(1) Let $d(x, \mathbb{Z})$ denote the nearest distance of $x \in \mathbb{R}$ from integers. For example, $d(3.4, \mathbb{Z})=0.4$ and $d(1.7, \mathbb{Z})=0.3$. Let $A=\left\{x>1: \lim _{n \rightarrow \infty} d\left(x^{n}, \mathbb{Z}\right)=0\right\}$.
(a) Show that $\frac{1+\sqrt{5}}{2} \in A$.
(b) Call a real number x computable iff there is a computable function $f: \omega \rightarrow \mathbb{Q}$ such that for every $n<\omega,|f(n)-x| \leq 2^{-n}$. Show that every member of A is computable.
(c) Conclude that A is countable.
(2) Show that there are infinitely many pairs $e<e^{\prime}<\omega$ such that $\operatorname{dom}\left(\varphi_{e}\right)=\left\{e^{\prime}\right\}$ and $\operatorname{dom}\left(\varphi_{e^{\prime}}\right)=\{e\}$.
(3) Show that every infinite c.e. $X \subseteq \omega$ has an infinite computable subset.
(4) Let $f: \omega \rightarrow \omega$. For $n \geq 1$, define f^{n} by $f^{1}=f, f^{n+1}=f \circ f^{n}$.
(a) Show that if f is computable, then $\left\{f^{n}(0): n \geq 1\right\}$ is c.e.
(b) Show that there is a computable $f: \omega \rightarrow \omega$ such that $\left\{f^{n}(0): n \geq 1\right\}$ is not computable.
(5) Show that there is a partial computable function that cannot be extended to any total computable function. Hint: Use a pair of computably inseparable c.e. sets.
(6) Show that there is a simple set $X \subseteq \omega$ such that $\lim _{n \rightarrow \infty} \frac{|X \cap n|}{n}=0$.
(7) Let $A, B \subseteq \omega$. Show that $A^{\prime} \leq_{m} B \Longrightarrow A^{\prime} \leq_{1} B$. Here A^{\prime} is the Turing jump of A.
(8) Assume $x, y \in 2^{\omega}$ and x is not computable from y. Show that $\left\{z \in 2^{\omega}: x \leq_{T} y \oplus z\right\}$ is meager. Use this to show that every maximal Turing independent set is uncountable.
(9) Generalize Kleene-Post theorem as follows. For every $\mathbf{a} \in \mathcal{D} \backslash\{\mathbf{0}\}$, there exists $\mathbf{b}<\mathbf{a}^{\prime}$ such that \mathbf{a} and \mathbf{b} are Turing incomparable.
(10) Construct a sequence $\left\langle x_{n}: n<\omega\right\rangle$ of reals such that for every $n, x_{n+1}<_{T} x_{n}$. Hint: Build $\left\langle y_{n}: n<\omega\right\rangle$ by finite approximation such that for every $m<n, y_{m}$ is not computable from $\left\langle y_{k}: k \geq n\right\rangle$.
(11) Show that for every $x \in 2^{\omega}$, there exist $y, z \in 2^{\omega}$ such that $x<_{T} y, x<_{T} z$ and for every $w \in 2^{\omega},\left(w \leq_{T} x \Longleftrightarrow\left(w \leq_{T} y\right.\right.$ and $\left.\left.w \leq_{T} z\right)\right)$.
(12) For $\mathbf{a}, \mathbf{b} \in \mathcal{D}$, the meet of \mathbf{a} and \mathbf{b} is the \leq_{T}-greatest lower bound of $\{\mathbf{a}, \mathbf{b}\}$ (if it exists). Show that for every $\mathbf{e} \in \mathcal{D}$, there exist $\mathbf{a}, \mathbf{b} \in \mathcal{D}$ such that $\mathbf{e} \leq_{T} \mathbf{a}, \mathbf{e} \leq_{T} \mathbf{b}$ and the meet of \mathbf{a}, \mathbf{b} does not exist.
(13) Suppose $\left\langle p_{n}: n<\omega\right\rangle$ satisfies the following.
(a) Each $p_{n} \in \mathbb{S}$ and $(\forall n)\left(p_{n+1} \subseteq p_{n}\right)$.
(b) For every $n<\omega$, $\operatorname{splitnode}_{n}\left(p_{n}\right)=\operatorname{splitnode}_{n}\left(p_{n+1}\right)$.

Put $p=\bigcap_{n<\omega} p_{n}$. Show that $p \in \mathbb{S}$.
(14) Let $p \in \mathbb{S}_{r p}$. Prove the following.
(a) For every $y \in 2^{\omega}, p \leq_{T} y$ iff $(\exists x \in[p])\left(x \equiv_{T} y\right)$.
(b) For every $y \in 2^{\omega}$, if $p \leq_{T} y$, then there exists $q \in \mathbb{S}_{r p}$ such that $q \subseteq p$ and $q \equiv_{T} y$.
(c) If $q \in \mathbb{S}, q \subseteq p$ and $q \leq_{T} p$, then $q \in \mathbb{S}_{r p}$ and $q \equiv_{T} p$.
(15) Let $X \subseteq 2^{\omega}$ be a \subseteq-maximal set of pairwise Turing incomparable reals. Show that $|X|=\mathfrak{c}$. Hint: Use the fact that there is a perfect set of reals of minimal Turing degrees.
(16) Show that there is an infinite Turing independent family of c.e. sets.
(17) Prove the converse of Lemma 14.20. If x_{0} is 1-generic and x_{1} is 1-generic relative to x_{0}, then $x_{0} \oplus x_{1}$ is 1-generic.
(18) Let $x \in 2^{\omega}$ be 1-generic. Show that x does not compute any non-computable c.e. set. Conclude that there is a degree below 0^{\prime} that is not c.e.
(19) Let $A \subseteq \omega$ be hyperimmune. Show that A is immune and $A \oplus A$ is hyperimmune. Recall that $A \oplus B=\{2 n: n \in A\} \cup\{2 n+1: n \in B\}$.
(20) (J. Miller) Show that there are $A \subseteq B \subseteq C \subseteq \omega$ such that A, C are 1-generic and B isn't.
(21) Show that $\operatorname{Rec}=\left\{e: W_{e}\right.$ is computable $\}$ is Σ_{3}^{0}-complete.
(22) Show that for every $A \in \Delta_{2}^{0}$, there exists $B \in \Delta_{2}^{0}$ such that $B \not 又_{m} A$. Hence there is no Δ_{2}^{0}-complete set.
(23) Prove the relativized limit lemma (Exercise 15.12 in notes).
(24) For $A, B \subseteq \omega$, we write $A \subseteq^{\star} B$ iff $A \backslash B$ is finite and $A=^{\star} B$ iff $A \subseteq^{\star} B$ and $B \subseteq^{\star} A$. Define A to be a maximal set iff A is c.e. and coinfinite subset of ω and for every c.e. $B \subseteq \omega$, if $A \subseteq^{\star} B$, then either $A=^{\star} B$ or $B=^{\star} \omega$. Show that every maximal set is high.
(25) Call $d: \omega \rightarrow \omega$ a DNC (diagonally non-computable) function iff

$$
(\forall n)\left(\varphi_{n}(n) \downarrow \Longrightarrow d(n) \neq \varphi_{n}(n)\right) .
$$

Show that $\mu\left(\left\{x \in 2^{\omega}: x\right.\right.$ computes a DNC function $\left.\}\right)=1$.

