
MTH202: Set theory and discrete mathematics

LECTURE NOTES

The instructor of this course owns the copyright of all the
course materials. This lecture material was distributed only to

the students attending the course MTH202: Set theory and
discrete mathematics of IIT Kanpur, and should not be

distributed in print or through electronic media without
the consent of the instructor. Students can make their own

copies of the course materials for their use.



Why axioms?

In the early 20th century, sets were described as “well-defined
collections of objects”. This leads to contradictions like the
Russell’s paradox.
Surely the set of all sets that do not belong to themselves is a
well-defined collection. Call it Y . So Y = {x : x /∈ x}. Now either
Y ∈ Y or Y /∈ Y . But each case implies the other (Why?). So we
get a contradiction!
Clearly, something has gone wrong. We must be more precise
about the notion of sets. This can be done via an axiomatic theory
of sets called ZFC (shorthand for Zermelo-Fraenkel set theory with
the axiom of choice). As is common in any axiomatic theory (like
Euclid’s axioms for plane geometry), sets and membership are
“primitive notions” and the axioms describe the precise rules to
reason with them.



Axioms of ZFC

Most of the ZFC axioms describe how to construct new sets out of
old.

I Axiom of empty set: There is a set with no members.

(∃X )(∀y)(y /∈ X )

I Axiom of extensionality: Two sets are equal iff they have
the same members.

(∀X )(∀Y )[(X ⊆ Y&Y ⊆ X ) =⇒ (X = Y )]

Extensionality implies that there is a unique empty set which we
denote by ∅ (and later by 0).



Pairing and Union

I Axiom of pairing: For any two sets x , y , there is a set whose
members are x , y .

(∀x)(∀y)(∃Z )(Z = {x , y})

I Axiom of union: For every family F of set, there is a set
whose members are the members of members of F .

(∀F)(∃Y )[Y = {v : (∃X ∈ F)(v ∈ X )}]

We write
⋃
F to denote the union of the sets in F . If

X1,X2, . . . ,Xn are sets, we define

X1 ∪ X2 ∪ · · · ∪ Xn =
⋃
{X1,X2, . . . ,Xn}



Comprehension scheme

The axiom of comprehension says that for any set X and a
“first-order property” φ(v), there is a subset Y of X whose
members are precisely those members v of X which satisfy the
property φ(v).

(∀X )(∃Y )(Y = {v ∈ X : φ(v)})

So axiom of comprehension is a really an axiom scheme as we get
one axiom for each “property” φ(v). We won’t go into the precise
definition of “first-order property” since we won’t need it.



Using comprehension

During the course of these lectures, we’ll sometimes introduce new
sets via the expression {x : φ(x)}. As noted before, for some
properties φ(x) (like x /∈ x) there is no such set. Therefore, on
such occasions, one must check that that the axioms of ZFC
guarantee the existence of such sets. For example, define the
difference of two sets by

A \ B = {x : x ∈ A & x /∈ B}

This is a set since it equals {x ∈ A : x /∈ B} which exists by
comprehension.



Intersection

If F is a nonempty collection of sets, then we define⋂
F = {y : (∀X ∈ F)(y ∈ X )}

To see that
⋂
F exists, using the fact that F 6= ∅, fix an arbitrary

Z ∈ F and apply comprehension to conclude that⋂
F = {v ∈ Z : (∀X ∈ F)(x ∈ X )} exists. Define

X1 ∩ X2 ∩ · · · ∩ Xn =
⋂
{X1,X2, . . . ,Xn}

Two sets are disjoint iff their intersection is the emptyset. We say
that F is a disjoint family iff for every A 6= B in F , A ∩ B = ∅.



Replacement scheme

Suppose X is a set and φ(x , y) is a property such that for every
x ∈ X , there is a unique set y for which φ(x , y) holds. Then we
can form the set

{y : (∃x ∈ X )(φ(x , y))}

We’ll say more on this later when we discuss transfinite recursion.



Power set

The power set axiom says that for every set X , there is a set that
contains all subsets of X .

(∀X )(∃Y )(Y = {S : S ⊆ X})

We denote that power set of X by P(X ).



Natural numbers and the axiom of infinity

Definition (Natural numbers)

I 0 = ∅
I 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} . . .

I n + 1 = n ∪ {n}

A set X is inductive iff 0 ∈ X and for every x ∈ X , x ∪ {x} ∈ X .
The axiom of infinity says that there is an inductive set. We
define ω to be the intersection of all inductive sets.

Definition (The set of natural numbers)

ω = {0, 1, 2, . . . , n, n + 1, . . . }



Other axioms

The remaining two axioms are

I Axiom of choice

I Axiom of foundation

We’ll introduce the axiom of choice later. For the purposes of
this course, we can safely ignore the axiom of foundation.



The axioms of ZFC

I Axiom of empty set

I Axiom of extensionality

I Axiom of pairing

I Axiom of union

I Axiom scheme of comprehension

I Axiom scheme of replacement

I Axiom of power set

I Axiom of infinity

I Axiom of choice

I Axiom of foundation



Ordered pairs

Definition
The ordered pair with first coordinate x and second coordinate y is
defined by

(x , y) = {{x}, {x , y}}

Note that (x , y) exists by the axiom of pairing. The key property
of ordered pairs is the following.

Proposition

If (x , y) = (a, b), then x = a and y = b.

The proof is left as an exercise.



Cartesian products

Definition
The cartesian product X × Y is defined to be the set of all ordered
pairs whose first the coordinate is in X and second coordinate is in
Y .

X × Y = {(x , y) : x ∈ X & y ∈ Y }

Note that X × Y is a subset of P(P(X ∪ Y )) which exists by the
pairing, union and power set axioms. So the existence of

X × Y = {v ∈ P(P(X ∪ Y )) : (∃x ∈ X )(∃y ∈ Y )(v = (x , y))}

follows from comprehension.



Relations

A relation R is a set of ordered pairs. If R is a relation, then

I dom(R) = {x : (∃y)((x , y) ∈ R)}
I range(R) = {y : (∃x)((x , y) ∈ R)}

We say that R is a relation from A to B iff R ⊆ A× B. Note
that every relation R is a relation from dom(R) to range(R). We
say that R is a relation on A iff R is a relation from A to A.
Notation: If R is a relation, we sometimes write xRy (read x is
R-related to y) instead of (x , y) ∈ R.



Functions

F is a function iff F is a relation and for every x ∈ dom(F ), there
is a unique y ∈ range(F ) such that (x , y) ∈ F . We write F (x) = y
instead of (x , y) ∈ F . We say that F is a function from A to B,
and write F : A→ B, iff F is a function, dom(F ) = A and
range(F ) ⊆ B.
Suppose F : A→ B. We say that

I F is injective (one-one) if for every x 6= y in A, F (x) 6= F (y).

I F is surjective (onto) if range(F ) = B

I F is bijective iff it is both injective and surjective.

If f : A→ B and g : B → C , then g ◦ f : A→ C defined by
(g ◦ f )(x) = g(f (x)) is the composition of f with g .
If f : A→ B is a bijection, the inverse of f is the function
f −1 : B → A defined by

f −1(y) = x ⇐⇒ f (x) = y



Images/preimages, Finite/Infinite, countable/uncountable

Suppose F : A→ B, X ⊆ A and Y ⊆ B.

I The image of X under F is F [X ] = {F (x) : x ∈ X}.
I The preimage of Y with respect to F is

F−1[Y ] = {x ∈ A : F (x) ∈ Y }

A set X is finite iff for some natural number n, there exists a
bijection f : n→ X . Otherwise, it is infinite.



Isomorphism

Definition (Isomorphism)

Suppose R, S are relations and A,B are sets. We sat that (A,R) is
isomorphic to (B, S) and write (A,R) ∼= (B, S) iff there is a
bijection f : A→ B such that for every x , y ∈ A, xRy iff
f (x)Sf (y).



Equivalence relations and partitions

We say that R is an equivalence relation on A iff R is a relation
from A to A which satisfies the following.

I Reflexive For every a ∈ A, aRa.

I Symmetric If aRb, then bRa.

I Transitive If aRb and bRc , then aRc.

We say that F is a partition of A iff F is a disjoint family and⋃
F = A.

Exercise
Suppose R is an equivalence relation on A. For each a ∈ A, define
the R-equivalence class of a by [a] = {b ∈ A : aRb}. Then
{[a] : a ∈ A} is a partition of A.



Linear orderings

Definition
A linear ordering is a pair (A,≺) such that A is a nonempty set
and ≺ is a binary relation on A that satisfies

I Irreflexive For every a ∈ A, ¬(a ≺ a) (¬ denotes negation).

I Transitive If a ≺ b and b ≺ c , then a ≺ c .

I Total For every x , y ∈ X if x 6= y , then either x ≺ y or y ≺ x .

If (A,≺) is a linear ordering, we define the relation � on A by

a � b ⇐⇒ (a ≺ b or a = b)

If (A,≺) is a linear ordering and x ∈ A, we define the set if
predecessors of x in (A,≺) by pred(A,≺, x) = {y ∈ A : y ≺ x}.



Well-orderings

Suppose (X ,≺) is a linear ordering, A ⊆ X and y ∈ A. We say
that y is the ≺-least member of A iff for every z ∈ A, y � z .

Definition
A well-ordering is a pair (X ,≺) such that ≺ is a linear ordering on
X such that for every nonempty A ⊆ X , A has a ≺-least member.

Note that if (X ,≺) is a well ordering then for every x ∈ X , either
x is ≺-largest member of X or x has a ≺-successor y which means
that x ≺ y and for every z ≺ y , z � x . So the first few members
of X look like: x0 ≺ x1 ≺ x2 ≺ . . .



Well-orderings

Lemma
Suppose (X ,≺) is a well-ordering. Then (X ,≺) is not isomorphic
to (pred(X ,≺, x),≺) for any x ∈ X .

Proof: Suppose not and let f : X → pred(X ,≺, x) be an
isomorphism. Note that f (x) ≺ x so the set

W = {y ∈ X : f (y) ≺ y}

is nonempty. Let z be ≺-least member of W . So f (z) ≺ z . Since
f preserves ≺, we also get f (f (z)) ≺ f (z). Put w = f (z) and note
that w ∈W . Since z is the ≺-least member of W , z � w = f (z)
which is a contradiction as f (z) ≺ z .



Well-orderings

Lemma
Suppose (X ,≺) is a well-ordering and f : X → X is an
isomorphism. Then f is the identity function on X .

Proof Let f : X → X be an isomorphism and, towards a
contradiction, suppose for some v ∈ X , f (v) 6= v . So the set
W = {v ∈ X : f (v) 6= v} is nonempty. Let x be the ≺-least
member of W . Put y = f (x). Then either y ≺ x or x ≺ y . If
y ≺ x , then f (y) = y as x was ≺-least non fixed point of f . But
since f preserves ≺ and y ≺ x , y = f (y) ≺ f (x) = y which is
impossible. Next suppose x ≺ y . Since f is surjective, there is
some w ∈ X such that f (w) = x . Clearly, w � x so x ≺ w . But
then y = f (x) ≺ f (w) = x which contradicts x ≺ y .



Well-orderings

Theorem
Suppose (X ,≺1) and (Y ,≺2) are well-orderings. Then exactly one
of the following holds.

(1) (X ,≺1) ∼= (Y ,≺2).

(2) For some x ∈ X , (pred(X ,≺1, x),≺1) ∼= (Y ,≺2).

(3) For some y ∈ Y , (pred(Y ,≺2, y),≺2) ∼= (X ,≺1).

Furthermore, in each of the three cases, the isomorphism is unique.

Proof: See Homework.



Well-ordering theorem

The axiom of choice says the following. For every family E of
nonempty sets, there is a function F such that dom(F ) = E and for
every A ∈ E , F (A) ∈ A. We say that F is a choice function on E .

Theorem (Zermelo, 1904)

Every set can be well-ordered.

Proof: Watch video.



Ordinals

Definition (Transitive sets)

A set x is transitive iff for every y ∈ x , y ⊆ x .

Definition (Ordinals)

x is an ordinal iff x is transitive and (x ,∈) is a well-ordering.

We are slightly abusing the notation here since ∈ is not a set.
Nevertheless, for any set x , the relation
εx = {(y , z) : y , z ∈ x & y ∈ z} is the restriction of the
membership relation on x . So ∈ stands for εx in the pair (x ,∈).



Examples

I 0 = ∅ is an ordinal.

I 1, 2, 3, . . . , n, n + 1, . . . are ordinals.

I The set of natural numbers ω is an ordinal.

I ω ∪ {ω} is an ordinal.

I The set of even numbers E = {0, 2, 4, 6, . . . , 2n, . . . } is
well-ordered by ∈ but E is not an ordinal since it is not a
transitive set.



Ordinals

Claim
If x is an ordinal and y ∈ x , then y is an ordinal and
y = pred(x ,∈, y).

Proof: (a) y is transitive: Suppose z ∈ y . We must check that
z ⊆ y . Fix w ∈ z . So w ∈ z ∈ y ∈ x . As x is transitive, each one
of z ,w , y is in x . Since x is well-ordered by ∈, in particular, ∈ is a
transitive relation on x . As w ∈ z ∈ y , we get w ∈ y . Hence
z ⊆ y .
(b) y is well-ordered by ∈: Note that since x is transitive, y ⊆ x .
Now if (A,≺) is a well-ordering and B ⊆ A, then the restriction of
≺ to B is also a well-order. So y is well-ordered by ∈.
(c) y = pred(x ,∈, y): If z ∈ y , then z ∈ x . So z ∈ pred(x ,∈, y).
Hence y ⊆ pred(x ,∈, y). If z ∈ pred(x ,∈, y), then z ∈ y . So
pred(x ,∈, y) ⊆ y .



Ordinals

The proofs of the following facts are left to the reader.

Theorem

(a) If x is an ordinal and y ∈ x , then y is an ordinal and
y = pred(x ,∈, y).

(b) If x , y are ordinals and (x ,∈) ∼= (y ,∈), then x = y .

(c) If x is an ordinal, then x /∈ x .

(d) If x , y are ordinals, then exactly one of the following holds:
x = y , x ∈ y , y ∈ x .

(e) If C is a non empty set of ordinals, then there exists x ∈ C
such that (∀y ∈ C )(y = x or x ∈ y).

(f) If A is a set of ordinals, then (A,∈) is a well-ordering. Hence
if A is a transitive set of ordinals, then A is an ordinal.



Ordinals and well-orderings

Theorem
For every well-ordering (X ,≺), there is a unique ordinal A such
that (X ,≺) ∼= (A,∈).

Proof: Uniqueness follows from clause (b) above. Let Y be the
set of all x ∈ X such that (pred(X ,≺, x),≺) is isomorphic to an
ordinal. Using the axiom of replacement, define a function f on Y
by letting f (x) to be the unique ordinal which is isomorphic to
(pred(X ,≺, x),≺). Let A = range(f ). Note that A is a transitive
set of ordinals. Hence A is an ordinal. It is also easy to check that
f : Y → A is an isomorphism from (Y ,≺) to (A,∈).
So we would be done if Y = X . Suppose Y 6= X . Note that Y is
a ≺-initial segment of X . Let b be the ≺-least member of X \ Y .
Then Y = pred(X ,≺, b). But (pred(X ,≺, b),≺) is isomorphic to
the ordinal A. So b ∈ Y which is a contradiction.



Order types, sup/min

Definition (Order type)

If (X ,≺) is a well ordering, let type(X ,≺) be the unique ordinal A
such that (X ,≺) ∼= (A,∈).

We denote ordinals by Greek letters: α, β, γ, etc. and from now
on we’ll write α < β instead of α ∈ β.

Definition (sup, min)

For a set of ordinals A, define sup(A) =
⋃
A and, if A 6= 0,

min(A) =
⋂
A.

Check that sup(A) is the least ordinal which is greater than or
equal to every ordinal in A and min(A) is the least ordinal in A.



Definition (Successor and limit)

The successor of α is defined by S(α) = α ∪ {α}.
An ordinal α is called a successor ordinal if for some ordinal β,
α = S(β). Otherwise α is a limit ordinal.

Note that S(α) is the least ordinal bigger than α.
The first few ordinals are:

0 < 1 < 2 < · · · < n < n + 1 < · · · < ω < S(ω) < S(S(ω)) < . . .

Note that ω is a limit ordinal.



Sum of linear orders

Given two linear orderings (L1,≺1) and (L2,≺2), one can define
another linear ordering by putting a copy of (L2,≺2) after a copy
of (L1,≺1). The following definition makes this precise.

Definition
Suppose (L1,≺1) and (L2,≺2) are linear orderings. We define the
sum (L,≺) = (L1,≺1)⊕ (L2,≺2) as follows.

(1) L = (L1 × {0})
⋃

(L2 × {1}).

(2) For every x , y ∈ L, x ≺ y iff one of the following holds
(i) x = (a, 0), y = (b, 0) and a ≺1 b.
(ii) x = (a, 1), y = (b, 1) and a ≺2 b.
(iii) x = (a, 0) and y = (b, 1).

Note that we defined L = (L1 × {0})
⋃

(L2 × {1}) (and not
L = L1

⋃
L2) because L1, L2 may not be disjoint.



Sum of ordinals

Definition (Ordinal addition)

α + β = type((α,<)⊕ (β,<))

It is easy to check that α + β is an ordinal. Note that
S(α) = α + 1 and if m, n < ω, then m + n is the usual sum.
Ordinal addition is not commutative in general: For example
ω = 1 + ω 6= ω + 1. The first few ordinals are:

0 < 1 < · · · < ω < S(ω) = ω + 1 < ω + 2 < · · · < ω + ω < . . .

Exercise Show that if α < β, there is a unique ordinal γ such that
α + γ = β. (Hint: γ = type(β \ α,∈)).



Lexicographic product of linear orders

Definition (Product of linear orders)

Suppose (L1,≺1) and (L2,≺2) are linear orderings. We define the
product (L,≺) = (L1,≺1)⊗ (L2,≺2) as follows.

(1) L = L1 × L2.

(2) For every (x1, y1) and (x2, y2) in L, (x1, y1) ≺ (x2, y2) iff
(a) Either x1 ≺1 x2 or
(b) x1 = x2 and y1 ≺2 y2.



Product of ordinals

Definition (Ordinal multiplication)

α · β = type((β,<)⊗ (α,<))

It is easy to check that α · β is an ordinal. If m, n < ω, then m · n
is the usual product. Ordinal multiplication is not commutative in
general: ω · 2 = ω + ω 6= 2 · ω = ω.



Laws of ordinal arithmetic

Fact
For any α, β and γ the following hold.

(i) (Associativity) α + (β + γ) = (α + β) + γ and
α · (β · γ) = (α · β) · γ

(ii) α + 0 = α, α · 0 = 0 and α · 1 = 1 · α = α.

(iii) (Continuity at limits) If β is a limit ordinal,
α + β = sup{α + η : η < β} and α · β = sup{α · η : η < β}

(iv) (Left distributivity) α · (β + γ) = (α · β) + (α · γ)



Restrictions of functions

Suppose f is a function and X ⊆ dom(f ). We define the
restriction of f to X , denoted f � X , as follows.

I dom(f � X ) = X .

I For each a ∈ X , (f � X )(a) = f (a).



Burali-Forti paradox

Theorem
No set contains all ordinals.

Proof: Suppose there is a set X such that every ordinal is a
member of X . Using comprehension, define
Γ = {y ∈ X : y is an ordinal}. Then Γ is a transitive set of ordinals
and hence Γ is also an ordinal. Since all ordinals are members of
X , this means that Γ ∈ Γ which is impossible.



Sequences indexed by ordinals

A sequence is a function whose domain is an ordinal. If f is a
sequence and dom(f ) = γ, we sometimes write 〈f (α) : α < γ〉
instead of f . If f is a sequence with dom(f ) = γ, we also say that
f is a sequence of length γ. We say that f is a sequence in X if
range(f ) ⊆ X . A set X is countable iff there is a sequence
〈xn : n < ω〉 whose range is X . If there is no such sequence, X is
uncountable. If X is a set and α is an ordinal, define Xα to be
the set of all functions from α to X . If n < ω, members of X n are
called n-tuples in X .

Lemma
Let X be any set. Then there are an ordinal γ and an injective
sequence 〈xα : α < γ〉 whose range is X .

Proof: Let ≺ be a well-order on X . Put γ = type(X ,≺) and fix
an order isomorphism f from (γ,<) to (X ,≺). For each α < γ,
define xα = f (α). Then 〈xα : α < γ〉 is an injective sequence
whose range is X .



Formalizing mathematics within ZFC

We have already constructed (ω,+, .) where + and . denote
addition and multiplication of finite ordinals (natural numbers).
One can go on and construct (Z,+, .) (the ring of integers),
(Q,+, .) (the field of rational numbers), (R,+, .) (the field of real
numbers) and (C,+, .) (the field of complex numbers), Euclidean
spaces Rn etc. in the usual way. Once this as been done, it is not
difficult to convince oneself, that all the theorems in various fields
of mathematics can be expressed and proved within ZFC. We
won’t pursue this path here.



Ordinary induction

The principle of mathematical induction says the following.
Suppose P(n) is a property of natural numbers. Assume

I P(0) holds and

I for every n < ω,

[(∀k < n)P(k)] =⇒ P(n)

Then P(n) holds for every n < ω.



Transfinite induction

Theorem
Suppose P(α) is a property of ordinals. Assume

(1) P(0) holds and

(2) for every ordinal α > 0,

[(∀β < α)P(β)] =⇒ P(α)

Then P(α) holds for every ordinal α.

Proof: Suppose not and fix the least ordinal α such that P(α)
fails. By clause (1), α > 0. Note that P(β) holds for every β < α.
Hence clause (2) implies that P(α) holds. A contradiction.



Ordinary recursion

Ordinary recursion constructs objects through finite stages. An
example follows.

Theorem (Cantor, 1874)

The set of real numbers is uncountable.

Proof: It suffices to show that for every sequence 〈an : n < ω〉 of
real numbers, there is a real number which does not appear in this
sequence. Recursively construct a sequence of closed intervals
[xn, yn] such that

1. [x0, y0] = [0, 1],

2. xn < xn+1 < yn+1 < yn and

3. an /∈ [xn+1, yn+1].

Choose x ∈
⋂
{[xn, yn] : n < ω}. Then x is not in the

sequence.



Ordinary recursion

Theorem
Let F be “function” defined on the class of all sets. Suppose x is a
set. Then there is a unique function h such that

1. dom(h) = ω,

2. h(0) = x and

3. for each n ≥ 1, h(n) = F(h � n).

In the previous proof, F can be chosen as follows. If for some
n < ω, x is a sequence of length n whose last entry is a closed
interval [x , y ], then F(x) is a closed subinterval of [x , y ] which does
not contain an. Otherwise, define F(x) = 0.



Transfinite recursion

Theorem
Let F be a “function” defined on the class of all sets. Then for
each ordinal γ, there is a unique function h such that

1. dom(h) = γ

2. For each α < γ, h(α) = F(h � α).

In applications of this theorem, we imagine the function h as being
defined in γ stages. At stage 0, by clause 2, we must define
h(0) = F(h � 0) = F(0). Having defined h(β) for every β < α, we
feed h � β = 〈h(β) : β < α〉 to F to get h(α).



Well-ordering theorem revisited

Let us use transfinite recursion to give another proof of the
well-ordering theorem. Let X be a set. Using the axiom of choice,
fix a choice function f : P(X ) \ {0} → X . Fix a set s? /∈ X . By
transfinite recursion, for each ordinal γ, define a function
hγ : γ → X ∪ {s?} as follows. For every ordinal α < γ,

hγ(α) =

{
f (X \ range(hγ � α)) if range(hγ � α) 6= X

s? otherwise
(1)

We claim that there must be some ordinal γ such that
s? ∈ range(hγ). Otherwise, applying replacement axiom to the
formula φ(x , y) which says ”y is the least ordinal such that
x ∈ range(hy )”, we’ll get a set that contains all ordinals which is
impossible. Let γ be least such that s? ∈ range(hγ). Then hγ is a
bijection from γ to X ∪ {s?}. Hence X can be well-ordered.



Ordinal exponentiation

As another application of transfinite recursion, let us define ordinal
exponentiation αβ. By transfinite recursion on β, define αβ as
follows.

(i) α0 = 1.

(ii) αβ+1 = αβ · α.

(iii) If β is a limit ordinal, then αβ = sup({αγ : γ < β}).

Note that we have divided the construction into three cases:
β = 0, β is a successor ordinal, β is a limit ordinal.



Ordinal exponentiation

Let us use transfinite induction, to prove the following

αβ+γ = αβ · αγ

We prove this by induction on γ.

I Case γ = 0: αβ+γ = αβ+0 = αβ = αβ · 1 = αβ · α0 = αβ · αγ

I Case γ = δ + 1: αβ+γ = αβ+(δ+1) = α(β+δ)+1 = αβ+δ · α =
= (αβ · αδ) · α = αβ · (αδ · α) = αβ · αδ+1 = αβ · αγ

I Case γ is limit: αβ+γ = sup({αβ+δ : δ < γ}) =
= sup({αβ · αδ : δ < γ}) = αβ · sup({αδ : δ < γ}) = αβ · αγ .



Proof of transfinite recursion

Theorem
Let F be a “function” defined on the class of all sets. Then for
each ordinal γ, there is a unique function h such that

1. dom(h) = γ

2. For each α < γ, h(α) = F(h � α).

Proof: Note that the following proof will not use the axiom of
choice. Let us first check uniqueness. Suppose h, h′ are two
distinct functions satisfying clauses 1 and 2. Let α < γ be least
such that h(α) 6= h′(α). Then

h(α) = F(h � α) = F(h′ � α) = h′(α)

which is a contradiction.



Proof of transfinite recursion

Next, we prove the existence of h by transfinite induction on γ.
Suppose for each η < γ, there exists hη such that dom(hη) = η
and for every α < η, hη(α) = F(hη � α). We will construct h such
that dom(h) = γ and for every α < γ, h(α) = F(h � α).

Claim
For every η < θ < γ, hη = hθ � η.

Proof of Claim: Just note that both hη and hθ � η satisfy clauses 1
+ 2 for γ = η. Hence by uniqueness, hη = hθ � η.
Define, h =

⋃
{hη : η < γ} and note that the claim implies that h

is a function with domain γ. It is clear that h is as required.



Partial orderings

A partial ordering is a pair (P,�) where � is a binary relation on
P that satisfies the following.

I Reflexive For every p ∈ P, p � p

I Antisymmetric For every p, q ∈ P, if p � q and q � p, then
p = q.

I Transitive For every p, q, r ∈ P, if p � q and q � r , then
p � r .

Note that we do not require that any two members of P be
�-comparable. If (P,�) is a partial ordering and p, q ∈ P, we
write p ≺ q iff p � q and p 6= q.



Examples

Examples

(1) If (L,≺) is a linear ordering, then (L,�) is a partial ordering.

(2) For any family of sets F , (F ,⊆) is a partial ordering.

The second example is universal in the following sense.

Proposition

Every partial ordering (P,�) is isomorphic to (F ,⊆) for some F .

Proof: For each p ∈ P, let Wp = {q ∈ P : q ≤ p}. Define
F = {Wp : p ∈ P}. Then it is easy to check that (P,�) ∼= (F ,⊆)
via the function p 7→Wp.



Upper/lower bounds, Maximal/minimal

Suppose (P,�) is a partial ordering, p ∈ P and X ⊆ P.

I We say that p is an upper bound of X iff for every q ∈ X ,
q ≤ p.

I We say that p is a lower bound of X iff for every q ∈ X ,
p ≤ q.

I We say that p is a maximal element of P iff there is no
q ∈ P such that p ≺ q.

I We say that p is a minimal element of P iff there is no
q ∈ P such that q ≺ p.



Chains in partially ordered sets

Chains are linearly ordered subsets of partial orderings.

I Suppose (P,�) is a partial ordering and C ⊆ P. We say that
C is a chain in (P,�) iff for every p, q ∈ C , either p � q or
q � p.

I If F is a family of sets, by a chain in F , we mean a chain in
(F ,⊆).

Exercise: Show that there is an uncountable chain in P(ω).



Zorn’s lemma

Theorem
Let (P,�) be a partial ordering in which every chain has an upper
bound. Then P has a maximal element.

Proof: Towards a contradiction, suppose P has no maximal element. Fix
an ordinal γ and an injective sequence 〈pα : α < γ〉 whose range is P. By
transfinite recursion on α < γ, construct a sequence 〈Cα : α < γ〉 such
that the following hold.

I Each Cα is a chain in P and C0 = 0.

I For every α < β < γ, Cα ⊆ Cβ .

I If α is limit, Cα =
⋃
{Cβ : β < α}.

I For every α < γ, Cα+1 is defined as follows. If pα is an upper
bound of Cα, then Cα+1 = Cα ∪ {pη} where η is least such that
pα ≺ pη. Otherwise, Cα+1 = Cα.

Put C =
⋃
{Cα : α < γ}. Then it is easy to check that C is a chain in P

and C has no upper bound in P. A contradiction.



Equivalents of AC

Let ZF be the theory ZFC without the axiom of choice. In ZF, the
following are equivalent.

(1) Axiom of choice

(2) Well-ordering theorem

(3) Zorn’s lemma

Proof: We already proved (1) =⇒ (2) and (2) =⇒ (3). So it
suffices to prove (3) =⇒ (1).
Let X be a set and F = P(X ) \ {0}. Define h to be a partial
choice function on F iff h is a function, dom(h) ⊆ F and for every
A ∈ dom(h), h(A) ∈ A. Let G be the family of all partial choice
functions on F . Note that every chain in (G,⊆) has an upper
bound, namely its union. Using Zorn’s lemma, fix a maximal
element h in G. Note that dom(h) = F , otherwise fix some
A ∈ F \ dom(h), a ∈ A and consider h′ = h ∪ {(A, a)}. Clearly
h′ ∈ G is larger than h which contradicts the maximality of h. So
dom(h) = F and hence it is a choice function on F .



Applications of Zorn’s Lemma: Example I

Theorem
For any two sets A and B, either there is an injection from A to B
or there is an injection from B to A.

Proof: Let F be the family of all functions f such that
dom(f ) ⊆ A, range(f ) ⊆ B and f is injective. Then (F ,⊆) is a
partial ordering.
Exercise: Check that every chain in F has an upper bound.
By Zorn’s lemma, F has a maximal member h. We claim that
either dom(h) = A or range(h) = B. This suffices since in the
former case, h is an injection from A to B and in the latter case,
h−1 is an injection from B to A. Towards a contradiction, suppose
dom(h) 6= A and range(h) 6= B. Fix x ∈ A \ dom(A) and
y ∈ B \ range(h). Define h′ = h ∪ {(x , y)}. Then h′ ∈ F . Hence h
is not maximal in F which is a contradiction.



Example II

Lemma
Every partial ordering (P,�) contains a ⊆-maximal chain C . In
other words, C is a chain in P and for every chain D in P, if
C ⊆ D, then C = D.

Proof: Consider the partial ordering (F ,⊆) where F be the family
of all chains in P. If E is a chain in F , then

⋃
E is a chain in P

[Why?]. Hence every chain in (F ,⊆) has an upper bound. Let C
be a maximal element of (F ,⊆). Then C is a ⊆-maximal chain in
P.



Example III

Notation: Q is the set of rational numbers, R is the set of real
numbers, R+ is the set of positive real numbers and Q+ is the set
of positive rational numbers.

Theorem
R+ is the disjoint union of two nonempty sets, each closed under
addition.

Proof: Let P be the set of all pairs (A,B) where

I A,B ⊆ R+, A ∩ B = 0, A 6= 0 and B 6= 0,

I A and B are closed under addition and

I A and B are closed under multiplication by any positive
rational number

Note that (Q+,
√

2Q+) ∈ P so P is nonempty. Define a partial
order ≺ on P by (A1,B1) ≺ (A2,B2) iff A1 ⊆ A2 and B1 ⊆ B2.



Example III

Suppose C is a chain in (P,�). Let A (respectively B) be the union of
all the first (respectively second) coordinates of the pairs in C . Then it is
easy to check that (A,B) ∈ P and hence (A,B) is an upper bound of C .
So by Zorn’s lemma, P has a maximal member say (A?,B?). It suffices
to show that A? ∪ B? = R+. Towards a contradiction , suppose not and
fix x ∈ R+ \ (A? ∪ B?). Define A1 = {a + rx : a ∈ A?, r ∈ Q+ ∪ {0}}}
and B1 = {b + rx : b ∈ B?, r ∈ Q+ ∪ {0}}. It is easy to see that A1 and
B1 are both closed under addition and multiplication by a positive
rational. Since (A?,B?) is a maximal element of (P,≺), neither one of
(A?,B1) and (A1,B?) is in P. This must mean that A? ∩ B1 6= ∅ and
A1 ∩ B? 6= ∅. Fix y ∈ A? ∩ B1 and z ∈ A1 ∩ B?. Choose r , s ∈ Q+ ∪ {0},
a ∈ A? and b ∈ B? such that y = b + rx and z = a + sx . Since
A? ∩ B? = ∅, both r , s > 0. As a, y ∈ A? and A? is closed under addition
and multiplication by positive rationals, we get
sy + ra = ra + sb + srx ∈ A?. Similarly, rz + sb = sb + ra + rsx ∈ B?. So
A? ∩ B? 6= ∅ which is a contradiction .



Additive functions

Definition
A function f : R→ R is additive iff for every x , y ∈ R,

f (x + y) = f (x) + f (y)

Exercise: Suppose f : R→ R is additive and a = f (1).

I Show that f (0) = 0.

I Show that for every x ∈ R, f (−x) = −f (x).

I Show that for every x ∈ Q, f (x) = ax .



Continuous additive functions

Proposition

Suppose f : R→ R is continuous and additive. Let f (1) = a.
Then for every x ∈ R, f (x) = ax .

Proof: Let 〈xn : n < ω〉 be a sequence of rationals converging to x .
By the previous exercise, f (xn) = axn. By the continuity of f at x ,

f (x) = lim
n→∞

f (xn) = lim
n→∞

axn = a
(

lim
n→∞

xn
)

= ax

Question
Are these the only additive functions?



Q-linear independence

(a) X ⊆ R is Q-linearly independent iff for every finite
{x1, x2, . . . , xn} ⊆ X and a1, a2, . . . , an ∈ Q,

(a1x1 + a2x2 + · · ·+ anxn = 0) =⇒ (a1 = a2 = · · · = an = 0)

(b) H ⊆ R is a Hamel basis iff H is a ⊆-maximal Q-linearly
independent subset of R.

Exercise: Suppose H ⊆ R is a Hamel basis. Then for every
0 6= x ∈ R can be uniquely written as x = a1x1 + a2x2 + · · ·+ anxn
where x1, x2, . . . , xn ∈ H and a1, a2, . . . an are nonzero rationals.
Exercise: Suppose H ⊆ R is a Hamel basis and f : H → R. Then
there is a unique additive function g : R→ R such that f ⊆ g .



Hamel basis

Theorem
Let X ⊆ R be Q-linearly independent. Then there is a Hamel basis
H ⊆ R such that X ⊆ H.

Proof: Let F be the family of all Q-linearly independent sets Y
such that X ⊆ Y . Then every ⊆-chain C in F has an upper
bound, namely

⋃
C [Why?]. Hence by Zorn’s lemma, F has a

maximal member H.

Corollary

There is a discontinuous additive function f : R→ R.

Proof: Since {1} is Q-linearly independent, by the previous
theorem there is a Hamel basis H ⊆ R such that 1 ∈ H. Define
f : H → R by f (1) = 0 and f (x) = 1 if x ∈ H \ {1}. Let
g : R→ R be the unique additive function such that f ⊆ g .
Towards a contradiction, suppose g is continuous. Since g(1) = 0
and g is continuous, we must have g(x) = x0 = 0 for every x ∈ R
– A contradiction. So g is not continuous.



Cardinality I

Definition

1. We say that A has smaller cardinality than B iff there is an injection
from A to B.

2. We say that A and B have the same cardinality iff there is a
bijection from A to B.

Note that we haven’t defined “cardinality of A” yet. This will be done
later using the well-ordering theorem. The following are obvious.

1. A has smaller cardinality than A.

2. If A has smaller cardinality than B and B has smaller cardinality
than C , then A has smaller cardinality than C .

Next, we’ll prove the following: If A has smaller cardinality than B and B
has smaller cardinality than B, then A and B have the same cardinality.



Schröder-Bernstein theorem

Theorem (ZF)

Suppose there is an injection from A to B and there is an injection
from B to A. Then there is a bijection from A to B.

Proof: Fix injections f : A→ B and g : B → A. We’ll construct a
bijection h : A→ B. Recursively, define

I A0 = A, B0 = B and

I for each n < ω, Bn+1 = f [An], An+1 = g [Bn].

By induction on n < ω, it is easy to check that for every n < ω,
An+1 ⊆ An and Bn+1 ⊆ Bn. Define Aω =

⋂
{An : n < ω} and

Bω =
⋂
{Bn : n < ω}. Then we have the following.

(a) A = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ An+1 ⊇ · · · ⊇ Aω

(b) B = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ Bn+1 ⊇ · · · ⊇ Bω



Schröder-Bernstein theorem

Next, define

(i) Aeven =
⋃
{A2n \ A2n+1 : n < ω}

(ii) Aodd =
⋃
{A2n+1 \ A2n+2 : n < ω}

(iii) Beven =
⋃
{B2n \ B2n+1 : n < ω}

(iv) Bodd =
⋃
{B2n+1 \ B2n+2 : n < ω}

Using (a) and (b) above, the following are clear.

(1) In each one of the equations (i)-(iv), the right hand side is the
union of a disjoint family.

(2) {Aeven,Aodd,Aω} is a partition of A and {Beven,Bodd,Bω} is a
partition of B.



Schröder-Bernstein theorem

Claim

(3) f � Aeven is a bijection from Aeven to Bodd.

(4) g � Beven is a bijection from Beven to Aodd.

(5) f � Aω is a bijection from Aω to Bω.

Proof of Claim: Since f is injective,

f [A2n+1 \ A2n] = f [A2n+1] \ f [A2n] = B2n+2 \ B2n+1

Taking union over n < ω, we get (3). The proof of (4) is similar. For (5),
observe that

f [Aω] = f

[⋂
n<ω

An

]
=
⋂
n<ω

f [An] = Bω

where we use the fact that f is injective to interchange f and
⋂
n<ω

.



Schröder-Bernstein theorem

Finally, define

h(x) =

{
f (x) if x ∈ Aeven ∪ Aω

g−1(x) if x ∈ Aodd

(2)

Using (2)-(5), it is clear that h : A→ B is a bijection. Note that
this proof did not use the axiom of choice.



Cardinality II

Recall that by the well-ordering theorem, every set can be
well-ordered. Hence for every set X , there is an ordinal α and a
bijection f : α→ X .

Definition (Cardinality and cardinals)

1. The cardinality of X , denoted |X |, is the least ordinal α such
that there is a bijection between X and α.

2. A cardinal is an ordinal α such that |α| = α.

We denote cardinals by higher Greek letters like κ, λ, δ, θ etc.
0, 1, 2, . . . , are the finite cardinals. ω is the first infinite cardinal.
ω + 1 is not a cardinal since |ω + 1| = ω. Note that X is countable
iff |X | ≤ ω.



Cardinality II

Exercise

1. For every ordinal α, |α| ≤ α.

2. If κ is a cardinal and α < κ, then |α| < κ.

3. There is an injection from X to Y iff |X | ≤ |Y |.
4. There is a surjection from X to Y iff |Y | ≤ |X |.
5. There is a bijection from X to Y iff |X | = |Y |.

It follows that the previous definitions of “X has smaller cardinality
than Y ” and “X and Y have the same cardinality” are equivalent
to “|X | ≤ |Y |” and “|X | = |Y |” respectively.



There is no largest cardinal

Theorem (Cantor)

For any set X , there is no surjective function f : X → P(X ).

Proof.
Let f : X → P(X ). Define Y = {v ∈ X : v /∈ f (v)}. We claim
that Y /∈ range(f ). Suppose not and let a ∈ X be such that
f (a) = Y . Then a ∈ Y iff a /∈ f (a) iff a /∈ Y which is
impossible.

Corollary

For every cardinal κ, |P(κ)| > κ.

Proof: Since κ injects into P(κ), κ ≤ |P(κ)|. So either
κ < |P(κ)| or κ = |P(κ)|. The latter is ruled out by Cantor’s
theorem.



Successor/Limit cardinals

Definition (Successor/Limit cardinals)

Suppose α is an ordinal and κ is a cardinal. Then

(a) α+ is the least cardinal > α.

(b) κ is a successor cardinal iff κ = α+ for some α.

(c) κ is a limit cardinal iff κ is not a successor cardinal.



Omega/aleph Hierarchy

Definition (Omega hierarchy)

Using transfinite recursion on α, define ωα as follows.

(i) ω0 = ω.

(ii) ωα+1 = (ωα)+.

(iii) If α is a limit ordinal, then ωα = sup({ωβ : β < α}).

For historic reasons, sometimes people also write ℵα instead of ωα.
The first few cardinals are as follows.

0 < 1 < 2 . . . ω = ω0 < ω1 < · · · < ωω < ωω+1 < · · · < ωω+ω . . .

Note that ωα is a limit cardinal iff α is a limit ordinal.



Countable sets

Theorem

(a) |ω × ω| = ω.

(b) For each 1 ≤ n < ω, |ωn| = ω.

(c) |Q| = ω where Q is the set of rational numbers.

(d) |R| ≥ ω1 where R is the set of real numbers.

Proof: (a) (m, n) 7→ 2m3n defines an injection from ω × ω to ω.
So |ω × ω| ≤ ω. Clearly, |ω × ω| ≥ ω. Hence |ω × ω| = ω. (b) Use
induction on n. We leave the proof of (c) to the reader. (d) Since
R is uncountable, |R| > ω. As ω1 is the least cardinal > ω,
|R| ≥ ω1.



Cardinality of products

Lemma
Suppose κ is an infinite cardinal. Then |κ× κ| = κ.

Proof By transfinite induction on κ. If κ = ω, then this holds. So
assume κ > ω and for every cardinal θ < κ, |θ × θ| = θ. Define an
ordering ≺ (called the max-lexicographic order) on κ× κ as follows:
(α1, β1) ≺ (α2, β2) iff

I either max({α1, β1}) < max({α2, β2}) or

I max({α1, β1}) = max({α2, β2}) and α1 < α2 or

I max({α1, β1}) = max({α2, β2}) and α1 = α2 and β1 < β2.

It is easy to check that ≺ is a well ordering on κ× κ. If α < κ is infinite,
then the set pred(κ× κ,≺, (α, α)) of ≺-predecessors of (α, α) is
contained in (α + 1)× (α + 1) and hence, by inductive hypothesis, has
cardinality
|(α + 1)× (α + 1)| = ||α + 1| × |α + 1|| = ||α| × |α|| = |α| ≤ α < κ.
Since κ is a cardinal, it follows that every ≺-initial segment of (κ× κ,≺)
has order type < κ. So type(κ× κ,≺) = κ. Hence |κ× κ| = κ.



Cardinality of products

Corollary

1. If κ and λ are infinite cardinals, then |κ× λ| = max({κ, λ}).

2. If X and Y are infinite sets, then
|X ∪ Y | = |X × Y | = max({|X |, |Y |}).

3. If X is an infinite set and 1 ≤ n < ω, then |X n| = |X |. In
particular, |Rn| = |R|.

Proof: Use the previous theorem.



Cardinalities of infinite unions

Lemma
Suppose κ is an infinite cardinal and |Xα| ≤ κ for every α < κ.
Then |

⋃
{Xα : α < κ}| ≤ κ.

Proof.
Put X =

⋃
{Xα : α < κ}. Fix a well ordering ≺ of P(X × κ). Let

h be a function with domain κ such that for every α < κ, h(α) is
the ≺-least injective function from Xα to κ. It follows that there is
an injective function g : X → κ× κ – Given x ∈ X , pick the least
α such that x ∈ Xα and define g(x) = (α, h(α)(x)). It follows that
|X | ≤ |κ× κ| = κ.

Corollary

Suppose {Xn : n < ω} is a countable family of countable sets.
Then

⋃
{Xn : n < ω} is countable.



Cardinality of R

Definition
c = |R| is the continuum.

Recall that 2ω is the set of all functions from ω to 2 = {0, 1}.

Exercise
Show that |2ω| = |P(ω)| = c.

CH (Continuum hypothesis) is the statement c = ω1 and GCH
(Generalized continuum hypothesis) is the statement: For every
infinite cardinal κ, |P(κ)| = κ+.



Closures

Definition
We say that f is a finitary function on A iff for some n < ω,
f : An → A.

Definition (Closure)

Suppose f : An → A is a finitary function on A and B ⊆ A.

(a) We say that B is closed under f iff range(f � Bn) ⊆ B.

(b) We define the closure of B under A to be the set⋂
{C ⊆ A : B ⊆ C & C is closed under f }



Cardinality of closures

Theorem
Let κ be an infinite cardinal. Suppose B ⊆ A, |B| ≤ κ and F is a
set of ≤ κ finitary functions on A. Then there exists C ⊆ A such
that

(a) B ⊆ C ⊆ A,

(b) |C | ≤ κ and

(c) for every f ∈ F , C is closed under f .

Proof: For f ∈ F and D ⊆ A, define f ?D = range(f � Dn) where
f : An → A. Inductively, define C0 = B and
Cn+1 = Cn ∪

⋃
{f ? Cn : f ∈ F}. Then, for every n < ω, |Cn| ≤ κ.

Put C =
⋃
{Cn : n < ω} and note that |C | ≤ κ. It is easy to see

that B ⊆ C ⊆ A and C is closed under every function in F .



Cardinality of Hamel basis

Lemma
Let H ⊆ R be a Hamel basis. Then |H| = c.

Proof: For each 1 ≤ n < ω and a ∈ Qn, define fa : Rn → R by

fa(x) =
∑
k<n

akxk

where a = 〈ak : k < n〉 and x = 〈xk : k < n〉. Let
F = {fa : 1 ≤ n < ω, a ∈ Qk}. Then |F| = ω. By the previous
theorem, there exists C ⊆ R such that H ⊆ C ,
|C | ≤ max({|H|, ω}) and C is closed under every function in F .
Since every real is a finite linear combination of members of H
using coefficients in Q, C must be R. Hence |R| ≤ max({|H|, ω}).
As R is uncountable, it follows that |H| = |R| = c.



Hamel basis for C

(a) X ⊆ C is Q-linearly independent iff for every finite
{x1, x2, . . . , xn} ⊆ X and a1, a2, . . . , an ∈ Q,

(a1x1 + a2x2 + · · ·+ anxn = 0) =⇒ (a1 = a2 = · · · = an = 0)

(b) H ⊆ C is a Hamel basis for C iff H is a ⊆-maximal
Q-linearly independent subset of C.

Exercise: Suppose H ⊆ C is a Hamel basis for C. Then for every
0 6= x ∈ C can be uniquely written as x = a1x1 + a2x2 + · · ·+ anxn
where x1, x2, . . . , xn ∈ H and a1, a2, . . . an are nonzero rationals.
Exercise: Show that a Hamel basis for C exists and every Hamel
basis for C has cardinality c.



Proof of (C,+) ∼= (R,+)

Proposition

There exists a bijection f : R→ C such that for every x , y ∈ R,
f (x + y) = f (x) + f (y).

Proof. Fix Hamel bases H1 and H2 for R and C respectively. Since
|H1| = |H2| = c, there is a bijection h : H1 → H2. Extend h to
f : R→ C as follows: If x = a1x1 + a2x2 + · · ·+ anxn where
a1, a2, . . . , an ∈ Q and x1, x2, . . . , xn ∈ H1, then

f (x) = a1h(x1) + a2h(x2) + · · ·+ anh(xn)

It is easy to check that f is a bijection and for every x , y ∈ R,
f (x + y) = f (x) + f (y).



Avoiding mid-points

Call a subset X ⊆ R mid-point free iff whenever a < b < c are in
X , a + c 6= 2b.

Theorem (Rado)

There is a partition {An : n < ω} of R such that each An is
mid-point free.

Proof: Let H be a Hamel basis for R. Define a function F with
dom(F ) = R \ {0} as follows. For each x ∈ R \ 0, choose
x1 < x2 < · · · < xn in H and a1, a2, . . . , an nonzero rationals such that

x = a1x1 + a2x2 + · · ·+ anxn

and define F (x) = (a1, a2, . . . , an). It is clear that the range of F is
countable.



Avoiding mid-points

So it suffices to show that if x < y < z , and if F (x) = F (y) = F (z),
then x + z 6= 2y . Suppose not. Let (a1, a2, . . . , an) be the common value
of F at x , y , z . Fix x1 < x2 < · · · < xn, y1 < y2 < · · · < yn and
z1 < z2 < · · · < zn all in H such that

x = a1x1 + a2x2 + · · ·+ anxn

z = a1z1 + a2z2 + · · ·+ anzn

y = a1y1 + a2y2 + · · ·+ anyn

Comparing the coefficients of min(x1, y1, z1) on the two sides of
x + z = 2y , we get x1 = y1 = z1. Subtracting 2a1x1 from both sides and
repeating the argument with the coefficient of min(x2, y2, z2), we get
x2 = y2 = z2 and so on. It follows that x = y = z : Contradiction.



Two-point sets

Definition
We say that X ⊆ R2 is a 2-point set iff for every line ` ⊆ R2,
|X ∩ `| = 2.

Theorem (Mazurkiewicz)

2-point sets exist.

Exercise: Show that there is a subset X of plane such that for
every line ` ⊆ R2, |X ∩ `| = 10.



Zorn’s lemma?

Call a subset of the plane a partial 2-point set iff it meets every
line at ≤ 2 points. Let F be the family of all partial 2-point sets
ordered by inclusion. Every chain in (F ,⊆) has an upper bound
(its union). So we can find a ⊆-maximal set S ∈ F . Must S be a
2-point set? No, S could be a circle.



Constructing two-point sets

Let L be the family of all lines in plane. Note that
|L| = |R2 × R2| = |R2| = c. Let 〈`α : α < c〉 be an injective sequence
with range L. Using transfinite recursion, construct a sequence
〈Sα : α < c〉 of subsets of R2 such that the following hold.

1. S0 = 0 and if γ is limit, then Sγ =
⋃
α<γ Sα.

2. |Sα| ≤ |α + ω| < c.

3. No 3 points in Sα are collinear.

4. β < α =⇒ |Sα ∩ `β | = 2.

Having constructed Sα, Sα+1 is obtained as follows. Let T be the set of
lines that pass through 2 points in Sα. Let B be the set of points of
intersection of `α with the lines in T . Note that |B| ≤ |α + ω| < c. By
clause 3, |Sα ∩ `α| ≤ 2 so we can add ≤ 2 points from `α \ B to Sα to
get Sα+1. Having completed the construction, put S =

⋃
α<c Sα. Then

S is a 2-point set.



Meeting every circle at 3 points

Theorem
There exists X ⊆ R2 such that for every circle C ⊆ R2, |X ∩ C | = 3.

Proof: Let E be the family of all circles in plane. Note that
|E| = |R2 × R2| = |R2| = c. Let 〈Cα : α < c〉 be an injective sequence
with range C. Using transfinite recursion, construct a sequence
〈Sα : α < c〉 of subsets of R2 such that the following hold.

1. S0 = 0 and if γ is limit, then Sγ =
⋃
α<γ Sα.

2. |Sα| ≤ |α + ω| < c.

3. No 4 points in Sα are concyclic.

4. β < α =⇒ |Sα ∩ Cβ | = 3.

Having constructed Sα, Sα+1 is obtained as follows. Let T be the set of
circles that pass through 3 points in Sα. Let B be the set of points of
intersection of Cα with the circles in T . Note that |B| ≤ |α+ ω| < c. By
clause 3, |Sα ∩ Cα| ≤ 3 so we can add ≤ 3 points from Cα \ B to Sα to
get Sα+1. Having completed the construction, put S =

⋃
α<c Sα. It is

easy to check that S meets every circle at exactly 3 points.



An equivalent form of CH

Definition
For A ⊆ R2 and x ∈ R, define the vertical section of A at x by
Ax = {y ∈ R : (x , y) ∈ A}. The horizontal section of A at y is
defined by Ay = {x ∈ R : (x , y) ∈ A}.

Theorem (Sierpinski)

CH is equivalent to the following statement. There exists A ⊆ R2

such that every vertical section of A is countable and every
horizontal section of R2 \ A is countable.

Exercise
Show that there is no A ⊆ R2 such that every vertical section of A
is finite and every horizontal section of R2 \ A is finite.



Proof of Sierpinski’s theorem

Proof: First assume c = ω1. Let ≺ be a well-ordering of R such
that type(R,≺) = ω1. Note that for every x ∈ R, pred(R,≺, x) is
countable. Define A = {(x , y) ∈ R2 : y ≺ x}. Fix a ∈ R. Then the
vertical section of A at a, Aa = {y ∈ R : y ≺ a} is countable. Next
fix b ∈ R and note that the horizontal section of R2 \ A at b,
(R2 \ A)b = {x ∈ R : (x , b) /∈ A} = {x ∈ R : x � b} is also
countable.



Proof of Sierpinski’s theorem

Now assume CH fails. So c > ω1. It suffices to show the following.

Claim
Assume c > ω1. Let A ⊆ R2. Suppose for every x ∈ R, Ax is
countable. Then there exists y ∈ R such that (R2 \ A)y is
uncountable.

Proof: Fix X ⊆ R such that |X | = ω1. Let W =
⋃
{Ax : x ∈ X}.

Then |W | ≤ ω1. Since c > ω1, we can fix y ∈ R \W . We claim
that

X ⊆ (R2 \ A)y = {x : (x , y) /∈ A}

Suppose not and fix x ∈ X such that (x , y) ∈ A. Then y ∈ Ax .
Hence y ∈W : Contradiction. As X is uncountable, it follows that
(R2 \ A)y is also uncountable.



Filters

Definition (Filters)

For an infinite set X , a filter on X is a subfamily F ⊆ P(X )
satisfying the following conditions.

(i) 0 /∈ F and X ∈ F .

(ii) For every A,B ∈ F , A ∩ B ∈ F .

(iii) For every A ⊆ B ⊆ X , if A ∈ F , then B ∈ F .

Examples

(a) Let F = {A ⊆ ω : |ω \ A| < ω}. F is called the cofinite filter
on ω.

(b) Let a ∈ X and F = {A ⊆ X : a ∈ A}. Such filters are called
principal filters.



Ultrafilters

Definition (Ultrafilters)
F is an ultrafilter on X iff X is a filter on X and for every A ⊆ X , either
A ∈ F or (X \ A) ∈ F .

The next lemma says that ultrafilters on X are precisely the ⊆-maximal
filters on X .

Lemma
Let F be a filter on X . Then F is an ultrafilter iff F is a maximal filter
on X .

Proof: First assume F is an ultrafilter on X . Let G be a filter on X such
that F ⊆ G. Towards a contradiction, suppose G 6= F . Fix A ∈ G \ F .
Since A /∈ F , (X \ A) ∈ F . As F ⊆ G, (X \ A) ∈ G. Hence
∅ = A ∩ (X \ A) ∈ G. A contradiction. Next suppose F is a maximal
filter on X . Suppose A ⊆ X and towards a contradiction, suppose both
A,X \ A are not in F . Define G = {C ⊆ X : (∃B ∈ F)(A ∩ B ⊆ C )}.
Then it is easy to check that G is a filter on X , F ⊆ G and A ∈ G \ F .
So F is not maximal: Contradiction.



Ultrafilters

Theorem
Every filter F on an infinite set X can be extended to an ultrafilter
on X .

Proof: Let F be the family of all filters G on X such that F ⊆ G.
It is easy to see that every chain C in (F,⊆) has an upper bound,
namely

⋃
C . By Zorn’s lemma, we can find a maximal member

U ∈ F. Then F ⊆ U and U is a maximal filter on X . Hence by the
previous lemma, U is an ultrafilter on X .

Corollary

There exists a non-principal ultrafilter on ω.

Proof Let F be the cofinite filter on ω. Using the previous
theorem, get an ultrafilter U on ω such that F ⊆ U . It is easy to
check that U is not principal.



Non-principal ultrafilters

Exercise
Let U be a non-principal ultrafilter on ω. Show the following.

1. Every cofinite subset of ω is in U .

2. If X ∈ U and F ⊆ ω is finite, then X \ F ∈ U .

3. If A ∈ U , and B ∪ C = A, then either B ∈ U or C ∈ U .



Infinite Ramsey’s theorem

Definition

1. [X ]n = {A ⊆ X : |A| = n} is the set of all n-element subsets
of X . Members of [X ]2 are called pairs in X .

2. Suppose f : [X ]n → T . We say that Y ⊆ X is
f -homogeneous iff f � [Y ]n is constant.

Theorem (Ramsey)

For every f : [ω]2 → 2, there exists an infinite Y ⊆ ω such that Y
is f -homogeneous.

Corollary

For every 1 ≤ N < ω and f : [ω]2 → N, there exists an infinite
Y ⊆ ω such that Y is f -homogeneous.



Proof of infinite Ramsey’s theorem

Fix f : [ω]2 → 2. Let U be a non-principal ultrafilter on ω. For each
n < ω, define

W 0
n = {m < ω : m > n & f ({m, n}) = 0}

W 1
n = {m < ω : m > n & f ({m, n}) = 1}

Since {W 0
n ,W

1
n } is a partition of a cofinite subset in ω and U is a

non-principal ultrafilter, exactly one of the sets W 0
n ,W

1
n belongs to U .

Let k(n) < 2 be such that W
k(n)
n ∈ U . Fix k < 2 such that

T = {n < ω : k(n) = k} ∈ U .
Inductively construct
Y = {j(0) < j(1) < · · · < j(n) < j(n + 1) < . . . } ⊆ ω such that

j(0) ∈ T and j(n + 1) ∈ T ∩
⋂
{W k

j(r) : r ≤ n}

This can be done because T ∩
⋂
{W k

r : r ≤ jn} ∈ U (as U is closed under
finite intersections). Now it is easy to check that f � [Y ]2 takes the
constant value k .



Schur’s theorem

Theorem (Schur)

Suppose 1 ≤ N < ω and h : ω → N. Then there exist
a < b < c < ω such that h(a) = h(b) = h(c) and a + b = c .

Proof: Define f : [ω]2 → N by f ({m < n}) = h(n −m). By
Ramsey’s theorem, there are an infinite X ⊆ ω and r < N such
that range(f � [X ]2) = {r}. Fix {k < m < n} ⊆ X such that
n −m > m − k . Let a = m − k , b = n −m and c = n − k . Then
a < b < c , a + b = c and h(a) = h(b) = h(c) = r .

Exercise
Suppose 1 ≤ N < ω and h : ω → N. Then there exist
a < b < c < d < e < ω such that
h(a) = h(b) = h(c) = h(d) = h(e) and a + b + c + d = e.



Schur’s theorem for product

Theorem
Suppose 1 ≤ N < ω and h : ω → N. Then there exist
a < b < c < ω such that h(a) = h(b) = h(c) and ab = c .

Proof: Let P = {2k : k < ω}. Define f : [P]2 → N by
f ({2m < 2n}) = h(2n−m). By Ramsey’s theorem, there are an
infinite X ⊆ P and r < N such that range(f � [X ]2) = {r}.
Choose {2k < 2m < 2n} ⊆ X such that n−m > m− k . Then it is
easily checked that a = 2m−k , b = 2n−m and c = 2n−k are as
required.

Exercise
Suppose 1 ≤ N < ω and h : ω → N. Then there exist
a < b < c < d < e < ω such that
h(a) = h(b) = h(c) = h(d) = h(e) and abcd = e.



Hindman’s theorem

Theorem (Hindman)

Suppose 1 ≤ N < ω and h : ω → N. Then there exist an infinite
X ⊆ ω and r < N such that for every
{m1 < m2 < · · · < mn} ⊆ X , h(m1 + m2 + · · ·+ mn) = r .

Note that Hindman’s theorem generalizes Schur’s theorem. There
is an elegant proof of Hindman’s theorem using ultrafilters. To
describe it, we need to define idempotent ultrafilters.



Idempotent ultrafilters

Definition
For A ⊆ ω and an ultrafilter U on ω, define

AU = {k < ω : A− k ∈ U}

where A− k = {n − k : n ∈ A & n ≥ k}.

Definition
A non-principal ultrafilter U on ω is called an idempotent ultrafilter iff for
every A ∈ U , AU ∈ U .

Theorem
Idempotent ultrafilters exist.

We won’t prove this theorem here since, in addition to Zorn’s lemma, its
proof also requires some topological notions. Our next goal is to assume
that idempotent ultrafilters exist and use them to prove Hindman’s
theorem.



Hindman’s theorem

Proof of Hindman’s theorem using idempotent ultrafilters: Let
h : ω → N. Fix an idempotent ultrafilter U on ω. Choose r < N and
A ∈ U such that h[A] = {r}.
Inductively, define 〈(k(n),An) : n < ω〉 as follows.

(a) A0 = A and k(0) ∈ A0 ∩ AU0 .

(b) An+1 = (An − k(n)) ∩ An, k(n + 1) ∈ An+1 ∩ AUn+1 and
k(n + 1) > k(n).

Put X = {k(n) : n < ω}.

Claim
For every n1 < n2 < · · · < nj , k(n1) + k(n2) + · · ·+ k(nj) ∈ An1 ⊆ A

Proof: Easily checked by induction on j ≥ 1.

It follows that for every {m1 < m2 < · · · < mn} ⊆ X ,
m1 + m2 + · · ·+ mn ∈ A and hence h(m1 + m2 + · · ·+ mn) = r .



Peano Arithmetic
Classical number theory studies the “structure” (ω,S ,+, ·, 0). Almost all
true statements about (ω,S ,+, ·, 0, 1) can be derived from a simple list
of axioms about natural numbers. The (first order) theory of these
axioms is called Peano arithmetic (abbreviated PA). The axioms of PA
are as follows.

1. (∀x)(S(x) 6= 0)

2. (∀x , y)(S(x) = S(y) =⇒ x = y)

3. (∀x)(x + 0 = x)

4. (∀x , y)(x + S(y) = S(x + y))

5. (∀x)(x · 0 = 0)

6. (∀x , y)(x · S(y) = (x · y) + x)

7. Induction scheme: Suppose φ(x) is a property that can be expressed
using only 0,S ,+, ·. Then the following is an axiom:

[φ(0) and (∀x)[φ(x) =⇒ φ(S(x))]] =⇒ (∀x)(φ(x))



Models of PA

Definition
We say that (X ,S?,+?, ·?, 0?) is a model of PA iff the following hold.

(a) X is a nonempty set and 0? ∈ X .

(b) S? : X → X .

(c) +? : X × X → X . For x , y ∈ X , we’ll write x +? y instead of
+?(x , y).

(d) ·? : X × X → X . For x , y ∈ X , we’ll write x ·? y instead of ·?(x , y).

(e) Let ψ be any axiom of PA. Let ψ? be obtained from ψ by replacing
0 by 0?, S by S?, + by +?, · by ·? and by restricting the quantifiers
of ψ to X . Then ψ? holds.

For example, if ψ ≡ (∀x , y)(x · S(y) = (x · y) + x), then
ψ? ≡ (∀x , y ∈ X )(x ·? S?(y) = (x ·? y) +? x).



Standard model

Theorem
(ω,S ,+, ·, 0) is a model of PA.

Proof: Note that 0 = ∅, S(n) = n + 1 is the ordinal successor of
n, + is the ordinal addition restricted to ω and · is the ordinal
multiplication restricted to ω.

(1) (∀x ∈ ω)(S(x) 6= 0): This is clear since 0 is not a successor
ordinal.

(2) (∀x , y ∈ ω)(S(x) = S(y) =⇒ x = y): Suppose x , y ∈ ω and
S(x) = S(y). We must have either x = y or x < y or y < x .
If x < y , then x + 1 ≤ y < y + 1 which is impossible.
Similarly y < x is impossible. So x = y .



Standard model

(3) (∀x ∈ ω)(x + 0 = x): Clear from the definition of ordinal
addition.

(4) (∀x , y ∈ ω)(x + S(y) = S(x + y)): Suppose x , y ∈ ω. Since
ordinal addition is associative, we have
x + S(y) = x + (y + 1) = = (x + y) + 1 = S(x + y).

(5) (∀x ∈ ω)(x · 0 = 0): Clear from the definition of ordinal
multiplication.

(6) (∀x , y ∈ ω)(x · S(y) = (x · y) + x): Suppose x , y ∈ ω. Then
x · S(y) = x · (y + 1) = (x · y) + x .



Standard model

(7) Induction scheme : It suffices to check the following: If
W ⊆ ω such that

0 ∈W and (∀n)[n ∈W =⇒ S(n) ∈W ]

then W = ω. Fix W ⊆ ω such that 0 ∈W and
(∀n)[n ∈W =⇒ S(n) ∈W ]. Then W is an inductive set
(see Slide 10). As ω is the intersection of all inductive sets,
we must have ω ⊆W . Hence W = ω.

It follows that (ω,S ,+·, 0) is a model of PA. K



Consequences of PA

Claim
The following is a theorem of PA.

(∀x)[x = 0 or (∃y)(x = S(y))]

Proof: Let φ(x) be the following property

x = 0 or (∃y)(x = S(y))

First note that φ(0) holds. Next observe that if φ(x) holds, then
φ(S(x)) also holds. Hence by the induction scheme for φ(x), we
get (∀x)[φ(x)]. K



Consequences of PA

Theorem
The following hold in PA.

(a) Addition is associative: (∀x , y , z)[x + (y + z) = (x + y) + z ].

(b) Addition is commutative: (∀x , y)[x + y = y + x ].

Proof: (a) Let φ(z) be the formula (∀x , y)[x + (y + z) = (x + y) + z ].
We want to show (∀z)[φ(z)]. By the induction scheme, it suffices to
show φ(0) and (∀z)(φ(z) =⇒ φ(S(z))). By axiom 3, we get
x + (y + 0) = x + y and (x + y) + 0 = x + y . Hence
x + (y + 0) = (x + y) + 0. So φ(0) holds. Next assume φ(z) and we’ll
show φ(S(z)). By axiom 4, we get x + (y + S(z)) = x + S(y + z) =
= S(x + (y + z)). Using φ(z), we get S(x + (y + z)) = S((x + y) + z).
Applying axiom 4 again, we have S((x + y) + z) = (x + y) + S(z).
Hence x + (y + S(z)) = (x + y) + S(z). So φ(S(z)) holds. Hence
(∀z)(∀x , y)[x + (y + z) = (x + y) + z ].



Consequences of PA

(b) Let φ(y) be the formula (∀x)(x + y = y + x). We want to show
(∀y)[φ(y)]. We use induction on y .
Step 1: We first show φ(0). By axiom 3, x + 0 = x so it suffices to show
(∀x)(0 + x = x). We show this by induction on x . If x = 0, then
0 + x = 0 + 0 = 0 by axiom 3. Now assume 0 + x = x and we’ll show
0 + S(x) = S(x). By axiom 4, 0 + S(x) = S(0 + x) and S(0 + x) = S(x)
by inductive hypothesis. So 0 + S(x) = S(x). Hence (∀x)(0 + x = x).
Step 2: Next, we show (∀x)(S(x) = 1 + x) where 1 = S(0). We use
induction on x . If x = 0, then this is clear since 1 + 0 = 1 (by axiom 3).
So assume S(x) = 1 + x and we’ll show S(S(x)) = 1 + S(x). By axioms
3 and 4, S(S(x)) = S(S(x) + 0) = S(x) + S(0) = S(x) + 1. By
inductive hypothesis, S(x) + 1 = (1 + x) + 1. By part (a),
(1 + x) + 1 = 1 + (x + 1). By axioms 4 and 3,
1 + (x + S(0)) = 1 + S(x + 0) = 1 + S(x). Hence S(S(x)) = 1 + S(x).
It follows that (∀x)(S(x) = 1 + x)



Consequences of PA

Step 3: Now assume φ(y) and we’ll show φ(S(y)). By axiom 4,
x + S(y) = S(x + y). By φ(y), S(x + y) = S(y + x). By axiom 4,
S(y + x) = y + S(x). By Step 2, y + S(x) = y + (1 + x). By part (a),
y + (1 + x) = (y + 1) + x . By axioms 4 and 3,
y + 1 = y + S(0) = S(y + 0) = S(y). Hence (y + 1) + x = S(y) + x .
Therefore S(y + x) = S(y) + x . So φ(S(y) holds.

Since φ(0) holds (Step 1) and (∀x)(φ(x) =⇒ φ(S(x))) holds (Step 3),
it follows that (∀y)[φ(y)] holds. Hence (∀x , y)(x + y = y + x). K



Consequences of PA

We list some frequently used consequences of PA here. They can
all be proved from the axioms of PA.

(1) (∀x , y , z)[(x + y) + z = x + (y + z)]

(2) (∀x , y)(x + y = y + x)

(3) (∀x , y , z)[(x · y) · z = x · (y · z)]

(4) (∀x , y)(x · y = y · x)

(5) (∀x , y , z)[x · (y + z) = (x · y) + (x · z)]

(6) (∀x)(x + 0 = 0 + x = x)

(7) (∀x)(x · 1 = 1 · x = x)

(8) (∀x , y , z)[(x + y = x + z) =⇒ y = z ]

(9) (∀x , y , z)[(x 6= 0 and (x · y = x · z)) =⇒ y = z ]



Non-standard models of PA

Fact (Skolem, 1933)

There are countable models of PA which are not isomorphic to the
(ω,S ,+, ·, 0).

We skip the proof which requires some background in first order
logic.



The ring of integers

Let Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } denote the set of integers.
Recall the basic properties of (Z,+, ·, 0, 1).

(1) (∀x , y , z ∈ Z)[(x + y) + z = x + (y + z)]

(2) (∀x , y ∈ Z)(x + y = y + x)

(3) (∀x ∈ Z)(x + 0 = 0 + x = x)

(4) For every x ∈ Z, there is a unique −x ∈ Z such that
x + (−x) = −x + x = 0. We define x − y = x + (−y).

(5) (∀x , y , z ∈ Z)[(x · y) · z = x · (y · z)]

(6) (∀x , y ∈ Z)(x · y = y · x)

(7) (∀x ∈ Z)(x · 1 = 1 · x = x)

(8) (∀x , y , z ∈ Z)[x · (y + z) = (x · y) + (x · z)]

(9) (∀x , y , z ∈ Z)[(x + y = x + z) =⇒ y = z ]

(10) (∀x , y , z ∈ Z)[(x 6= 0 and (x · y = x · z)) =⇒ y = z ]



The field of rationals
Let Q denote the set of rationals. Recall the basic properties of
(Q,+,−, ·, 0, 1).

(1) (∀x , y , z ∈ Q)[(x + y) + z = x + (y + z)]

(2) (∀x , y ∈ Q)(x + y = y + x)

(3) (∀x ∈ Q)(x + 0 = 0 + x = x)

(4) For every x ∈ Q, there is a unique −x ∈ Q such that
x + (−x) = −x + x = 0. We define x − y = x + (−y).

(5) (∀x , y , z ∈ Q)[(x · y) · z = x · (y · z)]

(6) (∀x , y ∈ Q)(x · y = y · x)

(7) (∀x ∈ Q)(x · 1 = 1 · x = x)

(8) For every nonzero x ∈ Q, there is a unique x−1 ∈ Q such that
x · x−1 = x−1 · x = 1. We define x/y = x · y−1.

(9) (∀x , y , z ∈ Q)[x · (y + z) = (x · y) + (x · z)]

(10) (∀x , y , z ∈ Q)[(x + y = x + z) =⇒ y = z ]

(11) (∀x , y , z ∈ Q)[(x 6= 0 and (x · y = x · z)) =⇒ y = z ]



Order

The usual ordering on Z is the following:

· · · < −(n+1) < −n < · · · < −2 < −1 < 0 < 1 < 2 < · · · < n < n+1 < . . .

The usual ordering on Q can be defined as follows. For a, b,m, n ∈ Z
where m, n ≥ 1 we have

a

n
<

b

m
⇐⇒ am < bn

From now on, we’ll write xy instead of x · y for the product of x , y ∈ Q.



Divisors, quotient and remainder

Suppose n, d are integers. We say that n is a multiple of d
(equivalently, d is a divisor or factor of n) iff for some k ∈ Z,
n = dk. We write d | n (read d divides n) iff d is a divisor of n.

Theorem
Suppose n, d are integers, n 6= 0 and d ≥ 1. Then there are unique
integers q (quotient) and r (remainder) such that 0 ≤ r < d and
n = qd + r .

Proof: Put W = {n −md : m ∈ Z and n −md ≥ 0}. W 6= φ since
n + |n|d ∈W . Let r = min(W ). Fix q ∈ Z such that n − qd = r . Note
that r < d since otherwise n − (q + 1)d = r − d ≥ 0 and so r − d ∈W
which contradicts the minimality of r . This proves the existence of q, r .
To see uniqueness, suppose n = q1d + r1 = q2d + r2 where
0 ≤ r1 ≤ r2 < d . Then r2 − r1 = d(q1 − q2). So d divides r2 − r1. But
0 ≤ r2 − r1 < d . Hence r2 − r1 = 0 and so r1 = r2. It also follows that
q1 = q2. K



GCD

If F is a nonempty, finite set of nonzero integers, then the gcd(F )
is the greatest common divisor of all members of F . Since 1 is a
divisor of every integer, it follows that gcd(F ) ≥ 1. We sometimes
also write gcd(n1, n2, . . . , nk) instead of gcd({n1, n2, . . . , nk})

Theorem
Suppose a, b are nonzero integers. Then
gcd(a, b) = min{ma + nb : m, n ∈ Z and ma + nb > 0}.
Furthermore, every common divisor of a, b is also a divisor of
gcd(a, b).

Proof: Let W = {ma + nb : m, n ∈ Z and ma + nb > 0} and note
that W 6= ∅. Put d = gcd(a, b) and d ′ = min(W ). Fix m, n ∈ Z
such that d ′ = ma + nb. Since d | a and d | b, it follows that
d | (ma + nb). So d divides d ′ and hence d ≤ d ′.



GCD

Using the previous theorem, write a = qd ′ + r where q ∈ Z and
0 ≤ r < d ′. Now a = qd ′ + r = qma + qnb + r and so
r = (1− qm)a− qnb. If r > 0, then r ∈W and r < d ′ which is
impossible. So r = 0 and therefore d ′ divides a. A similar
argument shows that d ′ divides b. Hence d ′ is a common divisor of
a and b. Since d is the greatest common divisor of a and b, it
follows that d ′ ≤ d . As d ≤ d ′, it follows that d = d ′.
Finally, suppose e is a common divisor of a, b. Then, e is also a
divisor of ma + nb = d ′ = d = gcd(a, b). K



Coprimes

Definition
Suppose a and b are nonzero integers. We say that a, b are
coprime iff gcd(a, b) = 1.

Corollary

a, b are coprime iff there exist m, n ∈ Z such that am + bn = 1.

Proof: Easily follows from the fact that gcd(a, b) = min(W )
where

W = {ma + nb : m, n ∈ Z and ma + nb > 0}



Primes and composites

An integer n > 1 is a prime number iff its only positive divisors are 1
and n. Otherwise, n is composite.

Lemma
Suppose p is prime and p | ab. Then either p | a or p | b.

Proof: Suppose p does not divide a. Since gcd(a, p) divides p and p is
prime, it follows that gcd(a, p) = 1. Choose m, n ∈ Z such that
1 = ma+ np. Then b = mab + nbp. Since p | ab, it follows that p | b. K

Lemma
Let n > 1 be an integer. Then n has a prime factor.

Proof: If n is prime, we are done. So assume n is composite. Then
W = {k : 1 < k < n and k |n} is a nonempty set. Let p = min(W ). We
claim that p is a prime. Suppose not. Then p has a divisor q such that
1 < q < p. Now q | p and p | n implies q | n. Hence q ∈W . But
q < p = min(W ) so this is impossible. Hence p is a prime. K



The set of primes is infinite

Theorem
There are infinitely many primes.

Proof: It suffices to show that for every prime p, there is a prime
p′ > p. Fix any prime p. Let

2 = p1 < p2 < · · · < pk = p

list all primes below p. Define n = (p1p2 . . . pk) + 1. Using the
previous lemma, fix p′ such that p′ is a prime divisor of n. Since
dividing n by any of the primes below p leaves the remainder 1, it
follows that p′ /∈ {p1, p2, . . . , pk}. Hence p′ > p. K



Prime factorization

Theorem
Every integer n ≥ 2 can be uniquely written as

n = pa11 pa22 . . . pakk

where p1 < p2 < · · · < pk are primes and a1, a2, . . . , ak ≥ 1.

Proof: We first show existence of prime factorization by induction on n.
If n = 1, then n = 21 so this is clear.
So suppose n > 2 and assume that the result holds for all numbers < n.
Let p1 be the least prime factor of n. Then n = p1m where 1 ≤ m < n.
If m = 1, then n = p11 and we are done. Otherwise m ≥ 2 and by
inductive hypothesis, m = qb11 qb22 . . . qbkk where q1 < q2 < · · · < qk are
primes and b1, b2, . . . , bk ≥ 1. Since p1 is the least prime factor of n,
either p1 = q1 or p1 < q1. If p1 = q1, we have n = q1+b1

1 qb22 . . . qbkk . If

p1 < q1, we can write n = p11q
b1
1 qb22 . . . qbkk .



Prime factorization

Next, we show uniqueness. Suppose

n = pa11 pa22 . . . pakk = qb11 qb22 . . . qbll

where where p1 < p2 < · · · < pk and q1 < q2 < · · · < ql are primes and
a1, a2, . . . , ak , b1, b2, . . . , bl ≥ 1.
We first claim that p1 = q1. Suppose not. Suppose p1 < q1. Since
p1 | (qb11 qb22 . . . qbll ) and p1 is a prime, by a previous lemma, we must have
p1 | qj for some 1 ≤ j ≤ l . But p1 < q1 < q2 · · · < ql so this is
impossible. Similarly q1 < p1 is impossible. So p1 = q1.
Next we claim that a1 = b1. Say a1 < b1. Then dividing n by pa11 , we get

pa22 . . . pakk = pb1−a11 qb22 . . . qbll . But this is impossible since p1 is not a
factor of the left hand side. Similarly, b1 < a1 is impossible. Hence
a1 = b1. Now we can cancel the factor pa11 = qb11 from both sides and
repeat the above argument k times to get k = l , p1 = q1 . . . pk = qk and
a1 = b1, . . . ak = bk . K



Modular arithmetic

Suppose a, b are integers and n ≥ 1. We say that a is congruent
to b modulo n and write a ≡ b (mod n) iff n | (a− b). The
following are left as an exercise.

1. Let En = {(a, b) : a ≡ b (mod n)}. Then En is an equivalence
relation on Z whose equivalence classes are {[r ] : 0 ≤ r < n}.

2. If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d
(mod n) and a− c ≡ b − d (mod n).

3. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

4. If a ≡ b (mod n) and k ≥ 1, then ak ≡ bk (mod n).

5. Cancellation: If gcd(c , n) = 1 and ac ≡ bc (mod n), then
a ≡ b (mod n).



(Z/nZ,+, ·)

Definition
Fix n ≥ 1 and define En = {(a, b) ∈ Z×Z : a ≡ b (mod n)}. Then
En is an equivalence relation on Z whose equivalence classes are
{[r ] : 0 ≤ r < n} where [r ] = {a ∈ Z : a ≡ r (mod n)}. We define

Z/nZ = {[r ] : 0 ≤ r < n}

Note that if r , r ′, s, s ′ are integers, [r ] = [r ′] and [s] = [s ′], then
[r + s] = [r ′ + s ′] and [rs] = [r ′s ′]. So we can define addition and
multiplication in Z/nZ as follows: For [r ], [s] ∈ Z/nZ, define
[r ] + [s] = [r + s] and [r ] · [s] = [rs].



Properties of Z/nZ

Let n ≥ 1. Then the following hold.

(1) (∀x , y , z ∈ Z/nZ)[(x + y) + z = x + (y + z)]

(2) (∀x , y ∈ Z/nZ)(x + y = y + x)

(3) (∀x ∈ Z/nZ)(x + [0] = [0] + x = x)

(4) For every x ∈ Z/nZ, there is a unique −x ∈ Z such that
x + (−x) = −x + x = [0]. We define x − y = x + (−y).

(5) (∀x , y , z ∈ Z/nZ)[(x · y) · z = x · (y · z)]

(6) (∀x , y ∈ Z/nZ)(x · y = y · x)

(7) If n ≥ 2, then (∀x ∈ Z/nZ)(x · [1] = [1] · x = x)

(8) (∀x , y , z ∈ Z/nZ)[x · (y + z) = (x · y) + (x · z)]

(9) (∀x , y , z ∈ Z/nZ)[(x + y = x + z) =⇒ y = z ]



Multiplicative inverse in Z/nZ

Lemma
Suppose n ≥ 2 and 1 ≤ a < n, then (∃b ∈ Z)(ab ≡ 1 (mod n)) iff
a, n are coprime.

Proof: First suppose gcd(a, n) = 1. Fix b, c ∈ Z such that
ba + cn = 1. Modding out by n gives ba ≡ 1 (mod n). Hence
(∃b ∈ Z)(ab ≡ 1 (mod n)).
Next suppose there is some b ∈ Z such that ab ≡ 1 (mod n).
Then ab − 1 is a multiple of n. Fix c ∈ Z such that ab − 1 = cn.
So ab − cn = 1. Hence gcd(a, n) = 1. K

Corollary

Suppose n ≥ 2 and r ∈ {1, 2, . . . , n − 1}. Then

(∃x ∈ Z/nZ)([r ] · x = x · [r ] = [1]) ⇐⇒ gcd(r , n) = 1



Units in Z/nZ

Definition (Multiplicative inverse and units)
Suppose n ≥ 2 and x , y ∈ Z/nZ. We say that y is a multiplicative
inverse of x iff x · y = [1]. We say that x is a unit in Z/nZ iff x has a
multiplicative inverse in Z/nZ.

Suppose x ∈ Z/nZ and y , z are multiplicative inverses of x . Then
x · y = y · x = [1] and x · z = z · x = [1]. It follows that
y = [1] · y = (z · x) · y = z · (x · y) = z · [1] = z . So if x has a
multiplicative inverse in Z/nZ, then it is unique. Note that the
multiplicative inverse of a unit is also a unit.

Lemma
Suppose n ≥ 2 and x , y are units in Z/nZ. Then x · y is also a unit in
Z/nZ.

Proof: Fix x ′ and y ′ in Z/nZ such that x · x ′ = y · y ′ = [1]. Then
x · y · x ′ · y ′ = [1]. Hence x ′ · y ′ is the multiplicative inverse of x · y . So
x · y is also a unit in Z/nZ. K



Prime fields

Theorem
Suppose n ≥ 2. The following are equivalent.

(1) n is prime.

(2) Every nonzero member of Z/nZ is a unit.

Proof: First suppose n is prime. Then for every 1 ≤ r ≤ n − 1,
gcd(r , n) = 1. By the previous corollary, [r ] has a multiplicative
inverse in Z/nZ. So [r ] is a unit in Z/nZ.
Next suppose for every 1 ≤ r ≤ n − 1, [r ] is a unit in Z/nZ. Once
again by the previous corollary, for every 1 ≤ r ≤ n − 1,
gcd(r , n) = 1. So n has no divisors between 2 and n − 1. Hence n
is prime. K



Fermat’s little theorem

Lemma (Fermat’s little theorem)
Let p ≥ 2 be a prime. Suppose p does not divide a. Then ap−1 ≡ 1
(mod p).

Proof: By modding out a with p, we can assume that 1 ≤ a ≤ p − 1.
Work in Z/pZ. Let M = {[a], [2a], [3a], . . . , [(p − 1)a]}. We claim that
|M| = p − 1. Suppose not and fix 1 ≤ m < n ≤ p − 1 such that
[ma] = [na]. Then [(n−m)a] = [0] and so p divides (n−m)a. Since p is
prime and p does not divide a, we get p | (n−m). But 1 ≤ n−m < p so
this is impossible. It follows that |M| = p − 1.
Since [0] /∈ M, we get M = {[1], [2], [3], . . . , [p − 1]}. Taking products
over all the members of M, we get

(a)(2a)(3a) . . . ((p − 1)a) ≡ (1)(2)(3) . . . (p − 1) (mod p)

So ap−1(p − 1)! ≡ (p − 1)! (mod p). Since p is prime, we have
gcd(p, (p − 1)!) = 1. So we can cancel (p − 1)! from both sides to get
ap−1 ≡ 1 (mod p). K



Euler’s totient function

Definition (Euler’s totient function)

For each n ≥ 1, define

φ(n) = |{k : 1 ≤ k ≤ n and gcd(k, n) = 1}|

So φ(n) is the number of positive integers below n which are
coprime with n. Observe that φ(1) = 1 and for every prime p,
φ(p) = p − 1. We leave the following as homework for the reader.

(1) φ(1) = 1 and for every prime p, φ(p) = p − 1.

(2) If p is prime and k ≥ 1, then φ(pk) = pk − pk−1.

(3) If gcd(a, b) = 1, then φ(ab) = φ(a)φ(b).

(4) For each n ≥ 2, φ(n) is the number of units in Z/nZ.



Euler’s theorem

Theorem
Suppose gcd(a, n) = 1. Then aφ(n) ≡ 1 (mod n).

Proof: As before, we can assume 1 ≤ a ≤ n − 1. Define
W = {k : 1 ≤ k ≤ n and gcd(k , n) = 1}. Note that |W | = φ(n) and
{[k] : k ∈W } is the set of all units in Z/nZ.

Let M = {[ka] : k ∈W }. We will show that M is the set of all units in
Z/nZ. First we show that every member of M is a unit: Let k ∈W .
Then [ka] = [k] · [a] is the product of two units in Z/nZ. Hence [ka] is
also a unit. So every member of M is a unit.

Next we show that |M| = φ(n). As Z/nZ has φ(n) units, this would
imply that every unit is in M. Suppose k1, k2 are in W . We will show
that [k1a] = [k2a] implies k1 = k2. Since gcd(a, n) = q, we can find
x ∈ Z/nZ such that [a] · x = [1]. Now
[k1] = [k1] · ([a] · x) = [k1a] · x = [k2a] · x = [k2] · ([a] · x) = [k2]. As
1 ≤ k1, k2 ≤ n, we get k1 = k2. Hence |M| = φ(n) and it follows that M
has all the units in Z/nZ.



Euler’s theorem

Let 1 = k1 < k2 < · · · < kφ(n) list the members of W . Then

M = {[kja] : j ≤ φ(n)} = {[kj ] : j ≤ φ(n)}

By taking products we get

(k1a)(k2a) . . . (kφ(n)a) ≡ (k1)(k2) . . . (kφ(n)) (mod n)

Put K = k1k2 . . . kφ(n) and note that gcd(K , n) = 1. Then

Kaφ(n) ≡ K (mod n). As gcd(K , n) = 1, we can cancel K to get
aφ(n) ≡ 1 (mod n). K



Chinese remainder theorem

Lemma
Suppose n1, n2 are positive integers and gcd(n1, n2) = 1. Then for every
integer x , if n1 | x and n2 | x , then n1n2 | x .

Proof: Since gcd(n1, n2) = 1, there are integers m1,m2 such that
m1n1 + m2n2 = 1. Then x = xm1n1 + xm2n2 and each summand on the
right side is a multiple of n1n2. So n1n2 | x .

Theorem
Suppose 〈ni : 1 ≤ i ≤ k〉 is a sequence of positive integers which are
pairwise coprime. Let N = n1n2 . . . nk . Let 〈ai : 1 ≤ i ≤ k〉 be a sequence
of arbitrary integers. Then there exists an integer x such that for every
1 ≤ i ≤ k, x ≡ ai (mod ni ). Moreover, if x , x ′ are any two integers
satisfying these modular equations, then x ≡ x ′ (mod N).

Proof: Suppose x ≡ ai (mod ni ) and x ′ ≡ ai (mod ni ) for every
1 ≤ i ≤ N. Then x − x ′ is divisible by each ni . As xi ’s are pairwise
coprime, it follows that N = n1n2 . . . nk also divides x − x ′. Hence x ≡ x ′

(mod N).



Chinese remainder theorem

Next we show existence of such an x . Let Ni = N/ni . Then
gcd(Ni , ni ) = 1. Hence, for each 1 ≤ i ≤ k , there are integers Mi ,mi

such that MiNi + mini = 1. Define

x =
k∑

i=1

aiMiNi

We claim that x is as required. To see this, fix 1 ≤ j ≤ N and we’ll show
that nj | (x − aj). Now

x − aj = aj(MjNj − 1) +

i 6=j∑
1≤i≤k

aiMiNi = −ajmjnj +

i 6=j∑
1≤i≤k

aiMiNi

Note that all the summands on the right side are divisible by nj . Hence
nj | x . K



A puzzle

A mouse is trying to eat his way through a 3× 3× 3 cube of
cheese by tunneling through all of the 27 subcubes. He starts at a
subcube on some face of the cube and always moves on to an
uneaten neighboring subcube. Can he finish at the center of the
subcube?



Graphs

A graph G is a pair G = (V ,E ) where E ⊆ [V ]2 (Recall that [V ]2 is the
set of all subsets of E of size 2). Members of V are called vertices and
members of E are called edges. If e = {x , y} is an edge then we say that
e is incident on x and y or e joins x and y . We say that x , y are
adjacent or neighbors iff {x , y} ∈ E .

Let G = (V ,E ) be a graph and v ∈ V . Define the set of neighbors of v
in G by NG (v) = {w ∈ V : {v ,w} ∈ E}. The degree of v is the
cardinality of the set of neigbors of v in G :

degG (v) = |NG (v)|

G is κ-regular iff for every v ∈ V , degG (v) = κ. G is regular iff it is
κ-regular for some κ.



Examples

1. V is any set and E = [V ]2. This is the complete graph on V . If
V = n = {0, 1, 2, . . . , n − 1}, we write Kn to denote this graph.

2. V = n and E = {{k , k + 1 : k < n}} ∪ {{0, n − 1}}. This is called
the cycle on n vertices.

3. V = X ∪ Y where X ∩ Y = ∅ and E = {{x , y} : x ∈ X , y ∈ Y }.
This the complete bipartite graph on (X ,Y ).

4. V = R2 and E = {{x , y} : ||x − y || = 1}. This is the unit distance
graph in R2.

5. V = ω and {k < n} ∈ E iff the kth bit of the binary representation
of n is 1. For example {2, 6} ∈ E and {0, 6} /∈ E because the binary
representation of 6 is 110 in which the 2nd bit is 1 and the 0th bit is
0. This is the Ackermann-Rado graph.



Walks, paths and cycles

Let G = (V ,E ) be a graph.

(a) A walk in G is a finite sequence W = 〈vk : k < n〉 of vertices such
that for every k < n, {vk , vk+1} ∈ E . n is the length of the walk
W . v0 is the initial vertex of W and vn−1 is the terminal vertex
of W . We also say that W is a walk from v0 to vn.

(b) P = 〈vk : k < n〉 is a path in G iff P is a walk in G and for every
j < k < n, vj 6= vk .

(b) C = 〈vk : k < n〉 is a cycle in G iff C is a path in G and
{v0, vk−1} ∈ E . An n-cycle is a cycle of length n ≥ 3. G is acyclic
iff it has no cycles of length ≥ 3.

(c) G is connected iff for every x , y ∈ V , there is walk from x to y .

(d) G is a tree iff it is connected and acyclic.



Hamiltonian graphs

Let G = (V ,E ) be a finite graph (This means that |V | < ω). We say
that C = 〈vk : k < n〉 is a Hamiltonian cycle in G iff C is a cycle in G
and V = {vk : k < n}. G is a Hamiltonian graph iff there is a
Hamiltonian cycle in G .

Theorem (Ore, 1960)
Let G = (V ,E ) be a finite graph on n ≥ 3 vertices. Suppose for
v ,w ∈ V , if {v ,w} /∈ E , then degG (v) + degG (w) ≥ n. Then G is
Hamiltonian.

Proof: Let m be the largest possible length of a path in G . Let
P = 〈vk : 1 ≤ k ≤ m〉 be a path in G of length m.

(a) If u,w are any two non-adjacent vertices, then there is a vertex that
is adjacent to both of them. Otherwise, each of the n− 2 vertices in
V \ {u,w} can be adjacent to at most one of u,w which implies
that degG (u) + degG (w) ≤ n − 2: Contradiction.

(b) Every vertex which is adjacent to either one of v1, vm is in the set
{v1, v2, . . . vm}. Otherwise, P can be extended to a longer path.



Ore’s theorem

(c) We next show that there is a path P ′ = 〈v ′k : 1 ≤ k ≤ m〉 in G such
that v ′1, v

′
m are adjacent. If P is such a path, we are done. So

suppose v1, vm are not adjacent.

We first claim that for some 2 ≤ k ≤ m − 2, {v1, vk+1} ∈ E and
{vk , vm} ∈ E . Suppose there is no such k . By (b), there are at least
degG (vm)− 1 vertices among {v2, . . . , vm−2} which are adjacent to
vm. We have assumed that for every 2 ≤ k ≤ m − 2, if
{vk , vm} ∈ E , then vk+1 is not adjacent to v1. Also, by (b), every
vertex adjacent to v1 is in the set {v2, . . . , vm−1}. Hence
degG (v1) ≤ (m − 2)− (degG (vm)− 1) which implies that
degG (v1) + degG (vm) ≤ m − 1 ≤ n − 1 which is impossible. So the
claim holds and we can fix some 2 ≤ k ≤ m − 2 such that
{v1, vk+1} ∈ E and {vk , vm} ∈ E .

It now follows that P ′ = 〈v1, . . . , vk , vm, vm−1, . . . , vk+1〉 is as
required. By replacing P ′ by P, we can assume that v1, vm are
adjacent.



Ore’s theorem

So it suffices to show that m = n since then P would be a Hamiltonian
cycle in G . Suppose m < n. Fix u ∈ V \ {vk : 1 ≤ k ≤ n}. By (b), u is
not adjacent to either one of v1, vm. Using (a), fix a vertex w which is
adjacent to both v1 and u. Since w is adjacent to v1, by (b)
w ∈ {vk : 2 ≤ k ≤ m}. Since w is adjacent to u and u is not adjacent to
vm, we must have w 6= vm. So we can fix 2 ≤ k ≤ m − 1 such that
w = wk . It now follows that 〈u, vk , vk−1, . . . , v1, vm, vm−1, . . . , vk+1〉 is a
path in G of length m + 1 > m – A contradiction. So m = n and the
proof is complete. K



Subgraphs and induced subgraphs

Let G = (V1,E1) and H = (V2,E2) be graphs. We say that H is a
subgraph of G iff V2 ⊆ V1 and E2 ⊆ E1.

Let G = (V ,E ) be a graph and V ′ ⊆ V . The induced subgraph
of G on V ′ is the graph (V ′,E ′) where E ′ = E ∩ [V ′]2.



Bipartite graphs and perfect matching

We say that a graph G = (V ,E ) is bipartite with bipartition (A,B) iff
the following hold.

(a) V = A ∪ B and A ∩ B = ∅.

(b) For every edge {x , y} ∈ E , |{x , y} ∩ A| = |{x , y} ∩ B| = 1.

Suppose G is a finite bipartite graph with bipartition (A,B) where
|A| = |B|. A subgraph M of G is a perfect matching for G iff the
following hold.

(i) The vertex set of M is A ∪ B.

(ii) For every a ∈ A, there is a unique b ∈ B such that {a, b} is an
edge in M.

So the edges in M give a one-to-one correspondence between A and B.



Hall’s marriage theorem

Let G = (V ,E ) be a finite bipartite graph with bipartition (A,B) where
|A| = |B|. We say that G satisfies the marriage condition iff for every
S ⊆ A, |NG (S)| ≥ |S | where

NG (S) = {b ∈ B : (∃a ∈ S)({a, b} ∈ E )}

It should be clear that if G has a perfect matching, then it satisfies the
marriage condition. Hall’s theorem says that the converse is also true.

Theorem (Hall, 1935)
Suppose G = (V ,E ) is a bipartite graph with bipartition (A,B) and
|A| = |B|. Assume G satisfies the marriage condition. Then G has a
perfect matching.



Hall’s marriage theorem

Proof: Let H = (V ,E ′) be a subgraph of G (so E ′ ⊆ E ) such that H
satisfies the marriage condition and is edge-minimal among all such
subgraphs of G . This means that for every e ∈ E ′, the graph
(V ,E ′ \ {e}) does not satisfy the marriage condition.

Claim
For every a ∈ A, degH(a) = 1.

Proof of Claim: Suppose not and we’ll produce a contradiction. Choose
a ∈ A with degH(a) 6= 1. Since H satisfies the marriage condition,
degH(a) > 0. So degH(a) ≥ 2. Fix b1 6= b2 such that {b1, a} ∈ E ′ and
{b2, a} ∈ E ′.
For each i ∈ {1, 2}, put Hi = (V ,E ′ \ {a, bi}). Since Hi has one fewer
edge than H, it does not satisfy the marriage condition. So we can fix
Si ⊆ A such that |NHi (Si )| < |Si |. Observe that a ∈ S1 ∩ S2 since
otherwise H would violate the marriage condition.



Hall’s marriage theorem

Put Ti = NHi
(Si ). Note that NH((S1 ∩ S2) \ {a}) ⊆ T1 ∩ T2 and

T1 ∪ T2 = NH(S1 ∪ S2). It follows that
|NH((S1 ∩ S2) \ {a})| ≤ |T1 ∩ T2| = |T1|+ |T2| − |T1 ∪ T2| ≤
≤ |S1| − 1 + |S2| − 1− |T1 ∪ T2|. Since H satisfies the marriage
condition, |T1 ∪ T2| ≥ |S1 ∪ S2|. Hence
|NH((S1 ∩ S2) \ {a})| ≤ |S1|+ |S2| − |S1 ∪ S2| − 2 = |S1 ∩ S2| − 2.
But now the marriage condition for H fails for S = (S1 ∩ S2) \ {a}
which is a contradiction. So the claim is true.

Using the claim, we can now show that H is a perfect matching for
G . Since every a ∈ A has exactly one neighbour in B, it is enough
to show that these neighbours are pairwise distinct. If not, choose
a1 6= a2 from A with common neighbour b ∈ B. But this means
that H violates the marriage condition via S = {a1, a2} which is
impossible. K



Hall’s marriage theorem

By an almost identical proof, we also have the following version of
Hall’s theorem where we do not assume |A| = |B|.

Theorem
Let G be a finite bipartite graph with bipartition (A,B). Suppose
G satisfies the marriage condition (so |A| ≤ |B|). Then there exists
B ′ ⊆ B with |B ′| = |A| such that the induced subgraph G ′ of G on
A ∪ B ′ has a perfect matching.



Transversals

Let S be a nonempty finite set. Suppose F = 〈X1,X2, . . . ,Xn〉 is a finite
sequence (with possible repetition) of nonempty subsets of S . We say
that a function T : F → S is a transversal for F iff T is one-one and for
every 1 ≤ i ≤ n, T (Xi ) ∈ Xi .

Example: Let S = {1, 2, 3, 4, 5, 6, 7} and F = 〈X1,X2,X3,X4,X5〉 where
X1 = {1, 5, 6},X2 = {5, 6},X3 = {5, 6},X4 = {2, 3, 7},X5 = {2, 3, 4}.
Define T : F → {1, 2, 3, 4, 5, 6, 7} by setting T (X1) = 1, T (X2) = 5,
T (X3) = 6, T (X4) = 2 and T (X5) = 3. Then T is a transversal for F .

Let F be as above. We say that F satisfies the marriage condition iff
for every 1 ≤ k ≤ n, for every 1 ≤ i1 < i2 < · · · < ik ≤ n , the following
holds: |Xi1 ∪ Xi2 ∪ · · · ∪ Xik | ≥ k .

Observe that if F has a transversal, then it satisfies the marriage
condition. The next theorem says that this is also sufficient.



Transversals

Theorem
Let S be a nonempty finite set. Suppose F = 〈X1,X2, . . . ,Xn〉 is a
finite sequence (with possible repetition) of nonempty subsets of
S . Suppose F satisfies the marriage condition. Then F has a
transversal.

Proof: Define a bipartite graph G with bipartition
({1, 2, . . . , n}, S) as follows: For 1 ≤ i ≤ n and y ∈ S , {i , y} is an
edge in G iff y ∈ Xi . Note that G satisfies the marriage condition.
Hence by Hall’s marriage theorem, there exists S ′ ⊆ S with
|S ′| = n and a perfect matching M of the induced subgraph G ′ of
G on {1, 2, . . . , n} ∪ S ′. Define T : F → S by setting T (Xi ) = y
where y ∈ S ′ and {i , y} is an edge in M. Then T is a transversal
for F . K



Connected components

Let G = (V ,E ) be a graph. Define a relation R on V by
(x , y) ∈ R iff there is a walk/path from x to y in G . It is clear that
R is an equivalence relation on V . A component of G is the
induced subgraph of G on an R-equivalence class. We leave the
following as exercise for the reader.

Exercise: H is a component of G iff H is a maximal connected
induced subgraph of G . A graph is connected iff it has exactly one
component.



Chromatic number

Let G = (V ,E ) be a graph. A vertex coloring of G is a function
f such that dom(f ) = V and for every edge {x , y} ∈ E ,
f (x) 6= f (y). A vertex coloring f is called a κ-coloring iff
range(f ) ⊆ κ. The chromatic number of G , denoted χ(G ), is the
least cardinal κ such that there is a vertex coloring f : V → κ of G .

Examples

1. χ(Kn) = n where Kn is the complete graph on n-vertices.

2. χ(G ) ≤ 2 for every bipartite graph G .

3. χ(Cn) = 2 where Cn is the n-cycle and n is even.

4. χ(Cn) = 3 where Cn is the n-cycle and n is odd.



Brooks’ theorem

For a finite graph G = (V ,E ), define

∆(G ) = max({degG (x) : x ∈ V })

Theorem (Brooks, 1941)
Suppose G = (V ,E ) is a finite connected graph that is neither a
complete graph nor an odd cycle. Then χ(G ) ≤ ∆(G ).

Proof: See video. K



Brooks’ theorem

For a finite graph G = (V ,E ), define

∆(G ) = max({degG (x) : x ∈ V })

Theorem (Brooks, 1941)
Suppose G = (V ,E ) is a finite connected graph that is neither a
complete graph nor an odd cycle. Then χ(G ) ≤ ∆(G ).

Proof: See video. K



De Bruijn-Erdős theorem

Theorem
Suppose G = (V ,E ) is an infinite graph and 1 ≤ n < ω. Suppose for
every finite A ⊆ V , the chromatic number of the induced subgraph of G
on A is at most n. Then χ(G ) ≤ n.

Proof sketch: Let F be the family of all pairs (W , f ) such that W ⊆ V ,
f : W → n is a vertex-coloring of the induced subgraph of G on W and
for every finite A ⊆ V , f extends to a vertex coloring g : W ∪ A→ n of
the induced subgraph of G on W ∪ A. Define a partial order � on F by
(W1, f1) � (W2, f2) iff W1 ⊆W2 and f1 = f2 �W1. Note that (∅, ∅) ∈ F
so F is nonempty. We leave the following as an exercise.

(1) Every chain in (F ,�) has an upper bound.

(2) If (W , f ) is a �-maximal member of F , then W = V and f is a
vertex coloring of G .

It follows that χ(G ) ≤ n. K



Unit distance graph

Let G = (R2,E ) be the unit distance graph in plane. Recall that
E = {{x , y} : ||x − y || = 1}. The Hadwiger-Nelson problem asks for
the value of χ(G ). It was known for a long time that 4 ≤ χ(G ) ≤ 7. In
2018, Aubrey de Grey showed that χ(G ) ≥ 5.



Unit distance graph

Lemma
Let G = (R2,E ) be the unit distance graph in plane. Then
χ(G ) ≥ 4.

Proof:

Figure: Moser’s spindle



Unit distance graph

Lemma
Let G = (R2,E ) be the unit distance graph in plane. Then
χ(G ) ≤ 7.

Proof:

Figure: Hexagonal tiling



Finite Ramsey theorem

Definition (Arrow notation)
Suppose κ, λ, θ are nonzero cardinals. We write κ→ (λ)θ (read “κ
arrows λ with θ colors”) iff for every function f : [κ]2 → θ, there exists
X ⊆ κ such that |X | = λ and f � [X ]2 is constant.

Note that the infinite Ramsey theorem says that ω → (ω)N for every
N < ω.

Theorem (Finite Ramsey theorem)
Given positive integers k and m, there exists an integer N ≥ m such that

N → (m)k

Proof: Towards a contradiction, fix k ,m ≥ 1 such that for every N ≥ m,

N 9 (m)k



Finite Ramsey theorem

For n ≥ m and f : [n]2 → k , we say that f is bad iff there is no X ⊆ n
such that |X | = m and f � [X ]2 is constant. Let

T = {f : (∃n ≥ m)(f : [n]2 → k is bad)}

T must be infinite otherwise, letting

N = max({n + 1 : (∃f ∈ T )(dom(f ) = [n]2)})

we get N → (m)k contradicting our assumption that there is no such N.
Observe that if n2 ≥ n1 ≥ m and f : [n2]2 → k is bad, then f � [n1]2 is
also bad.



Finite Ramsey theorem

Inductively construct 〈fn : n ≥ m〉 as follows.

(1) Since T is infinite and since there are only finitely many functions in
T from [m]2 to k, we can choose fm : [m]2 → k such that fm ∈ T
and {g ∈ T : g extends fm} is infinite.

(2) Suppose fn : [n]2 → k has been defined such that fn ∈ T and
{g ∈ T : g extends fn} is infinite. Note that there are only finitely
many functions from [n + 1]2 to k extending fn+1. So we can
choose fn+1 : [n + 1]2 → k in T such that {g ∈ T : g extends fn+1}
is infinite.

Put f =
⋃
{fn : n ≥ m}. Then f : [ω]2 → k . By infinite Ramsey theorem,

there exists an infinite X ⊆ ω so that f � [X ]2 is constant. Choose
N ≥ m large enough such that |X ∩ N| > m. But since fN = f � [N]2, it
follows that fN : [N]2 → k is not bad: A contradiction. K



Finite Schur’s theorem

Theorem (Schur)

For every k ≥ 1, there exists N such that for every h : N → k,
there are 1 ≤ x , y , z < N such that x + y = z and
h(x) = h(y) = h(z).

Proof: Using finite Ramsey theorem, choose N large enough so
that N → (3)k . Define f : [N]2 → k by f ({m < n}) = h(n −m).
Choose X ⊆ N and r < k such that |X | = 3 and
range(f � [X ]2) = {r}. Let X = {n1 < n2 < n3}. Put a = n2 − n1,
b = n3 − n2 and c = n3 − n1. Then a + b = c and
h(a) = h(b) = h(c) = r . K



Modular version of Fermat’s last theorem

Fermat’s last theorem says that for every k ≥ 3, the equation
xk + yk = zk has no solutions in positive integers x , y , z . A possible way
of proving this could have been to show that for every k ≥ 3, there are
arbitrarily large primes p such that the modular equation xk + yk ≡ zk

(mod p) has no nonzero solutions x , y , z [Why?]. Schur showed that this
approach would not work.

Theorem (Schur, 1917)
For each k ≥ 1, there exists N such that for every prime p > N, the
modular equation xk + yk ≡ zk (mod p) has nonzero solutions x , y , z .

For the proof of Schur’s theorem, we will make use of the following fact
which says that the multiplicative group of Z/pZ is cyclic.

Fact
For every prime p, there exists 1 ≤ a ≤ p − 1 such that in Z/pZ,

{[aj ] : 1 ≤ j ≤ p − 1} = {[r ] : 1 ≤ r ≤ p − 1}



Modular version of Fermat’s last theorem

Proof of Schur’s theorem: Let k ≥ 1. Using the previous theorem of Schur,
fix N > k such that for every h : N → k, there are positive integers x , y , z < N
such that x + y = z and h(x) = h(y) = h(z). Let p > N be prime. We’ll show
that xk + y k ≡ zk (mod p) has nonzero solution x , y , z .

Define h : {1, 2, . . . , p − 1} → k as follows. Fix 1 ≤ a ≤ p − 1 such that
{[aj ] : 1 ≤ j ≤ p − 1} has every nonzero member of Z/pZ. For each
1 ≤ j ≤ p − 1, fix unique 1 ≤ tj ≤ p − 1 such that [atj ] = [j ]. Let qj and rj be
unique integers such that tj = kqj + rj and 0 ≤ rj < k. Define h(j) = rj .

Choose 1 ≤ u, v ,w ≤ p − 1 such that u + v = w and h(u) = h(v) = h(w) = r .
Let x = aqu , y = aqv and z = aqw . Then

arxk ≡ arakqu ≡ akqu+r ≡ atu ≡ u (mod p)

Similarly, ary k ≡ v (mod p) and arzk ≡ w (mod p). Since u + v = w , we get
ar (xk + y k) ≡ arzk (mod p). Since gcd(ar , p) = 1, it follows that xk + y k ≡ zk

(mod p). K



Dense linear orderings

(L,≺) is a dense linear ordering iff (L,≺) is a linear ordering such that
for every x ≺ y in L, there exists z ∈ L such that x ≺ z ≺ y . A linear
ordering (L,≺) is without end-points iff L does not have a ≺-largest
member and L does not have a ≺-least member.

Theorem (Cantor)
Suppose (L1,≺1) and (L2,≺2) are dense linear orderings without
end-points. Assume |L1| = |L2| = ω. Then (L1,≺1) ∼= (L2,≺2).

Proof: See video. K



Rado graph

Let G = (V ,E ) be a graph. We say that G is Rado iff |V | = ω and for
every pair A,B of disjoint finite subsets of V , there exists x ∈ V such
that x is adjacent to every vertex in A and x is not adjacent to any
vertex in B.

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. We say that
f : V1 → V2 is an isomorphism from G1 to G2 iff f is a bijection from V1

to V2 and for every x , y ∈ V1, {x , y} ∈ E1 ⇐⇒ {f (x), f (y)} ∈ E2.

Theorem (Rado)
There exists a Rado graph and any two Rado graphs are isomorphic.

Proof: Let G = (V ,E ) be the the Ackermann-Rado graph defined
previously. So V = ω and {k < n} ∈ E iff the kth bit of the binary
representation of n is 1. It is easy to check that G is Rado. The proof of
the fact that any two Rado graphs are isomorphic is similar to the proof
of Cantor’s theorem from previous slide. K


