
Computability Theory Notes*

Ashutosh Kumar

March 21, 2024

1 Recursive functions

Definition 1.1. A finitary function on ω is an n-ary function f : ωn → ω for some 1 ≤ n < ω. The set of
primitive recursive functions, denoted PRec, is defined to be the smallest set of finitary functions on ω
satisfying the following.

1. (Identically Zero) Every f : ωn → ω defined by f ≡ 0 is in PRec.

2. (Projections) For each 1 ≤ k ≤ n, the function f : ωn → ω defined by f(x1, . . . , xn) = xk is in PRec.

3. (Successor function) f : ω → ω defined by f(x) = x+ 1 is in PRec.

4. (Compositions) If f : ωn → ω is in PRec and for each 1 ≤ k ≤ n, gk : ωm → ω is in PRec, then
h : ωm → ω is in PRec where h is defined by

h(x1, . . . , xm) = f(g1(x1, . . . , xm), g2(x1, . . . , xm), . . . , gn(x1, . . . , xm))

5. (Recursion) If g : ωn+1 → ω and h : ωn−1 → ω are both in PRec, then f : ωn → ω is in PRec where

f(x1, x2, . . . , xn) =

{
h(x2, . . . , xn) if x1 = 0

g(f(x1 − 1, x2, . . . , xn), x1 . . . , xn) if x1 ≥ 1

Definition 1.2. An n-ary relation R ⊆ ωn is primitive recursive iff its characteristic function is primitive
recursive.

Most elementary functions/relations that arise in arithmetic are primitive recursive. For example,
addition, multiplication, exponentiation, factorial, Primes. The following is a useful tool in showing these
facts (see Prop. 2.2 in Miller’s notes).

Exercise 1.3. Suppose R(~x, y) is an (n + 1)-ary primitive recursive relation on ω and f : ωn → ω is
primitive recursive. Then (∃y ≤ f(~x))(R(~x, y)) is also primitive recursive.

Observe that the set of primitive recursive functions is countable so most functions f : ωn → ω are not
primitive recursive. It is not difficult to convince oneself that every primitive recursive function is computable
in the sense that one can write a computer program that computes it.

Is every computable function also primitive recursive? The answer is no. Let us see why. To every
primitive recursive function f , one can associate a “certificate” C which shows how f was built from the basic
functions (identically zero, projections and successor) using a finite number of applications of compositions
and recursion. We can enumerate all of these certificates in a computable way as C1, C2, C3, Now define
a function f : ω → ω as follows. If Cx is a certificate of a unary primitive recursive function g : ω → ω, then
f(x) = g(x) + 1. Otherwise, f(x) = 0. It should be intuitively clear that f is computable in the sense that
one could write a computer program to compute it. We claim that f is not primitive recursive. Suppose it
is. Then f has a certificate C. Since every certificate appears in the list C1, C2, . . . , we can find an x such
that C = Cx. Now by definition, f(x) = f(x) + 1: A contradiction. So f is not primitive recursive. A more
natural example follows.

*These notes will be periodically revised. If you find an error, please let me know at krashu@iitk.ac.in

1

Exercise 1.4. The Ackermann function A : ω2 → ω is defined as follows: A(0, n) = n + 1, A(m + 1, 0) =
A(m, 1) and A(m+ 1, n+ 1) = A(m,A(m+ 1, n)). Show that A is not primitive recursive.

Definition 1.5. A partial finitary function on ω is a function f such that dom(f) ⊆ ωn and range(f) ⊆ ω
for some 1 ≤ n < ω. The set of general recursive functions, denoted GRec, is defined to be the smallest
set of partial finitary functions on ω that satisfies the following.

1. Every primitive recursive function is in GRec.

2. (Compositions) If f is an n-ary function in GRec and for each 1 ≤ k ≤ n, gk is an m-ary function in
GRec, then h is in GRec where h is defined by

h(x1, . . . , xm) = f(g1(x1, . . . , xm), g2(x1, . . . , xm), . . . , gn(x1, . . . , xm))

3. (Primitive recursion) If g, h ∈ GRec where g is (n + 1)-ary and h is (n − 1)-ary, then f is in GRec
where

f(x1, x2, . . . , xn) =

{
h(x2, . . . , xn) if x1 = 0

g(f(x1 − 1, x2, . . . , xn), x1 . . . , xn) if x1 ≥ 1

4. (Unbounded search) If g ∈ GRec is an (n+ 1)-ary, then f ∈ GRec where f is an n-ary partial function
on ω defined by: f(x1, . . . , xn) = z iff g(z, x1, . . . , xn) = 0 and for every y < z, g(y, x1, . . . , xn) is
defined and is nonzero.

We saw that there is a computable function f : ω → ω that is not primitive recursive. The proof of
this used diagonalization to produce a computable function which disagreed with every primitive recursive
function on some input. Let us try to produce such a proof for the class of general recursive functions.

As before, we can associate to every general recursive function f , a certificate C which describes how f
was built from the basic functions using a finite number of applications of compositions, primitive recursion
and unbounded search. Let C1, C2, . . . be a computable listing of all such certificates. As before, define a
partial unary function f on ω as follows: If Cx is the certificate of a unary general recursive function g, then
f(x) = 1 + g(x). Clearly, f is a partial computable function. Let us assume that f is general recursive and
try to get a contradiction. Fix x such that Cx is a certificate of f . Now if x ∈ dom(f), then f(x) = 1+f(x)
which is impossible. So the only thing we can conclude here is that x /∈ dom(f) which is not a contradiction.
One could try to modify this argument by insisting that C1, C2, . . . be a list of certificates of only total
computable functions. But it is not clear at all if we can list them in a computable way. We will later show
that we can’t.

Exercise 1.6. Convince yourself that the Ackermann function is general recursive.

2 Turing machines

X<ω is the set of all finite sequences of members of X. It is sometimes also denoted by X? (Kleene star
notation). For σ ∈ X?, we denote the length of σ by |σ| or length(σ).

Definition 2.1. An alphabet Σ is a set of symbols. A string/word over Σ is a member of Σ<ω. The
empty string is denoted by 〈〉. The concatenation of two strings σ and τ , denoted σ_τ , is the string
obtained by listing the entries of τ after σ.

Example: Let Σ = {0, 1}. Then Σ<ω = {〈〉, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, . . . }.

Definition 2.2. Let Σ be an alphabet. We say that L is a language over Σ iff L ⊆ Σ<ω.

Example: Let Σ be an alphabet. Define Palindrome(Σ) = {σ ∈ Σ<ω : σ = r(σ)} where r(σ) is the
string obtained by listing the entries in σ in reverse order. For example, r(〈a, b, c〉) = 〈c, b, a〉.

Definition 2.3. A Turing machine T consists of the following.

2

(1) A finite alphabet Σ with a blank symbol B ∈ Σ.

(2) A finite set S whose members of S are called states of T .

(3) A start state qs ∈ S and a halting state qh ∈ S.

(4) A transition function τ that is a partial function from Σ× S to Σ× S × {−1, 1}.

Let T = (Σ, S,B, qs, qh, τ) be a TM. A tape configuration is a function c : Z → Σ (Z is the set of all
integers) such that {n ∈ Z : c(n) 6= B} is finite. Given an initial tape configuration c? : Z→ Σ, the run of
T on c? is a sequence 〈(kn, cn, qn) : n < ω〉 defined as follows.

(a) (k0, c0, q0) = (0, c?, qs).

(b) If either qn = qh or (cn(kn), qn) /∈ dom(τ), then (kn+1, cn+1, qn+1) = (kn, cn, qn).

(c) If qn 6= qh, (cn(kn), qn) ∈ dom(τ) and τ(cn(kn), qn) = (s, q, j), then

(i) cn+1 � (Z \ {kn}) = cn � (Z \ {kn}) and cn+1(kn) = s,

(ii) qn+1 = q and

(iii) kn+1 = kn + j.

The triplet (kn, cn, qn) describes the machine configuration. It stores the “head position”, “tape
configuration” and “state” of the TM at stage n of the run of the machine. Clause (a) is saying that the
machines starts at tape position 0, tape configuration c? and the start state qs. Clause (b) is saying that
if the current state is the halting state, then the machine halts and nothing changes in the future. If
the transition function is undefined, then we say that the machine stalls (but not halts). Clause (c) is
saying that if the current state is not the halting state and the transition function is defined at the current
configuration then the tape head changes the symbol under the head to a new symbol, moves the tape head
left/right and enters a new state as described by the transition function.

Definition 2.4. Let T = (Σ, S,B, qs, qh, τ) be a TM. Put Γ = Σ \ {B}. Let σ, ρ ∈ Γ?. We say that on input
σ, the machine T halts and outputs ρ iff for some n < ω, the run of T on c? at stage n equals (kn, cn, qn)
where

� c? � |σ| = σ and c?(k) = B for all k /∈ dom(σ),

� qn is the halting state and

� cn � |ρ| = ρ and cn(k) = N for all k /∈ dom(ρ).

The partial function from Γ? to Γ? computed by T , denoted fT , is the set of all pairs (σ, ρ) such
that T on input σ halts and outputs ρ.

Let h be a unary partial function on ω. We say that h is (partial) Turing computable iff there is a
Turing machine T = (Σ, S,B, qs, qh, τ) such that Σ = {1, B} and for every m,n < ω, f(m) = n iff fT (σ) = ρ
where σ = 1n and ρ = 1m.

The notion of a Turing computable n-ary partial function on ω (for n ≥ 2) can be defined as follows. Let
(x1, x2, · · · , xn) 7→ 〈x1, x2, · · · , xn〉 be a fixed primitive recursive bijection from ωn to ω. Let g be an n-ary
partial function on ω. Define hg by hg(〈x1, x2, · · · , xn〉) = g(x1, x2, · · · , xn). Then we say that g is an n-ary
partial Turing computable function iff hg is a unary partial Turing computable function.

3 Universal functions

Fact 3.1 (Kleene normal form). For each k ≥ 1, there exists a primitive recursive (k + 2)-ary function
P (e, z, x1, · · · , xk) such that for every partial Turing computable k-ary function f , there exists e < ω such
that

(1) dom(f) = {(x1, · · · , xk) ∈ ωk : (∃z)(P (e, z, x1, · · · , xk) = 0)} and

3

(2) for every (x1, · · · , xk) ∈ dom(f),

f(x1, · · · , xk) = the least z such that P (e, z, x1, · · · , xk) = 0.

Proof idea. The function P (e, z, ~x) is defined as follows. Write e = 〈n, s, r〉 and run the nth Turing
machine on input ~x for s-stages. If r codes the run of the machine for s-stages and the machine configuration
after stage s is in the halting state with output z, then P (e, z, ~x) = 0. Otherwise, P (e, z, ~x) = 1. We omit
the somewhat tedious coding details that are needed to verify that P is indeed a PRec function.

Fact 3.2. A finitary partial function on ω is general recursive iff it is partial Turing computable.

Proof idea. The fact that every partial Turing computable function is general recursive follows from
Fact 3.1. The converse is established by designing Turing machines that compute the zero, projections
and successor functions and showing that the set of partial Turing computable functions is closed under
composition, primitive recursion and unbounded search.

Besides Turing machines, there are many other “models of computation” like register machines, BASIC
and C programs. The set of partial functions that are computable according to any of these models coincides
with the set of partial Turing computable functions. In view of this, we don’t have to commit ourselves to
any fixed model of computation and we drop the adjective “Turing” from “Turing” computable.

The Church-Turing thesis says that every “intuitively partial computable function” is Turing computable.
This is useful because on several occasions, to show that a given function is partial computable, we just
describe an informal description of a “computer program” that can compute it. When challenged, we can
always replace it by a Turing machine or a C-program etc. This is similar to how a math publication almost
never provides an actual formal proof (say, in ZFC) but everyone agrees that such a proof can be provided.

Corollary 3.3 (Universal partial computable function). For each k ≥ 1, define a (k + 1)-ary partial
computable function Uk by

Uk(e, x1, · · · , xk) = least z such that P (e, z, x1, · · · , xk) = 0

where P is as in Fact 3.1. Then for every k-ary partial computable f , there exists e < ω such that

� dom(f) = {(x1, · · · , xk) ∈ ωk : (e, x1, · · · , xk) ∈ dom(Uk)} and

� for every (x1, · · · , xk) ∈ dom(f), f(x1, · · · , xk) = Uk(e, x1, · · · , xk).

We will write U instead of U1 and think of U(e, x) as the (possibly non-existent) output when the eth
computer program is run with input x.

4 Indexing/Numbering

Convention. From now on, “a computable function” will mean “a total computable function”.

Definition 4.1. The eth partial computable function, denoted ϕe, is defined by ϕe(x) = U(e, x). We say
that ϕe(x) converges (resp. diverges) and write ϕe(x) ↓ (resp. ϕe(x) ↑) iff n ∈ dom(ϕe) (resp. n /∈ dom(ϕe)).

Lemma 4.2 (Padding). There is an injective computable function h : ω2 → ω such that

(∀e, n < ω)(ϕe = ϕh(e,n)).

Proof. Define h(e, n) to be the index of the program obtained by adding 〈e, n〉-lines of harmless code (like
declare a new variable and increment it 〈e, n〉 times) to the eth program.

Lemma 4.3 (snm theorem). Suppose n,m ≥ 1 and θ(~x, ~y) is an (n + m)-ary partial computable function.
Then there exists an injective computable s : ωn → ω such that

(∀~x ∈ ωn)(∀~y ∈ ωm)[θ(~x, ~y) = ϕs(~x)(〈y1, · · · , ym〉)].

4

Proof. Fix a program P that computes θ. For each ~x, define g(~x) to be the index of the program that on
input 〈y1, · · · , ym〉 runs P with input (~x, ~y). Define s(~x) = h(g(~x), 〈x1, · · · , xn〉) (this is to ensure that s is
injective) where h is the padding function of Lemma 4.2.

Theorem 4.4 (Kleene fixed-point/recursion theorem). For every computable f : ω → ω, there are infinitely
many e such that ϕe = ϕf(e).

Proof. Define θ(e, x) = ϕϕe(e)(x) and note that θ is partial computable. Using s1
1-theorem, fix an injective

computable s : ω → ω such that θ(e, x) = ϕs(e)(x). Let i be any index for the computable function f ◦ s (so
ϕi = f ◦ s). Put e = s(i). Then for every x,

ϕe(x) = ϕh(i)(x) = θ(i, x) = ϕϕi(i)(x) = ϕf(s(i))(x) = ϕe(x).

It follows that for every index i for f ◦ s, e = h(i) is as required. As h is injective and (by padding) there
are infinitely many such i’s, we get infinitely many e satisfying ϕe = ϕf(e).

Quines are programs that on any input print their own source code. In our setup, eth program is a
Quine iff ϕe is the (total) constant function e. Let us show that Quines exist. Define θ(e, x) = e for all
e, x < ω. By s1

1-theorem, there is an injective computable s : ω → ω such that (∀e, x)(e = θ(e, x) = ϕs(e)(x)).
So for every e, ϕh(e) is the constant function e. By recursion theorem, there are infinitely many e such that
ϕe = ϕs(e) ≡ e.

Exercise 4.5. Show that there are infinitely many e such that dom(ϕe) = {e}.

Definition 4.6 (Halting problem). The halting problem is the set K = {e < ω : ϕe(e) ↓}.

Definition 4.7. I ⊆ ω is an index set iff for every e, e′, if ϕe = ϕe′ , then (e ∈ I ⇐⇒ e′ ∈ I).

Note that I is an index set iff ω \ I is an index set.

Exercise 4.8 (Joe Miller). Without using the recursion theorem, show that K is not an index set.

Theorem 4.9 (Rice theorem). The only computable index sets are ∅, ω.

Proof. Let I /∈ {∅, ω} be an index set. Fix e′ such that dom(ϕe′) = ∅ and WLOG assume that e′ /∈ I
(otherwise replace I with ω \ I). Fix e′′ ∈ I. Define θ(e, x) = ϕe′′(x) if e ∈ K and undefined otherwise.
Note that θ is partial computable. Using s1

1-theorem fix an injective computable s : ω → ω such that
(∀e, x)(θ(e, x) = ϕs(e)(x)). Now observe that

e /∈ K =⇒ (∀x)(θ(e, x) is undefined) =⇒ (∀x)(ϕs(e)(x) ↑) =⇒ ϕs(e) = ϕe′ =⇒ s(e) /∈ I

and

e ∈ K =⇒ (∀x)(θ(e, x) = ϕe′′(x)) =⇒ (∀x)(ϕs(e)(x) = ϕe′′(x)) =⇒ ϕs(e) = ϕe′′ =⇒ s(e) ∈ I

Suppose I is computable. Then K is also computable since the function s is computable and to check if
e ∈ K, we can check if s(e) ∈ I. But K is not computable (Exercise 4.8).

5 C.e. sets

Definition 5.1. X ⊆ ω is c.e. (computably enumerable) iff either X = ∅ or there is a computable function
f : ω → ω such that range(f) = X.

Theorem 5.2. The following are equivalent for any X ⊆ ω.

(1) X is c.e.

(2) X is the range of some partial computable function.

(3) X is the domain of some partial computable function.

5

(4) For some e < ω, X = dom(ϕe).

(5) There exists a computable R ⊆ ω2 such that X = {y : (∃x)((x, y) ∈ R)}.

Proof. (1) =⇒ (2): Clear.

(2) =⇒ (3): Fix a partial computable θ such that range(θ) = X. Consider a program P that on input
n starts computing θ(0), θ(1), · · · and halts as soon as it finds some k such that θ(k) ↓= n. Let ψ be the
partial computable function computed by P . Then dom(ψ) = X.

(3) =⇒ (4): Clear.

(4) =⇒ (5): Define R to be the set of all pairs (x, y) ∈ ω2 such that the eth Turing machine on input y
halts in ≤ x steps.

(5) =⇒ (1): Fix R ⊆ ω2 computable and define X = {n : (∃m)((m,n) ∈ R)}. Assume X 6= ∅ and fix
some n? ∈ X. Let f : ω → ω be defined as follows. f(0) = n?. f(n + 1) is the smallest k ≤ n such that
k /∈ {f(0), · · · , f(n)} and for some m ≤ n, (m, k) ∈ R. If there is no such k, define f(n + 1) = n?. Then f
is computable and range(f) = X.

Lemma 5.3. X ⊆ ω is computable iff both X and ω \X are c.e.

Proof. If X is computable, then both X,ω \X are computable and therefore c.e. Next assume that X,ω \X
are c.e. Fix programs P , Q such that for every n, P halts on input n iff n ∈ X and Q halts on input n iff
n ∈ ω \X. Consider a program R that on input n starts running both P and Q on input n and outputs 1 if
P halts and 0 if Q halts. Then R computes the characteristic function of X. So X is computable.

Lemma 5.4. For every f : ω → ω, the graph of f is c.e iff f is computable.

Proof. If f is computable, then its graph is also computable since (n,m) ∈ f iff f(n) = m. Now assume
that the graph of f is c.e. and fix a program P such that for every (n,m) ∈ ω2, P halts on input (n,m) iff
f(n) = m. Consider the program Q that on input n starts running P on inputs (n, 0), (n, 1), · · · and halts
and outputs m as soon as P halts on input (n,m). Then Q computes f . Hence f is computable.

Exercise 5.5. Show that K = {e : ϕe(e) ↓} and K0 = {〈e, n〉 : ϕe(n) ↓} are c.e. and not computable.

Exercise 5.6. Show that every infinite c.e. set has an infinite computable subset..

Definition 5.7. Let A,B ⊆ ω. We say that A,B are computably separable iff there exists a computable
R ⊆ ω such that A ⊆ R and B ⊆ (ω \R).

Theorem 5.8. There exists a pair of disjoint c.e. sets that are computably inseparable.

Proof. Define A = {e : ϕe(e) ↓= 1} and B = {e : ϕe(e) ↓= 0}. Observe that both A and B are c.e. Towards
a contradiction, suppose R ⊆ ω is computable, A ⊆ R and B ∩R = ∅. Then h(n) = 1− 1R(n) is computable
(here 1R is the characteristic function of R). So there must be some e? < ω such that h = ϕe? . In particular,
ϕe? is total. Now check that h(e?) 6= ϕe?(e?). A contradiction

Exercise 5.9. Show that there is a partial computable (unary) function that cannot be extended to a total
computable function. Hint: Use Theorem 5.8.

Definition 5.10. 〈As : s ∈ R〉 is a uniformly computable sequence iff R is computable and the set

{(n, s) : s ∈ R and n ∈ As}

is computable.

Exercise 5.11. Show that A ⊆ ω is c.e. iff there is a uniformly computable sequence 〈As : s ∈ R〉 such that
(∀s)(As ⊆ As+1) and A =

⋃
s∈RAs.

Definition 5.12. The eth c.e. set is defined by We = dom(ϕe). Let We,s be the set of all n ≤ s such that
ϕe(n) converges in ≤ s steps.

Observe that 〈We,s : e, s < ω〉 is a uniformly computable sequence of finite sets. Furthermore, We,s ⊆
We,s+1 and We =

⋃
s<ωWe,s. We think of We,s as the s-stage (finite) approximation to We.

6

6 Mapping reductions

Definition 6.1. Let A,B ⊆ ω. We say that A m-reduces to B and write A ≤m B iff there exists a
computable f : ω → ω such that

(∀n)(n ∈ A ⇐⇒ f(n) ∈ B).

Definition 6.2. Let A,B ⊆ ω. We say that A 1-reduces to B and write A ≤1 B iff there exists an injective
computable f : ω → ω such that

(∀n)(n ∈ A ⇐⇒ f(n) ∈ B).

Definition 6.3. Define A ≡m B iff A ≤m B and B ≤m A. Similarly, A ≡1 B iff A ≤1 B and B ≤1 A.

Show that ≤m and ≤1 are both reflexive and transitive relations on P(ω). Conclude that ≡m and ≡1

are equivalence relations with countable equivalence classes. Also note that A ≤1 B implies A ≤m B. Is the
converse true?

Definition 6.4 (Joins). For A,B ⊆ ω, define the join of A,B by

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

Exercise 6.5. Show that A ≤1 A⊕B, B ≤1 A⊕B and A ≡m A⊕A.

Exercise 6.6 (Joe Miller). Show that there is an infinite co-infinite set A ⊆ ω such that A⊕A �1 A.

Exercise 6.7. Assume A ≤m B. Then B is computable (resp. c.e.) implies A is computable (resp. c.e.).

Theorem 6.8. Every c.e. set is 1-reducible to K.

Proof. Let A be any c.e. set. Define θ(e, x) = 0 if e ∈ A and undefined otherwise. Note that θ is
partial computable because A is c.e. Using s1

1-theorem, fix an injective computable s : ω → ω such that
(∀e, x)(θ(e, x) = ϕs(e)(x)). Now check that

e ∈ A =⇒ (∀x)(θ(e, x) = 0) =⇒ ϕs(e)(s(e)) ↓ =⇒ s(e) ∈ K

and
e /∈ A =⇒ (∀x)((e, x) /∈ dom(θ)) =⇒ ϕs(e)(s(e)) ↑ =⇒ s(e) /∈ K

So s is a 1-reduction of A to K.

Theorem 6.9 (Myhill). Suppose A,B ⊆ ω are such that A ≤1 B and B ≤1 A. Show that there is a
computable bijection f : ω → ω such that f [A] = B.

Proof. Fix computable injections g, h : ω → ω such that for every x, (x ∈ A ⇐⇒ g(x) ∈ B) and
(x ∈ B ⇐⇒ h(x) ∈ A). Define a uniformly computable sequence 〈fs : s < ω〉 of finite partial injective
functions on ω as follows. Put f0 = ∅. Suppose fs has been defined such that dom(fs) is finite and
(∀x ∈ dom(fs))(x ∈ A ⇐⇒ fs(x) ∈ B). We consider two cases.

s is even: Choose the least x such that x /∈ dom(fs). We will find a y /∈ range(hs) such that x ∈ A ⇐⇒
y ∈ B and define fs+1 = fs ∪ {(x, y)} as follows.

Put x0 = x and y0 = g(x0). If y0 /∈ range(fs), then y = y0 works. Otherwise, put x1 = h−1
s (y0) and

y1 = g(x1). If y1 /∈ range(fs), then define y = y1 works. Otherwise, we continue in this fashion until we find
some yk /∈ range(fs) in which case we define y = yk. This must happen at some stage because y0, y1, · · · are
pairwise distinct and range(fs) is finite so they cannot keep appearing in range(fs). It is also easy to check
that x ∈ A ⇐⇒ yk ∈ A because both fs and g map members/non-members of A to members/non-members
of B.

s is odd: Choose the least y such that y /∈ range(fs) and repeat the argument for the even case with h
instead of g to find an x /∈ dom(fs) such that y ∈ B ⇐⇒ x ∈ A and define fs+1 = fs ∪ {(x, y)}

Define f =
⋃
s<ω fs. Note that the even stages ensure that dom(f) = ω and the odd stages guarantee

that range(f) = ω. So f is a bijection on ω and the graph of f is c.e. (by Exercise 5.11). Hence by Lemma
5.4, f is computable.

7

7 Immune and simple sets

Definition 7.1. X ⊆ ω is immune iff X is infinite and it does not have any infinite c.e. (equivalenty,
computable) subset.

Exercise 7.2. Let F be any countable family of infinite subsets of ω. Show that there is an infinite X ⊆ ω
such that no set in F is a subset of X. Conclude that there are immune sets.

By Exercise 5.6, a c.e. set cannot be immune. What about complements of c.e. sets?

Definition 7.3. E ⊆ ω is a simple set iff E is c.e. and ω \ E is immune.

Exercise 7.4. Show that a c.e. set E ⊆ ω is simple iff ω \ E is infinite and for every e,

We is infinite =⇒ We ∩ E 6= ∅.

Theorem 7.5 (Post). There is a simple set.

Proof. Define a uniformly computable sequence 〈Es : s < ω〉 as follows. Define E0 = ∅. At stage s+ 1, Es+1

is defined as follows. Search for the least e < s such that We,s ∩Es = ∅ and (∃x)(x > 2e and x ∈We,s) and
define Es+1 = Es ∪ {x}. If there is no such x, then Es+1 = Es.

It is clear that 〈Es : s < ω〉 is uniformly computable. Therefore E =
⋃
s<ω Es is c.e. We claim that E is

simple. First note that (∀e)(|E ∩ {0, 1, · · · , 2e}| ≤ e) (Why?). Hence ω \ E is infinite.
Next, it suffices to show that for every e, if We is infinite, then We ∩ E 6= ∅. Suppose this fails and fix

the least e for which We is infinite and We ∩E = ∅. Now choose a stage s > e such that the following hold.

(a) (∃x)(x > 2e and x ∈We,s).

(b) For every e′ < e, if We′ ∩ E 6= ∅, then We′,s ∩ Es 6= ∅.

Then at stage s+ 1, we must have Es+1 = Es ∪ {x} for some x ∈We,s. A contradiction.

Exercise 7.6. Show that if A ≤1 E, ω \A is infinite and E is simple, then A is simple.

Exercise 7.7. Show that K is not simple and conclude that K �1 E for any simple set E.

8 Oracles, Turing degrees and the jump operator

Definition 8.1. An oracle Turing machine T consists of the following.

(1) A finite alphabet Σ with a blank symbol B ∈ Σ.

(2) A finite set S whose members of S are called states of T .

(3) A start state qs ∈ S and a halting state qh ∈ S.

(4) A transition function τ that is a partial function from Σ× Σ× S to Σ× S × {−1, 1} × {−1, 1}.

Let T = (Σ, S,B, qs, qh, τ) be an oracle TM. A tape configuration is a function c : Z → Σ such that
{n ∈ Z : c(n) 6= B} is finite. An oracle is a function X : Z → Σ. Given an initial tape configuration
c? : Z→ Σ, the run of T with oracle X on c? is a sequence 〈(kn, jn, cn, qn) : n < ω〉 defined as follows.

(a) (k0, j0, c0, q0) = (0, 0, c?, qs).

(b) If either qn = qh or (cn(kn), X(jn), qn) /∈ dom(τ), then (kn+1, jn+1, cn+1, qn+1) = (kn, jn, cn, qn).

(c) If qn 6= qh, (cn(kn), X(jn), qn) ∈ dom(τ) and τ(cn(kn), X(jn), qn) = (s, q, k, j), then

(i) cn+1 � (Z \ {kn}) = cn � (Z \ {kn}) and cn+1(kn) = s,

(ii) qn+1 = q and

(iii) kn+1 = kn + k and jn+1 = jn + j.

8

(kn, jn, cn, qn) describes the machine configuration. It stores the “work head position”, “oracle head
position”, “tape configuration” and “state” of the TM at stage n of the run of the machine.

One can now go ahead and define what it means for a partial finitary function to be Turing computable
from an oracle X ⊆ ω analogous to Definition 2.4. We skip the obvious details.

Definition 8.2. Let X ∈ 2ω. The set of all general recursive functions in X, denoted GRec(X) is the
smallest set of partial finitary functions on ω that contains X, all general recursive functions and is closed
under compositions, primitive recursion and unbounded search.

Fact 8.3. For every partial finitary function f on ω and oracle X ⊆ ω,

f is Turing computable in X iff f ∈ GRec(X).

Let 〈Pe : e < ω〉 be a computable enumeration of all oracle machines with alphabet Σ = {1, B}. The
eth Turing functional Φe is a partial function from 2ω × ω to ω defined as follows. For each X ∈ 2ω and
n,m < ω, we write ΦXe (n) ↓= m iff Pe with oracle X on input n halts and outputs m. We write ΦXe (n) ↑ iff
Pe does not halt on input n.

Lemma 8.4 (Finite oracle use). Assume ΦXe (n) ↓. There exists a finite F ⊆ ω such that for every Y ∈ 2ω,

Y � F = X � F =⇒ ΦXe (n) ↓= ΦYe (n) ↓ .

For any such finite F ⊆ ω, we call X � F an oracle use of the computation ΦXe (n). We will
sometimes write ΦX�F

e (n) ↓ etc. in this case.

Definition 8.5. Suppose σ ∈ <ω2 and e, n < ω. We write Φσe (n) = m iff for some X ∈ 2ω such that σ ⊆ X
and ΦXe (n) and σ is a use of this computation.

Definition 8.6 (Turing reduction). Let X,Y ∈ 2ω. Define X ≤T Y iff there exists e < ω such that
(∀n < ω)(ΦYe (n) = X(n)).

The oracle analogues of padding lemma, snm-theorem and Kleene recursion theorem are as follows. Their
proofs are similar.

Lemma 8.7 (Padding). There is an injective computable function h : ω2 → ω such that

(∀X ∈ 2ω)(∀e, n < ω)(ΦXe = ΦXh(e,n)).

Lemma 8.8 (snm-theorem). Suppose n,m ≥ 1, X ∈ 2ω and θ(~x, ~y) is an (n + m)-ary partial computable
function in X. Then there exists an injective computable s : ωn → ω such that

(∀~x ∈ ωn)(∀~y ∈ ωm)[θ(~x, ~y) = ΦXs(~x)(〈y1, · · · , ym〉)].

Lemma 8.9 (Fixed point). For every computable f : ω → ω, there are infinitely many e such that

(∀X ∈ 2ω)(ΦXe = ΦXf(e)).

It is easy to see that ≤T is a reflexive and transitive relation on 2ω. Define X ≡T Y iff X ≤T Y and
Y ≤T X. Then ≡T is an equivalence relation on 2ω. Then {Y ∈ 2ω : X ≡T Y } is the ≡T -equivalence class
of X and is countable. Let D be the set of all ≡T -equivalence classes. Members of D are called Turing
degrees. For a,b ∈ D, we write a ≤T b iff X ≤T Y for every X ∈ a and Y ∈ b. 0 is the Turing degree of
any computable set.

Exercise 8.10. X ≤m Y implies X ≤T Y .

Definition 8.11 (Turing jump). For each X ∈ 2ω, define the (Turing) jump of X by

X ′ = {e < ω : ΦXe (e) ↓}.

Lemma 8.12. The following hold for all X,Y ∈ 2ω.

9

(1) X ≤1 X
′ and X ≤T X ′.

(2) X ′ �T X.

(3) X ≤T Y =⇒ X ′ ≤1 Y
′.

(4) X ≡T Y =⇒ X ′ ≡T Y ′.

Proof. (1) Define θ(e, n) = 0 if e ∈ X and undefined otherwise. Then θ is a partial computable function
in X. By the s1

1-theorem, there is an injective computable h : ω → ω such that for every e, n < ω,
θ(e, n) = ΦXh(e)(n). It follows that e ∈ X iff ΦXh(e)(h(e)) ↓ iff h(e) ∈ X ′. So X ≤1 X

′. That X ≤T X ′
follows from Exercise 8.10.

(2) Exercise.

(3) Assume X ≤T Y . Define θ(e, n) = ΦXe (e). Since X ≤T Y , if follows that θ is partial computable
in Y . By the s1

1-theorem, there is an injective computable h : ω → ω such that for every e, n < ω,
θ(e, n) = ΦYh(e)(n). It follows that e ∈ X ′ iff (∀n)(θ(e, n) ↓) iff ΦYh(e)(h(e)) ↓ iff h(e) ∈ Y ′. So X ′ ≤1 Y

′.

(4) Follows from (3).

Definition 8.13 (Jump of a degree). The jump of a Turing degree a ∈ D (denoted by a′) is the Turing
degree of X ′ for any X ∈ a}. This is well-defined by By Lemma 8.12(4). For each n ≥ 1, 0n is defined by
01 = 0′ and 0n+1 = (0n)′.

Exercise 8.14. Show that 0′ is the degree of the halting problem K.

Recall that for X,Y ∈ 2ω, the join of X,Y is defined by X ⊕ Y = {〈m,n〉 : X(m) = 1, Y (n) = 1}
(Definition 6.4). It is easy to see that if X1 ≡T X2 and Y1 ≡T Y2, then X1 ⊕ Y1 ≡T X2 ⊕ Y2.

Definition 8.15 (Join of two degrees). For a,b ∈ D, define a ⊕ b, called the join of a and b, to be the
Turing degree of X ⊕ Y where X ∈ a and Y ∈ b.

Exercise 8.16. Show that a⊕ b is the ≤T -least upper bound of {a,b} in D.

9 Incomparable degrees

Lemma 9.1. The poset (D,≤T) satisfies the following.

(1) |D| = |2ω| = c.

(2) 0 is the ≤T -least member of D.

(3) Every finite subset of D has a ≤T -least upper bound.

(4) For every a ∈ D, there exists b ∈ D such that a <T b.

(5) Every countable subset of D has a ≤T -upper bound.

Proof. Each D is a partition of the uncountable set 2ω and each a ∈ D has size ω. Therefore (1) holds. (2)
is trivial. (3) follows from Exercise 8.16. For (4), take b = a′.

Finally, assume {an : n < ω} ⊆ D. For each n < ω, fix some Xn ∈ an and define X = {〈n, k〉 : Xn(k) =
1}. Then each Xn ≤T X and therefore the Turing degree of X is an upper bound of {an : n < ω}. So (5)
holds.

We will next address the question: Is ≤T a linear order on D?

Exercise 9.2. Define a distance function on 2ω by d(X,X) = 0 and d(X,Y) = 2−∆(X,Y) if X 6= Y where
∆(X,Y) = min({n : X(n) 6= Y (n)}).

10

(1) Show that (2ω, d) is a compact metric space.

(2) For a finite F ⊆ ω and σ : F → 2, define [σ] = {X ∈ 2ω : σ ⊆ X}. Show that the family {[σ] : σ ∈ <ω2}
is a clopen basis of (2ω, d).

Let B be the σ-algebra generated by the family of all open sets in 2ω. Member of B are called Borel
subsets of 2ω. There is a unique probability measure µ : B → [0, 1] (called Lebesgue/fair coin-
toss/Bernoulii measure) that satisfies µ([σ]) = 2−|σ| for every σ ∈ <ω2.

Exercise 9.3 (Lebesgue density). Suppose E ⊆ 2ω is Borel and µ(E) > 0. Then for each ε > 0, there exists
σ ∈ <ω2 such that µ(E ∩ [σ]) > (1− ε)µ([σ]).

Exercise 9.4 (Inner regularity). For every Borel E ⊆ 2ω,

µ(E) = sup ({µ(K) : K ⊆ E and K is compact}) .

Let X ⊆ 2ω. We say that X is nowhere dense in 2ω iff for every nonempty open U ⊆ 2ω, there exists
nonempty open V ⊆ 2ω such that X∩V = ∅. X is meager in 2ω iff there is a countable family {An : n < ω}
where each An is a nowhere dense subsets of 2ω such that X ⊆

⋃
n<ω An. The Baire category theorem

implies that every non-empty open subset of 2ω is non-meager in 2ω.

Exercise 9.5. Suppose X ⊆ 2ω is non-meager. Show that for some σ ∈ <ω2, X ∩ [σ] is dense in [σ].

Lemma 9.6. For each X ∈ 2ω and e < ω, {Y ∈ 2ω : ΦYe = X} and {Y ∈ 2ω : X ≤T Y } are both Borel
subsets of 2ω.

Proof. Put Ae = {Y ∈ 2ω : ΦYe = X}. Note that for each n < ω, Ve,n = {Y ∈ 2ω : ΦYe (n) = X(n)} is an
open subset of 2ω (see Lemma 8.4). Hence Y ∈ Ae iff (∀n < ω)(Y ∈ Ve,n). So Ae =

⋂
n<ω Ve,n is a countable

union of open sets and hence Borel. Since {Y ∈ 2ω : X ≤T Y } =
⋃
e<ω Ae, it is also Borel.

Lemma 9.7 (Sacks). Suppose X ∈ 2ω is non-computable. Then {Y ∈ 2ω : X ≤T Y } is both meager and
has measure zero.

Proof. Put A = {Y ∈ 2ω : X ≤T Y } and Ae = {Y ∈ 2ω : ΦYe = X}. Then A =
⋃
e<ω Ae. It is enough to

show that for every e < ω, Ae is both meager and has measure zero. Both Ae, A are Borel by Lemma 9.6.
First assume µ(Ae) > 0 and we will show that X is computable which is a contradiction. By Exercise

9.3, we can find σ ∈ <ω2 such that µ(Ae ∩ [σ]) > 0.9µ([σ]).
Consider the following program P that on input n searches for a finite set {τk : k < N} ⊆ <ω2 and

j ∈ {0, 1} such that

� [τk]’s are pairwise disjoint,

�

∑
k<N

µ([τk]) > 0.5µ([σ]) and

� Φτke (n) ↓= j.

and outputs j.

Exercise 9.8. Show that this search is successful and P computes X.

Now assume that Ae is non-meager. Once again, we’ll show that X is computable. By Exercise 9.5, we
can fix some σ ∈ <ω2 such that Ae ∩ [σ] is dense in [σ]. Consider the program Q that on input n, searches
for some τ ∈ <ω2 such that σ ⊆ τ and Φτe (n) ↓= j and outputs j. Using the fact that Ae ∩ [σ] is dense in
[σ], it is easy to see that this search is successful and X(n) = j.

Corollary 9.9. For every non-computable X ∈ 2ω, there exists Y ∈ 2ω such that X,Y are ≤T -incomparable.

Proof. The set {Y : Y ≤T X} is countable and therefore is both meager and has measure zero. Also, by
Lemma 9.7, {Y : X ≤T Y } is both meager and has measure zero. The claim follows.

11

Exercise 9.10. Let ν = µ⊗ µ be the product measure on 2ω × 2ω. Show that {(X,Y) ∈ 2ω × 2ω : X ≤T Y }
is both ν-null and meager in 2ω × 2ω.

Theorem 9.11 (Kleene-Post). There exist incomparable Turing degrees a,b <T 0′.

Proof. Fix a computable enumeration of <ω2 and inductively construct 〈σn, τn : n < ω〉 as follows.

(a) σ0 = τ0 = ∅.

(b) Given σn, τn, define σn+1 and τn+1 as follows. Put ` = |σn| and k = |τn|.
First suppose n = 2e is even. We ask the following:

Is there some ρ ∈ <ω2 such that σn ≺ ρ and Φρe(k) ↓?
If the answer is yes, we choose the first such ρ, choose j ∈ {0, 1} such that j 6= Φρe(k), and define
σn+1 = ρ and τn+1 = τn ∪ {(k, j)}. If the answer is no, then we define σn+1 = σn ∪ {(`, 0)} and
τn+1 = τn ∪ {(k, 0)}.
If n = 2e+ 1 is odd, we repeat the previous case with the roles of σn and τn reversed.

Put X =
⋃
n,ω σn and Y =

⋃
n<ω τn.

Exercise 9.12. Show that X and Y are Turing incomparable.

Note that the set {(e, σ, k) : (∃ρ ∈ <ω2)(σ � ρ and Φρe(k) ↓)} is c.e. and therefore computable in K.
Therefore, the sequence 〈(σn, τn) : n < ω〉 is uniformly computable in K. It follows that X,Y <T K.

Definition 9.13. A c.e. degree is the Turing degree of a c.e. set.

10 Turing independence

For a finite F = {x0, x1, · · · , xn} ⊆ 2ω, define the Turing join of F by
⊕

i<n xi = x ∈ 2ω where x(nj + k) =
xk(j) for every k < n and j < ω.

Definition 10.1. X ⊆ 2ω is Turing independent iff for every finite F ⊆ X and y ∈ X \ F , y is not
computable from the Turing join of F .

Definition 10.2. X ⊆ 2ω is maximal Turing independent iff X is Turing independent and for every Turing
independent Y ⊇ X, Y = X.

Exercise 10.3. Use Zorn’s lemma to show that Turing independent set can be extended to a maximal Turing
independent set.

Exercise 10.4. Generalize Lemma 9.7 to show that for every x, y ∈ 2ω, if x �T y, then {z ∈ 2ω : x ≤T y⊕z}
is both meager and has measure zero. Use this to show that every maximal Turing independent set is
uncountable.

Definition 10.5. T ⊆ <ω2 is a tree iff for every σ ∈ T and τ ∈ <ω2, if τ � σ, then τ ∈ T . For a tree
T ⊆ <ω2, define the set of branches through T , by

[T] = {x ∈ 2ω : (∀n < ω)(x � n ∈ T)}.

Members of a tree T ⊆ <ω2 will sometimes be referred to as nodes in T . If σ ∈ T has no proper extension
in T , we say that σ is a leaf/terminal node in T . Note that a finite tree is completely determined by the
set of its terminal nodes.

Exercise 10.6. For X ⊆ 2ω, define TX = {y � k : y ∈ X and k < ω}. Show that TX ⊆ <ω2 is a leafless
tree and [TX] is the closure of X in 2ω. Conclude that X ⊆ 2ω is closed in 2ω iff there exists a tree T ⊆ <ω2
such that [T] = X.

For σ ∈ n2 and k < 2, define σ_k = σ ∪ {(n, k)}. If T ⊆ <ω2 is a tree σ ∈ T and both σ_0, σ_1 ∈ T ,
then we say that σ is a splitting node of T .

12

Definition 10.7. A tree T ⊆ <ω2 is perfect iff for every σ ∈ T , there exists τ ∈ T such that σ � τ and τ_0
and τ_1 are both in T .

Let (X, d) be a metric space and P ⊆ X. Recall that a P is a perfect subset of X iff P is closed in X
and P has no isolated points (for every y ∈ P , and r > 0, there exists x ∈ P such that 0 < d(x, y) < r).

Exercise 10.8. Let P ⊆ 2ω. Show that P is perfect subset of 2ω iff there is a perfect tree T ⊆ <ω2 such
that P = [T].

Theorem 10.9 (Sacks). For every perfect tree T ⊆ <ω2, there exists a perfect tree S ⊆ <ω2 such that S ⊆ T
and [S] is Turing independent.

The inductive constructions involved in the proof of Theorem 10.9 and several later results share many
common features and are referred to as forcing constructions. The following notions will be useful to to
describe these common features.

10.1 Forcing

Definition 10.10. A partial ordering/poset/forcing notion is a pair (P,≤P) such that ≤P is a binary relation
on P that satisfies the following.

(a) (Reflexive) For all p ∈ P, p ≤P p.

(b) (Transitive) For all p, q, r ∈ P, if p ≤P q and q ≤P r, then q ≤P r.

Note that we do not require anti-symmetry p ≤P q ∧ q ≤P p =⇒ p = q. We sometimes refer to members
of P as conditions read p ≤P q by “the condition p extends q” or “p is a stronger condition than q”. Some
examples of forcing notions follow.

Example 10.11. (1) P = <ω2 ordered by σ ≤P τ iff σ � τ . This is called Cohen forcing.

(2) P is the set of all perfect trees T ⊆ <ω2 ordered by T ≤P S iff T ⊆ S. This is called Sacks forcing.

(3) P is the set of all perfect trees T ⊆ <ω2 such that (∀x ∈ [T])(T ≤T x) (every branch of T computes T).
Members of P are called recursively pointed perfect trees. The ordering is T ≤P S iff T ⊆ S. We call
(P,≤P) forcing with recursively pointed perfect trees.

Following standard abuses of notation, we’ll sometimes write “P is a poset” instead of “(P,≤P) is poset”
when the ordering is clear from the context.

Definition 10.12 (Filter on a poset). Let P be a poset. A filter on P is a nonempty subset G ⊆ P satisfying
the following.

(i) For every p, q ∈ G, there exists r ∈ G such that r ≤P p and r ≤P q.

(ii) For every p ∈ G and q ∈ P , if p ≤P q, then q ∈ G.

Definition 10.13 (Compatible, Dense). Let P be a poset.

(a) We say that p, q ∈ P are compatible, iff p, q have a common extension in P ; i.e., there exists r ∈ P such
that r ≤P p and r ≤P q. We say that p, q are incompatible, denoted p ⊥P q, iff they are not compatible.

(b) A subset D ⊆ P is dense in P iff for every p ∈ P, there exists q ∈ D such that q ≤P p.

Lemma 10.14. Suppose P is poset and F is a countable family of dense subsets of P. Then there is a filter
G on P such that for every D ∈ F , G ∩D 6= 0.

Proof. Let 〈Dn : n < ω〉 enumerate F . Inductively construct 〈pn : n < ω〉 as follows. p0 ∈ D0 is arbitrary.
Suppose p0 ≥P p1 ≥P · · · ≥P pn have been chosen such that for every k ≤ n, pk ∈ Dk. Since Dn+1 is dense
in P, we can find pn+1 ∈ Dn+1 such that pn+1 ≤P pn.

Define G = {q ∈ P : (∃n < ω)(pn ≤P q)}. Then it is easy to check that G is a filter on P that meets every
Dn.

13

Proof of Theorem 10.9. Fix a perfect tree T . Define a forcing P as follows. p ∈ P iff p ⊆ T is a finite
tree. For p, q ∈ P, define q ≤P p iff p ⊆ q and for every terminal node τ in q, there is a terminal node σ in p
such that σ � τ .

For each e, n < ω, let De,n consist of those p ∈ P which satisfy the following.

(i) Every terminal node in p has length ≥ n.

(ii) For every injective sequence σ = 〈σk : k ≤ N + 1〉 of terminal nodes in p, if there exists 〈xk : k ≤ N〉
such that each σk � xk ∈ [T] and ΦXe is total where X =

⊕
k≤N xk, then there exists m ∈ dom(σN+1)

such that Φρe(m) ↓6= σN+1(m) where ρ =
⊕

k≤N σk.

Let En be the set of p ∈ P such that for every terminal node σ ∈ p,

|{τ ∈ p : τ � σ and τ is a splitting node in p}| ≥ n.

Claim 10.15. For every e, n < ω, De,n and En are both dense in P.

Proof. That En is dense follows from the fact that T is a perfect tree and is left as an exercise. Next, fix
e, n and p ∈ P. We will find an extension q ∈ P of p such that q ∈ De,n.

Definition 10.16. Suppose p ∈ P and σ = 〈σk : k ≤ N + 1〉 is a finite sequence of terminal nodes in
p and e < ω. We write Splite(σ, p, T) for the following statement. For every 〈xk : k ≤ N〉 where each
σk � xk ∈ [T], there exists ` < |σN+1| such that letting X =

⊕
k≤N xk,

(A) either ΦXe (`) ↑ or

(B) ΦXe (`) ↓6= σN+1(`) and the oracle use of the computation ΦXe (`) ↓ is contained in
⊕

k≤N σk.

Lemma 10.17. Suppose p ∈ P, σ = 〈σk : k ≤ N + 1〉 is a finite sequence of terminal nodes in p, e < ω and
Splite(σ, p, T) holds. Let q ∈ P, q ≤ p and τ = 〈τk : k ≤ N + 1〉 be a finite sequence of terminal nodes in p
such that σk � τk for each k ≤ N + 1. Then Splite(τ , q, T) holds.

Proof. Left to the reader.

Definition 10.18. Suppose p ∈ P and e < ω. We say that Splite(p, T) holds iff for every finite sequence
σ = 〈σk : k ≤ N + 1〉 of terminal nodes in p, Splite(σ, p, T) holds.

Lemma 10.19. For every p ∈ P and e < ω, there exists q ∈ P such that Splite(q, T) holds and

(∀σ ∈ q \ p)(∃τ ∈ p)(τ is a terminal node of p and τ � σ).

Proof. Done in class.

By Lemma 10.14, there is a filter G on P such that for every e, n < ω, G ∩ De,n 6= ∅ and G ∩ En 6= ∅.
Put

⋃
G = S. Now check that S ⊆ T is a perfect tree and [S] is Turing independent.

Definition 10.20. P is a locally finite/countable poset iff the set of predecessors of every member of P
is finite/countable.

Exercise 10.21. Let P be a locally finite poset of size |P| ≤ |R| = c. Show that P is isomorphic to a
subordering of the Turing degrees (D,≤T).

Question 10.22 (Sacks). Is every locally countable poset isomorphic to a subordering of the Turing degrees?

14

11 Exact pair

Theorem 11.1 (Spector). Let 〈xn : n < ω〉 be a ≤T -increasing sequence in 2ω. Then there exist a 6= b in
2ω such that

{y ∈ 2ω : y ≤T a and y ≤T b} = {y ∈ 2ω : (∃n)(y ≤T xn)}.

We call any such pair {a, b} an exact pair for {xn : n < ω}.

Proof. Define a forcing P as follows. p ∈ P iff p = (Kp, p0, p1) where Kp < ω, p0, p1 : Kp × ω → 2 and for
every k < K and i < 2, {n < ω : pi(k, n) 6= xk(n)} is finite. For p, q ∈ P define p ≤P q iff Kq ≤ Kp and
qi ⊆ pi for each i < 2.

Lemma 11.2. Let De,e′ be the set of all p ∈ P such that the following hold. If there are x0, x1 : ω × ω → 2
and ` < ω such that p0 ⊆ x0, p1 ⊆ x1 and Φx0

e0 (`) ↓6= Φx1
e1 (`) ↓, then there exists k < ω such that Φp0e0 (k) ↓6=

Φp1e1 (k) ↓. Then De,e′ is dense in P.

Proof. Done in lecture.

Exercise 11.3. Let En = {p ∈ P : Kp ≥ n}. Then En is dense in P for each n < ω.

By Lemma 10.14, there is a filter G on P such that for every e, e′, n < ω, G ∩De,e′ 6= ∅ and G ∩En 6= ∅.
Put a =

⋃
{p0 : p ∈ G} and b =

⋃
{p1 : p ∈ G}.

Claim 11.4. {y ∈ 2ω : y ≤T a and y ≤T b} = {y ∈ 2ω : (∃n)(y ≤T xn)}.

Proof. For each k < ω, {j < ω : a(k, j) 6= xk(j)} and {j < ω : b(k, j) 6= xk(j)} are both finite. So xk ≤T a
and xk ≤ b. It follows that

{y ∈ 2ω : (∃n)(y ≤T xn)} ⊆ {y ∈ 2ω : y ≤T a and y ≤T b}.

Next suppose y ≤T a and y ≤T b and fix e, e′ < ω such that Φae = Φbe′ = y. Fix p ∈ De,e′ ∩ G. Then
p0 ⊆ a and p1 ⊆ b and p0 ≡T p1 ≤T xKp

. So it suffices to show that y ≤T p0.
Consider the oracle program Q using p0 as an oracle that on input k, searches for a finite F ⊆ (ω\Kp)×ω

and ρ : F → 2 such that Φp0∪ρe (k) ↓ and outputs Φp0∪ρe (k).
We claim that Q halts on every input k and outputs y(k). That it halts follows from that fact that

Φae(k) ↓ and p0 ⊆ a. To see that it correctly outputs y(k), towards a contradiction, suppose not and fix
F ⊆ (ω \Kp)× ω finite and ρ : F → 2 such that Φp0∪ρe (k) ↓6= y(k) = Φae(k) ↓. Then since p ∈ De,e′ , we get
that for some ` < ω, Φp0e (`) ↓6= Φp1e′ (`) ↓. But p0 ⊆ a, p1 ⊆ b and Φae(`) ↓= Φbe′(`) ↓. A contradiction.

It follows that {a, b} is an exact pair for {xn : n < ω}.

Definition 11.5. I ⊆ 2ω is a Turing ideal iff for every finite {xk : k ≤ N} ⊆ I and y ∈ 2ω, if y ≤T
⊕
k≤N

xk,

then y ∈ I. For X ⊆ 2ω, the Turing ideal generated X is defined by

IX =

y ∈ 2ω : (∃{xk : k ≤ N} ⊆ I)

y ≤T ⊕
k≤N

xk

 .

Corollary 11.6. Let I be a Turing ideal. Then I has a ≤T -least upper bound iff it is finitely generated.

Definition 11.7 (Minimal pair). Let a,b, c ∈ D. We say that b, c form a minimal pair above a iff a <T b,
a <T c and for every e ∈ D,

(e ≤T b and e ≤T c) =⇒ e ≤T a.

Exercise 11.8. Show that for every a ∈ D, there exists a minimal pair above a.

15

12 Minimal degrees

Definition 12.1 (Sacks forcing). Let S be the poset that consists of all perfect trees p ⊆ <ω2 ordered by
p ≤S q iff p ⊆ q.

Let p ∈ S. Recall that σ is a splitting node of p iff {σ0, σ1} ⊆ p. By induction on k < ω, define the set
of kth level splitting nodes in p, denoted splitnodek(p), as follows.

� splitnode0(p) = {σ} where σ is the �-least splitting node of p. σ is called the stem of p.

� splitnodek+1(p) is the set of all splitting nodes τ ∈ p such that for some σ ∈ splitnodek(p), σ ≺ τ and
there is no splitting node ρ ∈ p such that σ ≺ ρ ≺ τ .

It is easy to check that |splitnodek(p)| = 2k.

Exercise 12.2 (Fusion). Suppose 〈pn : n < ω〉 satisfies the following.

(a) Each pn ∈ S and pn+1 ⊆ pn for all n.

(b) For every n < ω, splitnoden(pn) = splitnoden(pn+1).

Put p =
⋂
n<ω pn. Then p ∈ S.

Definition 12.3 (Recursively pointed perfect trees). Srp is the sub-poset of S that consists of all p ∈ S such
that (∀x ∈ [p])(p ≤T x). Members of Srp are called recursively pointed perfect trees.

Exercise 12.4. Let p ∈ Srp. The following hold.

(a) For every y ∈ 2ω, p ≤T y iff (∃x ∈ [p])(x ≡T y).

(b) For every y ∈ 2ω, if p ≤T y, then there exists q ∈ Srp such that q ⊆ p and q ≡T y.

(c) If q ∈ S, q ⊆ p and q ≤T p, then q ∈ Srp and q ≡T p.

Definition 12.5. Let p ∈ S and e < ω. We say that p is an e-splitting tree iff for every x 6= y in [p], there
exists k < ω such that Φxe (k) ↓6= Φye(k) ↓.

Suppose p is e-splitting, x ∈ [p] and Φxe = y ∈ 2ω. We claim that x ≤T y ⊕ p. To see this, suppose
σ = x � n has been computed and we want to know whether x(n) is 0 or 1. We can assume that both
σ0, σ1 are in p otherwise this is easy. As p is e-splitting and Φxe = y, we can perform a successful search
for some ` < 2, 〈τi : i < N〉, 〈ki : i < N〉 and ρ ∈ p such that each real in [p] above σ_` extends some τi,
σ_(1− `) � ρ and Φτie (ki) ↓6= Φρe(ki) ↓= y(ki). Then x(n) = 1− `.

Definition 12.6. Let p ∈ S and e < ω. We say that p is an e-good tree iff either p is e-splitting or for every
σ, τ ∈ p and k < ω, if Φσe (k) and Φτe (k) both converge, then they are equal.

Suppose p is e-good and not e-splitting. Then for every x ∈ [p], if Φxe = y ∈ 2ω, then y ≤T p since to
compute y(k), we perform a (successful) search for some τ ∈ p such that Φτe (k) ↓= ` and output `.

Theorem 12.7 (Spector). Let p ∈ Srp.

(a) For every e < ω, there exists q ∈ Srp such that q ⊆ p, q ≡T p and q is e-good. It follows that for every
x ∈ [q], if Φxe = y ∈ 2ω, then either y ≤T q or x ≤T y ⊕ q.

(b) There exists r ∈ S such that r ⊆ p and for every x ∈ [r] and y ∈ 2ω, if y ≤T x, then either y ≤ p or
x ≤T y ⊕ p.

Proof. (a) Call σ ∈ p an ambiguous node if there are there are k < ω and τ1, τ2 ∈ p above σ such that
Φτ1e (k) ↓6= Φτ2e (k) ↓. We consider two cases.

Case 1. Some σ ∈ p is not ambiguous. Define q = {τ ∈ p : τ � σ or σ � τ}. Clearly q ∈ S and q ≤T p.
So by Exercise 12.4(c), q ∈ Srp and q ≡T p. That q is e-good follows from the fact that σ is not ambiguous.

Case 2. All nodes in p are ambiguous. Inductively construct a sequence 〈pn : n < ω〉 of members of Srp
as follows.

16

(i) p0 = p.

(ii) Given pn, define pn+1 as follows. Let {σj : j < 2n+1} list splitnoden+1(pn). For each j < 2n, search for
the least k < ω and τj,0, τj,1 ∈ p above σj such that Φ

τj,0
e (k) ↓6= Φ

τj,1
e (k) ↓ and define

pn+1 = {σ ∈ p : (∃` < 2)(∃j < 2n+1)(σ � τj,` or τj,` � σ)}.

Put q =
⋂
n<ω pn and observe that q ∈ S and q ≤T p. So by Exercise 12.4(c), q ∈ Srp and q ≡T p. Note

that for every x 6= y in [q], there exists k < ω such that Φxe (k) ↓6= Φye(k) ↓. So q is e-splitting and therefore
e-good.

(b) Using (a), construct a sequence 〈pn : n < ω〉 of members of Srp as follows. p0 = p, pn+1 ⊆ pn,
pn+1 ≡T pn, splitnoden(pn) = splitnoden(pn+1) and for each σ ∈ Splitn+1(pn+1), {τ ∈ pn+1 : τ � σ or σ � τ}
is n-good. Define r =

⋂
n<ω pn. Define r =

⋂
n<ω pn. Then r is as required.

Corollary 12.8. Let a ∈ 2ω. There exists r ∈ S such that for every x ∈ [r], a <T x and there is no y ∈ 2ω

such that a <T y <T x. In particular, there is a perfect set P ⊆ 2ω such that for each x ∈ P ,

(1) x is not computable and

(2) there is no y ∈ 2ω such that 0 <T y <T x.

Proof. By Exercise 12.2(b) applied to p = <ω2, we can choose q ∈ Srp such that q ≡T a. By Theorem 12.7,
we can fix r ∈ S such that r ⊆ q and for every x ∈ [r] and y ≤T x, either y ≤T q ≡T a or x ≤T y ⊕ a. By
throwing away a countable subset of [r], we can assume that no real in [r] is computable from a [Why?]. Fix
any x ∈ [r] and towards a contradiction, suppose there exists y ∈ 2ω such that a <T y <T x. Then both
y ≤T a and z ≤T y ⊕ a lead to a contradiction.

Corollary 12.9. For every a ∈ D, there exists b ∈ D such that a <T b and there is no e ∈ D such that
a <T e <T b. We say that b is a minimal cover of a.

Corollary 12.10. There exists b ∈ D such that 0 <T b and there is no e ∈ D such that 0 <T e <T b. We
say that b is a minimal degree.

We say that b is a strong minimal cover of a iff b >T a and (∀e ∈ D)(e ≤ a ⇐⇒ e <T b). The
following is a long-standing open problem.

Question 12.11 (Yates). Suppose a is a minimal degree. Must there exist b such that b is a strong minimal
cover of a?

Theorem 12.12 (Sacks). Let A ⊆ 2ω be countable. Then there exists p ∈ S such that for every y ∈ [p], the
following hold.

(i) y computes every real in IA.

(ii) If z ≤T y, then there exists x ∈ IA such that either z ≤T x or y ≤T x⊕ z.

(iii) If IA is not finitely generated, then y is a ≤T -minimal upper bound of IA.

Proof. Fix a ≤T -increasing sequence 〈ak : k < ω〉 such that a0 ≡T 0, each ak ∈ IA and (∀y ∈ IA)(∃k <
ω)(y ≤T ak). We can further assume that if IA is not finitely generated, then an <T an+1 for every n.

Inductively construct a sequence 〈pn : n < ω〉 of members of Srp satisfying the following.

(1) p0 = <ω2.

(2) pn ∈ Srp and pn+1 ⊆ pn.

(3) splitnoden(pn) = splitnoden(pn+1).

(4) For every σ ∈ Splitn+1(pn+1), {τ ∈ pn+1 : σ � τ or τ � σ} is n-good.

17

(5) pn+1 ≡T an+1.

To obtain pn+1 from pn, we use Theorem 12.7(a) and Exercise 12.4(b). Let p′ ∈ S be the intersection of
{pn : n < ω}. Choose p ∈ S such that p ⊆ p′ and no member of [p] is computable from any member of IA.

Let us check that p is as required. Fix y ∈ [p]. Since {an : n < ω} is ≤T -cofinal in IA, it is clear than
y computes every real in IA. Thus (i) holds. Next, assume z ≤T y and fix e < ω such that Φye = z. Fix
n > e + 1. Then by Clauses (4) and (5), either z ≤T an or y ≤T z ⊕ an. So (ii) holds. Finally assume IA
is not finitely generated. Then an <T an+1 for every n. Towards a contradiction, fix some z <T y such that
(∀n)(an ≤T z). Using (ii), fix N < ω such that either z ≤T aN (impossible since aN <T aN+1 ≤T z) or
y ≤T z ⊕ aN . As aN ≤T z, the latter implies y ≤T z <T y which is a contradiction.

Corollary 12.13. Let 〈an : n < ω〉 be <T -strictly increasing sequence of reals. Then there exists a perfect
set P ⊆ 2ω such that each member of P is a ≤T -minimal upper bound of {an : n < ω}.

13 Incomparable c.e. sets

Definition 13.1. We write ΦAe (n)[s] ↓ iff the oracle use of the computation ΦAe (n) is contained in A � s
and the number of steps before the computation ΦAe (n) halts is less than s.

Theorem 13.2 (Friedberg-Muchnik). There exist c.e. sets A,B such that A �T B and B �T A.

Proof. Our requirements are R2e : (∃n)(ΦBe (n) 6= A(n)) (this means that either ΦBe (n) ↑ or ΦBe (n) ↓6= A(n))
and R2e+1 : (∃n)(ΦAe (n) 6= B(n)). To ensure that A,B are c.e., we will construct a uniformly computable
⊆-increasing sequence 〈As, Bs : s < ω〉 of finite subsets of ω and set A =

⋃
sAs and B =

⋃
sBs.

What is our strategy to satisfy the requirements? Say we are at stage s+ 1 and we want to satisfy R2e.
Since we can only add new numbers to As, it is reasonable to try to see if for some ne < s, ΦBs

e (ne)[s] ↓= 0
in which case we define As+1 = As ∪ {ne}, Bs+1 = Bs and say that R2e has acted at stage s+ 1. Note that
the requirement R2e will continue to remain satisfied as long as we do not add any n < s to Bs+1 at a later
stage.

Injury. Suppose a requirement Ri has acted at stage s and at some later stage t > s another requirement
Rj acts. It may happen that the action of Rj changes the oracle use of the computation that satisfied Ri.
In this case we say that Ri has been injured and it might have to act again at a later stage.

Priority. To minimize injuries, we will require that for each requirement, there is a stage beyond which it
never gets injured. This is easily arranged by prioritizing the requirements as follows. Suppose a requirement
Ri has acted at stage s and at some later stage t > s another requirement Rj acts where j > i. We then
require that Rj does not add any number into At or Bt below the oracle use of the computation that satisfies
Ri. This means that Ri can only be injured by Rj when j < i. In other words Ri has higher priority than
Rj when i < j.

We are going to define a uniformly computable sequence 〈As, Bs, ns, fs : s < ω〉 where

(a) As, Bs are finite and ⊆-increasing with s.

(b) ns = 〈ni,s : i < ω〉 where each ni,s < ω. Think of ni,s as a witness at which Ri is supposed to be
satisfied. We will ensure below that for every i < j < ω, {ni,s : s < ω} ∩ {nj,s : s < ω} = ∅.

(c) fs : ω → {0, 1}. We interpret fs(i) = 1 as “Ri needs attention at stage s” and fs(i) = 0 as “Ri does
not need attention at stage s”

Stage s = 0. Define A0 = B0 = ∅, xi,0 = 〈i, 0〉 and f0(i) = 1 for all i < ω.

Stage s+ 1. We first ask: Is there an i < s such that the following hold.

(A) fs(i) = 1 (Ri needs attention).

(B) If i = 2e, then ΦBs
e (ns,i)[s] ↓= 0 and if i = 2e+ 1, then ΦAs

e (ns,i)[s] ↓= 0.

18

If there is no such i < s, then define As+1 = As, Bs+1 = Bs, ns+1 = ns and fs+1 = fs. Otherwise, fix
the least such i and do the following. We will say that Ri has acted at stage s+ 1.

(i) If i = 2e, then define As+1 = As ∪{ns,i} and Bs+1 = Bs. If i = 2e+ 1, then define Bs+1 = Bs ∪{ns,i}
and As+1 = As.

(ii) Define ns+1,i = ns,i and fs+1(i) = 0 (Ri has acted and does not need attention at stage s+ 1).

(iii) For each j > i, define fs+1(j) = 0 (Rj is injured and will require attention) and ns+1,j = 〈ns, s+ 1〉 >
s+ 1 (so Rj cannot injure Ri).

(iv) For each j < i, define ns+1,j = ns,j and fs+1(j) = fs(j) (Rj ’s status has not changed as it has higher
priority than Ri).

Put A =
⋃
sAs and B =

⋃
sBs and note that both A,B are c.e. Let us check that A,B satisfy all the

requirements. Note that if Ri acts at stage s + 1, then fs(i) = 1 and fs+1(i) = 0. So if lim
s→∞

fsi converges,

then Ri acts only finitely many times.

Claim 13.3. For each i, there exist ni < ω and ki ∈ {0, 1} such that lim
s→∞

ni,s = ni and lim
s→∞

fs(i) = ki.

Also, A,B satisfy Ri for every i < ω.

Proof. By induction on i. Suppose i = 0. Recall that n0,0 = 〈0, 0〉 = 0 and f0(0) = 1. We consider two
cases. Either R0 acts at some stage or it never acts.

Say R0 acts for the first time at stage s + 1. Then Clause (iv) above guarantees that R0 will never act
at any stage t > s + 1. Hence for every t ≥ s + 1, ft(0) = 0 = k0 and n0,t = n0,0 = n0. Also observe that
ΦB0 (n0) ↓= 0 and A(n0) = 1. So R0 is satisfied.

Now assume that R0 never acts. Then by Clause (iv), we must have fs(0) = f0(0) = 1 = k0 and
n0,s = n0,0 = n0 for all s. Since n0 /∈ {ni+1,s : i, s < ω}, we must have n0 /∈ A. It follows that R0 is satisfied
as witnessed by n0 since either ΦB0 (n0) ↑ or ΦB0 (n0) ↓6= 0 and n0 /∈ A.

Now assume that the Claim holds for all i ≤ j. Choose a stage s large enough so that fs(i) = ft(i) and
ni,s = nt,i for all t > s and j ≤ i. Then for every i ≤ j Ri does not act at any stage ≥ s. We consider two
cases. Rj acts at some stage t ≥ s or Rj does not at any stage t ≥ s. Now argue as we did for R0.

Recall that a c.e. degree is the Turing degree of a c.e. set.

Corollary 13.4. There exists a c.e. degree a such that 0 <T a < 0′.

Exercise 13.5. Show that there is an infinite Turing independent family of of c.e. sets.

14 Generic reals

Let P = <ω2 be Cohen forcing and D ⊆ P. Recall that D ⊆ <ω2 is dense iff every σ ∈ <ω2, there exists
τ ∈ D such that σ � τ .

Exercise 14.1. Let D ⊆ <ω2 be dense. Show that
⋃
σ∈D[σ] is an open dense subset of 2ω.

Definition 14.2 (Weakly 1-generic). x ∈ 2ω is weakly 1-generic iff for every dense c.e. D ⊆ <ω2, there
exists σ ∈ D such that σ � x.

Definition 14.3. U ⊆ 2ω is a c.e. open set iff there is a c.e. A ⊆ <ω2 such that

U =
⋃
σ∈A

[σ].

Exercise 14.4. Show that x ∈ 2ω is weakly 1-generic iff for every open dense c.e. set U ⊆ 2ω, x ∈ U .

Let F be the family of all c.e. open dense sets U ⊆ 2ω. Then F is countable. Hence
⋂
U∈F U is comeager

in 2ω. So we have the following.

19

Lemma 14.5. {x ∈ 2ω : x is not weakly 1-generic} is meager.

Suppose A ⊆ ω is infinite. The principal function of A, (denoted pA) is defined by: pA(n) is the nth
member of A. So A = {pA(0) < pA(1) < · · · }.

Definition 14.6 (Hyperimmune set). A ⊆ ω is hyperimmune iff A is infinite and for every computable
f : ω → ω, (∃∞n)(f(n) < pA(n)).

Note that A ⊆ B =⇒ (∀n)(pA(n) ≤ pB(n)). It follows that every infinite subset of a hyperimmune set
is also hyperimmune.

Exercise 14.7. Show that every hyperimmune set is immune.

Suppose f, g : ω → ω. We say that f majorizes g iff (∀n)(f(n) ≥ g(n)). We say that f dominates g
iff (∃N)(∀n ≥ N)(f(n) ≥ g(n)).

Exercise 14.8. Let A ⊆ ω be infinite. Show that the following are equivalent.

(a) A is hyperimmune.

(b) pA is not dominated by any computable f : ω → ω.

(c) pA is not majorized by any strictly increasing computable f : ω → ω.

Lemma 14.9. Every weakly 1-generic real is (the characteristic function of) a hyperimmune set.

Proof. Let x ∈ 2ω be weakly 1-generic. Let f : ω → ω be a strictly increasing computable function. By the
previous exercise, it suffices to find some ` such that f(`) < px(`).

Define A ⊆ <ω2 as follows: σ ∈ A iff |σ| = k, σ(k) = 1 and f(`) < k where ` = |{j < k : σ(j) = 1}|. It
is easy to check that A is computable and dense in <ω2. As x is weakly 1-generic, there exists σ ∈ A such
that σ � x. Let ` = |{j < |σ| − 1 : σ(j) = 1}|. Then px(`) > f(`).

Since a c.e. set cannot be immune, we get the following.

Corollary 14.10. No c.e. set is weakly 1-generic.

Definition 14.11 (1-generic). x ∈ 2ω is 1-generic iff for every c.e. S ⊆ <ω2, either (∃σ ∈ S)(σ � x) or
(∃n)(∀σ)(s � n � σ =⇒ σ /∈ S).

For S ⊆ <ω2, define

S? = S ∪ {σ ∈ <ω2 : (∀τ ∈ <ω2)(σ � τ =⇒ τ /∈ S)}.

Exercise 14.12. Show that for every S ⊆ <ω2, S? is dense in <ω2 and S is dense in <ω2 iff S = S?.
Furthermore, x ∈ 2ω is 1-generic iff for every c.e. S ⊆ <ω2,

x ∈
⋃
σ∈S?

[σ].

It follows that {x ∈ 2ω : x is not 1-generic} is meager.

Exercise 14.13. Show that every 1-generic real is weakly 1-generic.

Definition 14.14 (Generalized low). A is GL1 iff A⊕ 0′ ≡T A′.

Theorem 14.15. Every 1-generic is GL1.

Proof. Clearly, A ⊕ 0′ ≤T A′. So it suffices to show that A′ ≤T A ⊕ 0′. For each e < ω, define Se = {σ ∈
<ω2 : Φσe (e) ↓}. Then Se is a c.e. set. As A is 1-generic, there exists σ � A such that either σ ∈ Se or no
extension of σ is in Se.

Put W = {(σ, e) : (∃τ)(σ � τ and Φτe (e) ↓)}. Then W is c.e. and therefore W ≤T 0′.
Now consider the oracle program P (using A ⊕ 0′ as oracle) that on input e, searches for some σ � A

such that either Φσe (e) ↓ or (σ, e) /∈W . In the former case, P outputs 1 and in the latter case, it outputs 0.
It is easy to see that P computes A′.

20

Definition 14.16. A ⊆ ω is low iff A′ ≡T 0′.

Lemma 14.17. There exists a 1-generic x ∈ 2ω such that x ≤T 0′. Any such x is low.

Proof. First check that W ≤T 0′ where

W = {(n, σ) : (ϕn(σ) ↓) or (∀τ � σ)(ϕn(τ) ↑)}.

Construct a 0′-computable sequence 〈σn : n < ω〉 as follows.

(1) Define σ0 = ∅.

(2) Suppose σn has been defined. Let S = {σ ∈ <ω2 : ϕn(σ) ↓} be the nth c.e. subset of <ω2. We would
like to choose some σn+1 ∈ S? such that σn ≺ σn+1. Since S? is dense in <ω2 and W ≤T 0′, using 0′

as the oracle, we can search for the least σ ∈ <ω2 (under some computable enumeration of <ω2) such
that σn ≺ σ and (n, σ) ∈W and define σn+1 = σ.

It is easy to check that x =
⋃
n<ω σn is 1-generic.

Lemma 14.18. Let A ⊆ ω be infinite. Then A is hyperimmune iff for some 1-generic B ⊆ ω, A ⊆ B.

Proof. Since every infinite subset of a hyperimmune set is also hyperimmune and every 1-generic is hyperimmune
(Lemma 14.9 + Exercise 14.13), the right to left implication is clear.

For the converse, fix a hyperimmune A ⊆ ω. Construct 〈σn : n < ω〉 as follows.

(1) σ0 = ∅.

(ii) Suppose σn ∈ <ω2 has been defined such that (∀i < |σn|)(i ∈ A =⇒ σn(i) = 1). Let S = {σ ∈
<ω2 : ϕn(σ) ↓} be the nth c.e. subset of <ω2. It suffices to find σn+1 ∈ S? such that σn � σn+1 and
(∀i < |σn+1|)(i ∈ A =⇒ σn+1(i) = 1). We consider two cases.

Case A: There exists k ≥ 1 such that (∀τ � σ_n 1k)(τ /∈ S). In this case, define σn+1 = σ_n 1k.

Case B : For every k ≥ 1, (∃τ � σ_n 1k)(τ ∈ S). In this case, we can recursively construct a strictly
increasing computable f : ω → ω and a computable sequence 〈τk : k < ω〉 such that for each k, τk ∈ S,
σ_n 1f(k) � τk and |τk| < f(k + 1). As A is hyperimmune, we can find some k such that the interval
[f(k), f(k + 1)) is disjoint from A. So we can take σn+1 = τk.

It is cleat that x =
⋃
n<ω σn is 1-generic and A ⊆ B where 1B = x.

Definition 14.19. Let x, y ∈ 2ω. We say that x is 1-generic relative to y iff for every S ⊆ <ω2, if S is c.e.
in x, then there exists σ � x such that either σ ∈ S or no extension of σ is in S.

Note that if x is 1-generic relative to y, then x is 1-generic. Also, for every y,

{x ∈ 2ω : x is not 1-generic relative to y} is meager.

Lemma 14.20. Suppose x ∈ 2ω is 1-generic. Let x = x0 ⊕ x1 (here, x0(n) = x(2n) and x1(n) = x(2n+ 1)
for all n). Then x0 is 1-generic relative to x1 and x1 is 1-generic relative to x0.

Proof. Let S ⊆ <ω2 be c.e. in x1. We need to find σ0 � x0 such that either σ0 ∈ S or no extension of σ0 is
in S.

Since S is c.e. in y, we can fix e < ω such that for each σ ∈ <ω2,

σ ∈ S ⇐⇒ Φx1
e (σ) ↓ ⇐⇒ (∃ρ � x1)(Φρe(σ) ↓).

Consider the set W that consists of all σ ∈ <ω2 such that letting σ = σ0⊕σ1, we have (∃τ � σ0)Φσ1
e (τ) ↓.

As W is c.e. and x is 1-generic, there must exist σ � x such that either σ ∈W or no extension of σ is in W .
Fix such σ � x and put σ = σ0 ⊕ σ1.

First assume σ ∈W . Then

σ ∈W =⇒ (∃τ � σ0)(Φσ1
e (τ) ↓) =⇒ (∃τ � σ0)(Φx1

e (τ) ↓) =⇒ τ ∈ S.

Next assume that no extension of σ is in W . Then for every τ � σ0, Φx1
e (τ) ↑. So τ /∈ S. It follows that

no extension on σ0 is in S and we are done.

Exercise 14.21. Suppose x ∈ 2ω is 1-generic. Let x = x0⊕ x1 (here, x0(n) = x(2n) and x1(n) = x(2n+ 1)
for all n). Then x0, x1 form a minimal pair (Definition 11.7).

21

15 Arithmetical hierarchy

Definition 15.1 (Arithmetical hierarchy). By induction on n < ω, for each k ≥ 1, we define the classes
Σ0
n(ωk), Π0

n(ωk) and ∆0
n(ωk) as follows.

(1) A ∈ Σ0
0(ωk) iff A ∈ Π0

0(ωk) iff A ⊆ ωk is computable.

(2) A ∈ Σ0
n+1(ωk) iff there exists R ∈ Π0

n(ωk+1) such that for every (x1, · · · , xk) ∈ ωk,

(x1, · · · , xk) ∈ A ⇐⇒ (∃y)((y, x1, · · · , xk) ∈ R).

(3) A ∈ Π0
n+1(ωk) iff there exists R ∈ Σ0

n(ωk+1) such that for every (x1, · · · , xk) ∈ ωk,

(x1, · · · , xk) ∈ A ⇐⇒ (∀y)((y, x1, · · · , xk) ∈ R).

(4) A ∈ ∆0
n(ωk) iff A ∈ Σ0

n(ωk) and A ∈ Π0
n(ωk).

Relativizing the arithmetical hierarchy to an oracle X yields the following notions.

Definition 15.2. Let X ⊆ ω. By induction on n < ω, for each k ≥ 1, we define the classes ΣXn (ωk),
ΠX
n (ωk) and ∆X

n (ωk) as follows.

(1) A ∈ ΣX0 (ωk) iff A ∈ ΠX
0 (ωk) iff A ⊆ ωk is computable in X.

(2) A ∈ ΣXn+1(ωk) iff there exists R ∈ ΠX
n (ωk+1) such that for every (x1, · · · , xk) ∈ ωk,

(x1, · · · , xk) ∈ A ⇐⇒ (∃y)((y, x1, · · · , xk) ∈ R).

(3) A ∈ ΠX
n+1(ωk) iff there exists R ∈ ΣXn (ωk+1) such that for every (x1, · · · , xk) ∈ ωk,

(x1, · · · , xk) ∈ A ⇐⇒ (∀y)((y, x1, · · · , xk) ∈ R).

(4) A ∈ ∆X
n (ωk) iff A ∈ ΣXn (ωk) and A ∈ ΠX

n (ωk).

Exercise 15.3. Show the following.

(i) The classes ΣXn , ΠX
n and ∆X

n are increasing with n.

(ii) The classes ΣXn , ΠX
n and ∆X

n are closed under finite intersections and unions.

(iii) The classes ΣXn , ΠX
n and ∆X

n are downward closed under ≤m. So for example, if A ∈ ΣXn and B ≤m A,
then B ∈ ΣXn .

(iv) The classes ΣXn , ΠX
n are not downward closed under ≤T . For example, 0′ ∈ Σ0

1 and ω \ 0′ ≤T 0′ but
ω \ 0′ /∈ Σ0

1.

Exercise 15.4. By induction on n, prove the following.

(a) A ∈ ΣXn (ωk) iff (ωk \A) ∈ ΠX
n (ωk).

(b) (Closure under projection) If A ∈ ΣXn (ωk+1) and B ⊆ ωk is defined by

(x1 · · · , xk) ∈ B ⇐⇒ (∃y)((y, x1, · · · , xk) ∈ A),

then B ∈ ΣXn (ωk).

(c) If A ∈ ΠX
n (ωk+1) and B ⊆ ωk is defined by

(x1 · · · , xk) ∈ B ⇐⇒ (∀y)((y, x1, · · · , xk) ∈ A),

then B ∈ ΠX
n (ωk).

22

Let N = (ω, 0, S,+, ·) be the standard model of PA (Peano arithmetic). Recall that A ⊂ ωk is first order
definable in N iff there exists an LPA- formula φ(x1, · · · , xk) such that for every (n1, · · · , nk) ∈ ωk,

(n1, · · · , nk) ∈ A ⇐⇒ N |= φ(n1, · · · , nk).

Theorem 15.5. A ⊆ ωk is definable in N iff for some n < ω, A ∈ Σ0
n.

When k = 1, we will sometimes drop ωk and write ΣXn instead of ΣXn (ω) etc. The next lemma can be
proved exactly like the results in Section 5

Lemma 15.6. A ∈ ΣX1 iff A is c.e. in X A ≤1 X
′ iff A ≤m X ′.

Theorem 15.7 (Post). The following are equivalent for every n ≥ 1 and A ⊆ ωk.

(1) A ∈ ΣXn .

(2) A is c.e. in Xn−1. Here, X0 = X and Xn is the nth Turing jump of X.

(3) A ≤1 X
n.

(4) A ≤m Xn.

Proof. The equivalence of (2), (3), (4) and A ∈ ΣX
n−1

1 follows from Lemma 15.6. Now use induction on n

to check that A ∈ ΣXn iff A ∈ ΣX
n−1

1 .

Corollary 15.8. A ∈ ∆X
n iff A ≤T Xn−1.

Proof. A ∈ ∆X
n iff A ∈ ΣXn ∩ΠX

n iff (Post theorem) A ≤1 X
n−1 and ω \A ≤1 X

n−1 iff A ≤T Xn1 .

Corollary 15.9. For every n ≥ 1, 0n ∈ Σ0
n \Π0

n.

Definition 15.10. A ⊆ is limit computable iff there exists a uniformly computable sequence 〈An : n < ω〉
of subsets of ω such that A = limnAn.

Lemma 15.11 (Shoenfield Limit lemma). A is limit computable iff A ≤T 0′ iff A ∈ ∆0
2.

Proof. That A ≤T 0′ iff A ∈ ∆0
2 follows from Corollary 15.8.

Suppose A is limit computable and fix a uniformly computable sequence 〈An : n < ω〉 such that A =
limnAn. Then x ∈ A ⇐⇒ (∃N)(∀n)(n ≥ N =⇒ x ∈ An). This shows that A ∈ Σ0

2. Similarly,
x /∈ A ⇐⇒ (∃N)(∀n)(n ≥ N =⇒ x /∈ As) and so A ∈ Π0

2. Thus A ∈ ∆0
2.

Next suppose A ≤T K = 0′ and fix e < ω such that ΦKe = 1A. Define Ks = {n < s : ϕe(e)[s] ↓}.
Then 〈Ks : s < ω〉 is a uniformly computable sequence of finite sets with union K. Define As = {n < s :
ΦKs
e (n)[s] ↓= 1}. Now check that A = limsAs.

Exercise 15.12 (Relativized limit lemma). Call A ⊆ ω limit computable in X iff there exists a uniformly
X-computable sequence 〈As : s < ω〉 such that A(x) = limsAs(x). Show that A is limit computable in X iff
A ≤T X ′.

Definition 15.13. A ⊆ ω is a Σ0
n-complete set iff A ∈ Σ0

n and for every B ∈ Σ0
n, B ≤1 A (equivalently,

0n ≤1 A).
A ⊆ ω is a Π0

n-complete set iff A ∈ Π0
n and for every B ∈ Π0

n, B ≤1 A (equivalently, ω \ 0n ≤1 A).

The next corollary implies that all Σ0
1-complete sets are computably isomorphic to 0′.

Corollary 15.14. 0n is a Σ0
n-complete set and for every A ∈ Σ0

n, A is Σ0
n-complete iff A ≡1 0n.

Proof. A is Σ0
n complete iff A ∈ Σ0

n and 0n ≤1 A iff A ≤1 0n and 0n ≤1 A iff A ≡1 0n.

Are there noncomputable c.e. sets that are not Σ0
1-complete?

Exercise 15.15. Let A be a simple set. Show that A is not Σ0
1-complete.

23

Lemma 15.16. For every A ⊆ ω, A ≡m 0′ iff A ≡1 0′ iff A is Σ0
n-complete.

Proof. The only new implication is 0′ ≤m A =⇒ 0′ ≤1 A which is HW 7.

Some examples of complete sets follow.

Lemma 15.17. Tot = {e : We = ω} is Π0
2-complete.

Proof. Tot ∈ Π0
2 since e ∈ Tot iff (∀n)(∃s)(ϕe(n)[s] ↓). Suppose A ∈ Π0

2. Fix a computable R ⊆ ω3

such that x ∈ A ⇐⇒ (∀y)(∃z)(R(x, y, z)). Define θ(x, y) = 1 if (∃z)(R(x, y, z)) and undefined otherwise.
Then θ is partial computable so by snm-theorem, there is an injective computable h : ω → ω such that
θ(x, y) = ϕh(x)(y). Now check that h is a ≤1-reduction from A to Tot.

Lemma 15.18. Fin = {e : We is finite} is Σ0
2-complete.

Proof. Fin ∈ Σ0
2 as

|We| < ω ⇐⇒ (∃N)(∀x ≥ N)(∀s)(ϕe(x)[s] ↑).

Suppose A ∈ Σ0
2. Fix a computable R ⊆ ω3 such that x ∈ A ⇐⇒ (∃y)(∀z)(R(x, y, z)). Define θ(x, y) = 1

if (∀y ≤ z)(∃z)(¬R(x, y, z)) and undefined otherwise. Then θ is partial computable so by snm-theorem, there
is an injective computable h : ω → ω such that θ(x, y) = ϕh(x)(y). Now check that h is a ≤1-reduction from
A to Fin.

Lemma 15.19. Cof = {e : We is cofinite} is Σ0
3-complete.

Proof. Cof ∈ Σ0
3 because

We is cofinite ⇐⇒ (∃N)(∀x ≥ N)(∃s)(ϕe(x)[s] ↓).

Next suppose A ∈ Σ0
3. Since Fin is Σ0

2-complete, we can find an injective computable h : ω2 → ω such
that x ∈ A ⇐⇒ (∃x)(Wh(x,y) is infinite). For each x < ω, define a c.e. set Cx uniformly in x as follows.
Cx =

⋃
s C

x
s will be the union of a uniformly computable sequence 〈Cxs : s < ω〉 defined as follows.

(1) Cx0 = ∅.

(2) Let ω \ Cxs = {ns0 < ns1 < · · · }. For each y < s, if Wh(x,y),s+1 \Wh(x,y),s 6= ∅, then add nsy to Cxs . So

Cxs+1 = Cxs ∪ {nsy : y < s and Wh(x,y),s+1 \Wh(x,y),s 6= ∅}.

By padding, we can fix a computable injective f : ω → ω such that Cx = Wf(x). Now check that

x ∈ A ⇐⇒ (∃y)(Wh(x,y) is infinite) ⇐⇒ Wf(x) is cofinite.

The above construction of Cx is an example of a “movable marker construction”.

Exercise 15.20. Rec = {e : We is computable} is Σ0
3-complete.

Definition 15.21. A ⊆ ω is high iff 0′′ ≤T A′. a ∈ D is high iff it is the Turing degree of a high set.

Lemma 15.22. A ⊆ ω is high iff 0′′ ∈ ∆A
2 iff Tot ≤T A′.

Proof. Use Corollary 15.8 and the fact that Tot is Π0
2-complete and therefore Tot ≡T 0′′.

Theorem 15.23 (Martin). A ⊆ ω is high iff there exists d : ω → ω such that d ≤T A and d dominates
every computable function.

24

Proof. Suppose A is high. Then by Lemma 15.22, Tot ≤T A′. By the relativized limit lemma, there is an
A-computable sequence 〈hs(x) : s < ω〉 where each hs : ω → 2 and Tot(x) = lims hs(x). Define d : ω → ω as
follows.

For each x ≤ s < ω, define t(x, s) to be the least t > s such that either ht(x) = 0 or (∀n ≤ s)(ϕx(n)[t] ↓).
To see that t(x, s) is well-defined, consider the cases x ∈ Tot and x /∈ Tot. Also note that t ≤T A.

Next define d(s) = max{t(x, s) : x ≤ s}. Then d ≤T A. Let us check that d dominates every computable
function. Suppose ϕe is total. Then e ∈ Tot. Since Tot(e) = lims hs(e), we can fix s? > e such that
(∀t ≥ s?)(ht(e) = 1). This implies that if s ≥ s?, then ϕe(n)[t(e, s)] ↓ for every n ≤ s. In particular
ϕe(s) ≤ d(s) for every s ≥ s?. So d dominates ϕe.

Next assume there exists d ≤T A′ that dominates every computable function. Define hs(e) = 1 if
(∀x ≤ s)(ϕe(x)[d(s)] ↓) and 0 otherwise. It is easy to check that Tot(e) = lims hs(e). Hence Tot is limit
computable in A and therefore Tot ≤T A′. So by Lemma 15.22, A is high.

Fact 15.24 (Ramsey Theorem). Let f : [ω]n → K where 1 ≤ K < ω. Then there exists an infinite H ⊆ ω
such that f � [H]n is constant. We call such H an f -homogeneous set.

Lemma 15.25 (Jockusch). There is a computable f : [ω]2 → {0, 1} such that there is no infinite computable
f -homogeneous set.

Proof. Using Lemma 14.17, fix a 1-generic X ⊆ ω such that X ≤T 0′. Note that ω \ X is also 1-generic.
Hence both X and ω\X are immune: For every e < ω, if We is infinite, then We∩X 6= ∅ and We∩(ω\X) 6= ∅.

SInce X ≤T 0′, it is limit computable. Let f : ω2 → {0, 1} be a computable function such that
X(n) = lims f(n, s). Now check that whenever H is infinite and c.e., f � [H]2 is not constant.

Fact 15.26 (Jockusch). Let f : [ω]2 → 2 be computable. Then there exists a Π0
2 infinite f -homogeneous set.

Theorem 15.27 (Jockusch). There is a computable f : [ω]2 → {0, 1} such that there is no infinite f -
homogeneous set that is ≤T 0′. Hence there is no Σ0

2 infinite f -homgeneous set.

Proof. The proof of Shoenfield limit lemma 15.11 gives a computable g : ω3 → {0, 1} such that for every
A ≤T 0′, there exists e < ω such that A(n) = lims g(e, n, s).

Define Ae = {n : lims g(e, n, s) = 1} if lims g(e, n, s) exists for every n. Otherwise Ae is undefined. Define
Be to be the set of first 2e+ 2 members of Ae (if Ae is defined and |Ae| ≥ 2e+ 2, otherwise Be is undefined).
Define Bse to be the first 2e + 2 members of {n < s : g(e, n, s) = 1} if |{n < s : g(e, n, s) = 1}| ≥ 2e + 2.
Otherwise Bse is undefined. Note that 〈Bse : e, s < ω〉 is computable.

Construct a computable partition [ω]2 = XtY as follows. X =
⋃
sXs and Y =

⋃
s Ys will be constructed

in stages. At stage s, we will add each pair {n < s} to Xs t Ys. So Xs t Ys = {{n, s} : n < s}.
Stage s: This stage is divided into s+ 1 substages 0 ≤ e ≤ s. Note that at each substage e < s, we will

add at most two pairs to X t Y .
Substage e < s: If Bse is undefined do nothing. Otherwise, let Ds

e be the set of those n such that {n, s}
is already in X t Y . Since at most two pairs entered X t Y at each previous substage e′ < e, we must have
|Ds

e| ≤ 2e. Since |Bse | = 2e+ 2, we can choose n1 < n2 in Bse \Ds
e and add {n1, s} to X and {n2, s} to Y .

Substage e = s: If some {n < s} is not in X t Y , add it arbitrarily.
Now check that f : [ω]2 → {0, 1} defined by f(x) = 1 iff x ∈ X is as required.

25

	Recursive functions
	Turing machines
	Universal functions
	Indexing/Numbering
	C.e. sets
	Mapping reductions
	Immune and simple sets
	Oracles, Turing degrees and the jump operator
	Incomparable degrees
	Turing independence
	Forcing

	Exact pair
	Minimal degrees
	Incomparable c.e. sets
	Generic reals
	Arithmetical hierarchy

