IDC:608: Computability theory Homework

(1) Let $d(x,\mathbb{Z})$ denote the nearest distance of $x \in \mathbb{R}$ from integers. For example, $d(3.4,\mathbb{Z}) = 0.4$ and $d(1.7,\mathbb{Z}) = 0.3$. Let $A = \{x > 1 : \lim_{n \to \infty} d(x^n,\mathbb{Z}) = 0\}$.

(a) Show that
$$\frac{1+\sqrt{5}}{2} \in A$$
.

(b) Call a real number x computable iff there is a computable function $f : \omega \to \mathbb{Q}$ such that for every $n < \omega$, $|f(n) - x| \le 2^{-n}$. Show that every member of A is computable.

(c) Conclude that A is countable.

- (2) Show that there are infinitely many pairs $e < e' < \omega$ such that $\operatorname{dom}(\varphi_e) = \{e'\}$ and $\operatorname{dom}(\varphi_{e'}) = \{e\}$.
- (3) Show that every infinite c.e. $X \subseteq \omega$ has an infinite computable subset.
- (4) Let $f: \omega \to \omega$. For $n \ge 1$, define f^n by $f^1 = f$, $f^{n+1} = f \circ f^n$.

(a) Show that if f is computable, then $\{f^n(0) : n \ge 1\}$ is c.e.

(b) Show that there is a computable $f: \omega \to \omega$ such that $\{f^n(0) : n \ge 1\}$ is not computable.

- (5) Show that there is a partial computable function that cannot be extended to any total computable function. Hint: Use a pair of computably inseparable c.e. sets.
- (6) Show that there is a simple set $X \subseteq \omega$ such that $\lim_{n \to \infty} \frac{|X \cap n|}{n} = 0$.
- (7) Let $A, B \subseteq \omega$. Show that $A' \leq_m B \implies A' \leq_1 B$. Here A' is the Turing jump of A.
- (8) Assume $x, y \in 2^{\omega}$ and x is not computable from y. Show that $\{z \in 2^{\omega} : x \leq_T y \oplus z\}$ is meager. Use this to show that every maximal Turing independent set is uncountable.
- (9) Generalize Kleene-Post theorem as follows. For every $\mathbf{a} \in \mathcal{D} \setminus \{\mathbf{0}\}$, there exists $\mathbf{b} < \mathbf{a}'$ such that \mathbf{a} and \mathbf{b} are Turing incomparable.
- (10) Construct a sequence $\langle x_n : n < \omega \rangle$ of reals such that for every $n, x_{n+1} <_T x_n$. Hint: Build $\langle y_n : n < \omega \rangle$ by finite approximation such that for every $m < n, y_m$ is not computable from $\langle y_k : k \ge n \rangle$.
- (11) Show that for every $x \in 2^{\omega}$, there exist $y, z \in 2^{\omega}$ such that $x <_T y, x <_T z$ and for every $w \in 2^{\omega}$, $(w \leq_T x \iff (w \leq_T y \text{ and } w \leq_T z))$.
- (12) For $\mathbf{a}, \mathbf{b} \in \mathcal{D}$, the meet of \mathbf{a} and \mathbf{b} is the \leq_T -greatest lower bound of $\{\mathbf{a}, \mathbf{b}\}$ (if it exists). Show that for every $\mathbf{e} \in \mathcal{D}$, there exist $\mathbf{a}, \mathbf{b} \in \mathcal{D}$ such that $\mathbf{e} \leq_T \mathbf{a}, \mathbf{e} \leq_T \mathbf{b}$ and the meet of \mathbf{a}, \mathbf{b} does not exist.

- (13) Suppose $\langle p_n : n < \omega \rangle$ satisfies the following.
 - (a) Each $p_n \in \mathbb{S}$ and $(\forall n)(p_{n+1} \subseteq p_n)$. (b) For every $n < \omega$, $\mathsf{splitnode}_n(p_n) = \mathsf{splitnode}_n(p_{n+1})$. Put $p = \bigcap_{n < \omega} p_n$. Show that $p \in \mathbb{S}$.
- (14) Let $p \in \mathbb{S}_{rp}$. Prove the following.

(a) For every $y \in 2^{\omega}$, $p \leq_T y$ iff $(\exists x \in [p])(x \equiv_T y)$.

(b) For every $y \in 2^{\omega}$, if $p \leq_T y$, then there exists $q \in \mathbb{S}_{rp}$ such that $q \subseteq p$ and $q \equiv_T y$.

(c) If $q \in \mathbb{S}$, $q \subseteq p$ and $q \leq_T p$, then $q \in \mathbb{S}_{rp}$ and $q \equiv_T p$.

- (15) Let $X \subseteq 2^{\omega}$ be a \subseteq -maximal set of pairwise Turing incomparable reals. Show that $|X| = \mathfrak{c}$. Hint: Use the fact that there is a perfect set of reals of minimal Turing degrees.
- (16) Show that there is an infinite Turing independent family of c.e. sets.
- (17) Prove the converse of Lemma 14.20. If x_0 is 1-generic and x_1 is 1-generic relative to x_0 , then $x_0 \oplus x_1$ is 1-generic.
- (18) Let $x \in 2^{\omega}$ be 1-generic. Show that x does not compute any non-computable c.e. set. Conclude that there is a degree below 0' that is not c.e.
- (19) Let $A \subseteq \omega$ be hyperimmune. Show that A is immune and $A \oplus A$ is hyperimmune. Recall that $A \oplus B = \{2n : n \in A\} \cup \{2n+1 : n \in B\}.$
- (20) (J. Miller) Show that there are $A \subseteq B \subseteq C \subseteq \omega$ such that A, C are 1-generic and B isn't.
- (21) Show that $\operatorname{Rec} = \{e : W_e \text{ is computable}\}$ is Σ_3^0 -complete.
- (22) Show that for every $A \in \Delta_2^0$, there exists $B \in \Delta_2^0$ such that $B \not\leq_m A$. Hence there is no Δ_2^0 -complete set.
- (23) Prove the relativized limit lemma (Exercise 15.12 in notes).
- (24) For $A, B \subseteq \omega$, we write $A \subseteq^* B$ iff $A \setminus B$ is finite and $A =^* B$ iff $A \subseteq^* B$ and $B \subseteq^* A$. Define A to be a maximal set iff A is c.e. and coinfinite subset of ω and for every c.e. $B \subseteq \omega$, if $A \subseteq^* B$, then either $A =^* B$ or $B =^* \omega$. Show that every maximal set is high.
- (25) Call $d: \omega \to \omega$ a DNC (diagonally non-computable) function iff

$$(\forall n)(\varphi_n(n)\downarrow \implies d(n)\neq \varphi_n(n)).$$

Show that $\mu(\{x \in 2^{\omega} : x \text{ computes a DNC function}\}) = 1.$