (C0,≺) and (C1,≺) contains an isomorphic
copy of (L,≺).

It is easy to see that unionwise indecomposable linear orderings are also additively
indecomposable but the converse is false. Recall that a linear ordering is scattered
iff it does not contain a copy of the rationals (Q, <). The following fact appears in
[3] (also Exercise 10.4.1 in [7]).

Fact 4.2. Let (L,≺L) be a scattered additively indecomposable linear ordering.
Then one of the following holds.

(a) For every cut (C0, C1) in L, if C0 6= ∅, then L embeds into C0. In this case,
we say that (L,≺L) is indecomposable to the left.

(b) For every cut (C0, C1) in L, if C1 6= ∅, then L embeds into C1. In this case,
we say that (L,≺L) is indecomposable to the right.
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Definition 4.3. Let (L,≺) be a unionwise indecomposable linear ordering. An
ultrafilter U on L is uniform iff for every A ∈ U , L embeds into A.

The following lemma is a straightforward generalization of the results of Section
13.3 in [8].

Lemma 4.4. Assume MA+c > ω1. Let (L,≺L) be a countable scattered unionwise
indecomposable linear ordering. Then there exists a uniform ultrafilter UL on L
such that for every family F ⊆ UL, if |F| ≤ ω1, then there exists X ∈ UL such
that for every A ∈ F , X \A is indecomposably bounded in (L,≺) which means the
following.

(a) Either (L,≺L) is indecomposable to the left and for every cut (C0, C1) in
L with C0 6= ∅, C0 ∈ UL and X \A is bounded from below in (L,≺L) or

(b) (L,≺L) is indecomposable to the right and for every cut (C0, C1) in L with
C1 6= ∅, C1 ∈ UL and X \A is bounded from above in (L,≺L).

Proof. Let C be the class of all countable scattered indecomposable linear orders.
Laver [6] showed that there is a rank function r : C → ω1 such that the following
hold.

(i) For every L ∈ C, either r(L) = 1 and L ∈ {ω, ω?} or L is the sum of an ω
or ω? sequence of members of C of strictly smaller ranks.

(ii) If L1, L2 ∈ C and L1 embeds into L2, then r(L1) ≤ r(L2).

We construct UL by induction on the rank of L. If r(L) = 1, this is clear: Say
(L,≺L) = (ω,<). Using MA, build a sequence 〈Ai : i < c〉 of ⊆?-descending
sequence in [ω]ω such that for every X ⊆ ω, there exists i < c such that either
Ai ⊆ X or X ∩Ai = ∅. Take Uω to be the filter generated by {Ai : i < c}.

Now suppose r(L) > 1. Let us consider the case when L is the sum of an ω-
sequence of members of C of smaller ranks. The case when L is the sum of an
ω?-sequence is similar. Fix {(Ln,≺n) : n < ω} such that Ln’s are pairwise disjoint,
r(Ln) < r(L), L =

⋃
{Ln : n < ω} and for every a, b ∈ L, a ≺L b iff a ∈ Lm, b ∈ Ln

and (m < n or (m = n ∧ a ≺n b)).
We can assume that (L,≺L) is indecomposable to the right. Otherwise, since L

is indecomposable, it would embed into some Ln which is impossible since r(Ln) <
r(L). Fix Uω as above. For each n < ω, let Un be a uniform ultrafilter on Ln such
that for every A ⊆ Un, if |A| ≤ ω1, then there exists X ∈ Un such that for every
A ∈ A, X \A is indecomposably bounded in (Ln,≺n).

Define UL = {X ⊆ L : {n : X ∩ Ln ∈ Un} ∈ Uω}. We claim that UL is as
required. To see this, suppose F ⊆ UL and |F| ≤ ω1. We can assume that L ∈ F .
For A ∈ F and n < ω, define SA = {n : A ∩ Ln ∈ Un}. Choose B ∈ Uω such
that B \ SA is finite for every A ∈ F . Let An = {A ∩ Ln : A ∈ F} ∩ Un. Choose
Xn ∈ Un such that Xn \W is indecomposably bounded in Ln for every W ∈ An.
Put Y =

⋃
{Xn : n ∈ B}. It is clear that Y ∈ UL.

Choose 〈xn(k) : k < ω〉 such that for every n, one of (?)n, (??)n below holds.

(?)n Either Ln is indecomposable to the right and the following hold.
(1) Xn \W is bounded from above in Ln for every W ∈ An.
(2) 〈xn(k) : k < ω〉 is increasing and right-cofinal in (Ln,≺n).

(??)n Or Ln is indecomposable to the left and the following hold.
(2) Xn \W is bounded from below in Ln for every W ∈ An.
(3) 〈xn(k) : k < ω〉 is decreasing and left-cofinal in (Ln,≺n).
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For each A ∈ F , fix NA < ω such that B \ N ⊆ SA. Choose fA : ω → ω such
that for every n ∈ B \ NA, if (?)n holds, then (Y \ A) ∩ Ln is ≺n-bounded from
above by xn(fA(n)) and if (??)n holds, then then (Y \A)∩Ln is ≺n-bounded from
below by xn(fA(n)). Using MAω1

, fix f? : ω → ω dominating every function in
{fA : A ∈ F}. Put Z =

⋃
{Y ∩Wn : n < ω} where

Wn =

{
(xn(f?(n)),∞)Ln if (?)n holds

(−∞, xn(f?(n)))Ln otherwise

Then Z ∈ UL (as Y \ Z /∈ UL) and for every A ∈ F , Z \ A is indecomposably
bounded in (L,≺L). �

Proof of Theorem 1.11: If (L,≺L) contains a copy of rationals, then this is
Theorem 6.7 in [4] (For a slightly stronger result see Lemma 4.5 below). So assume
it is scattered. Fix UL as in Lemma 4.4 and suppose c : ω1 × L → K. For each
α < ω1, fix Aα ∈ UL and kα < K such that for every x ∈ Aα, c(α, x) = kα. Fix
X ∈ [ω1]ω1 such that kα = k? does not depend on α < X. Now apply Lemma
4.4 to the family {Aα : α ∈ X} to get B ∈ UL such that for each α ∈ X, B \ Aα
is indecomposably bounded in (L,≺α) by yα ∈ L. Choose Y ∈ [X]ω1 such that
yα = y? does not depend on α ∈ Y . Choose D ⊆ B such that (∀α ∈ Y )(D ⊆ Aα)
and (D,≺L) ∼= (L,≺L). Then c � (Y ×D) is constant. �

Proof of Theorem 1.10: We use an absoluteness argument like the one in [1].
Let W be a ccc extension of V satisfying MA + c > ω1. Let α < ω1. Fix linear
orders ≺1 and ≺2 on ω such that otp(ω,≺1) = (α,<) and otp(ω,≺2) = (L,≺L).
Let T be the set of all pairs (s, t) such that

• s, t are functions, dom(s) = dom(t) = N < ω,
• range(s) ⊆ ω1, range(t) ⊆ L,
• c � (range(s)× range(t)) is constant and
• for every m,n < N , (m ≺1 n ⇐⇒ s(m) < s(n)) and (m ≺2 n ⇐⇒
t(m) ≺L t(n)).

Define (s, t) �T (s′, t′) iff s ⊆ s′ and t ⊆ t′ and note that (T,�T ) is well-founded
iff there is no c-homogeneous set of type α × L. But this is absolute between V
and W since a tree is well-founded iff there is a rank function on it. So it suffices
to construct such a homogeneous set in W . But this was already done above. �

Lemma 4.5. Let f : ω1 ×Q→ K where K < ω.

(1) Assume MAω1 (or just p > ω1). Then there exist X ∈ [ω1]ω1 and Y ⊆ Q
such that Y is somewhere dense in Q and f � (X × Y ) is constant.

(2) For each α < ω1, there exist X ⊆ ω1 and Y ⊆ Q such that otp(X) = α, Y
is somewhere dense in Q and f � (X × Y ) is constant.

Proof. (1) It is enough to show this for K = 2 for then we can argue by induction
on K. For each i < ω1, put Ai = {x ∈ Q : f(i, x) = 1}. The following is Lemma
6.11 in [4].

Fact 4.6 ([4]). Let 〈Ai : i < ω1〉 be a sequence of subsets of Q. There exist
W ∈ [ω1]ω1 , c < 2 and a rational interval J such that for every finite F ⊆ W ,⋂
i∈F

Aci is dense in J . Here, Aci = Ai if c = 0 and Q \Ai otherwise.
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Using Fact 4.6, we can find a rational interval J and W ∈ [ω1]ω1 such that
either the intersection of any finite subfamily of {Ai : i ∈ W} is dense in J or the
intersection of any finite subfamily of {Q \ Ai : i ∈ W} is dense in J . WLOG, let
us assume that the former situation holds. Define a forcing P as follows: p ∈ P iff
p = (up, vp, Ip) where

(i) up ∈ [Q]<ω and vp ∈ [W ]<ω.
(ii) Ip is a finite family of rational subintervals of J .

(iii) For each I ∈ Ip, up ∩ I 6= ∅.
(iv) For p, q ∈ P, define p ≤ q iff

(a) uq ⊆ up, vq ⊆ vp, Iq ⊆ Ip.
(b) If x ∈ up \ uq and i ∈ vq, then x ∈ Ai.

P is σ-centered (as there are countably many up’s) and if G ⊆ P is sufficiently
generic (use p > ω1) then X = W =

⋃
{vp : p ∈ G} and Y =

⋃
{up : p ∈ G} are as

claimed in (1).

(2) Fix a linear order ≺α on ω such that otp(ω,≺α) = (α,<). For each rational
interval J , fix a computable enumeration 〈Jn : n < ω〉 of all rational subintervals
of J and define X = XJ to be the set of all finite sequences s = 〈(xn, in) : n < N〉
such that the following hold.

• For every n < N , xn ∈ Jn.
• 〈in : n < N〉 is an injective sequence of countable ordinals.
• For every m,n < N , (im < in ⇐⇒ m ≺α n).
• f � ({in : n < N} × {xn : n < N}) is constant.

Define a relation R = RJ on X by sRt iff t ⊆ s. Note that (XJ , RJ) is not
well-founded iff there exist X ⊆ ω1 and Y ⊆ Q such that otp(X) = α, Y is dense
in J and f � (X × Y ) is constant.

Now we can start repeating the proof of part (1). Choose a rational interval J
and the forcing P as there and get a P-generic filter G over V . In V [G], (XJ , RJ)
is not well-founded. By absoluteness, the same holds in V and we are done. �
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