
MTH202: Set Theory and Discrete Mathematics
Homework: These will be periodically updated. Odd Semester, 2020/21

(1) Show that there is no set V such that every set is a member of V .

(2) Show that (x, y) = (a, b) iff x = a and y = b.

(3) Suppose R is an equivalence relation on A. For each a ∈ A, define the R-equivalence
class of a by [a] = {b ∈ A : aRb}. Show that {[a] : a ∈ A} is a partition of A.
Furthermore, show that for every partition F of A, there is an equivalence relation S
on A such that F is the set of all S-equivalence classes.

(4) Let (L,≺) be a linear ordering. Prove the following.

(a) (L,≺) is a well-ordering iff there is no sequence 〈xn : n < ω〉 in L such that
(∀n < ω)(xn+1 ≺ xn).

(b) (L,≺) is a well-ordering iff for every A ⊆ L, (A,≺) is isomorphic to an initial
segment of (L,≺).

(5) Suppose (X,≺1) and (Y,≺2) are well-orderings. Then exactly one of the following
holds.

(a) (X,≺1) ∼= (Y,≺2).

(b) For some x ∈ X, (pred(X,≺1, x),≺1) ∼= (Y,≺2).

(c) For some y ∈ Y , (pred(Y,≺2, y),≺2) ∼= (X,≺1).

Furthermore, in each of the three cases, the isomorphism is unique.

(6) Let f : P(ω) \ {∅} → ω be defined by f(X) = min(X). Call a well-orderings (A,≺)
f -directed iff A ⊆ ω and for every x ∈ A,

f(ω \ pred(A,≺, x)) = x

Describe all f -directed well-orderings.

(7) Prove the following.

(a) If x is an ordinal and y ∈ x, then y is an ordinal and y = pred(x,∈, y).

(b) If x, y are ordinals and (x,∈) ∼= (y,∈), then x = y.

(c) If x is an ordinal, then x /∈ x.

(d) If x, y are ordinals, then exactly one of the following holds: x = y, x ∈ y,
y ∈ x.

(e) If C is a nonempty set of ordinals, then there exists x ∈ C such that
(∀y ∈ C)(y = x or x ∈ y).

(f) If A is a set of ordinals, then (A,∈) is a well-ordering. Hence if A is a
transitive set of ordinals, then A is an ordinal.



(8) Show that if α < β are ordinals, then there is a unique ordinal γ such that α+ γ = β.
(Hint: γ = type(β \ α,∈)).

(9) Suppose α, β, γ are ordinals and α + β = α + γ. Show that β = γ.

(10) Suppose α · α = β · β. Show that α = β.

(11) Show that there is an uncountable chain in (P(ω),⊆). (Hint: Identify ω with the set
of rationals Q and for each real number x, consider {r ∈ Q : r ≤ x}).

(12) Call an ordinal α good iff there exists X ⊆ R such that (X,<) is order isomorphic to
α. Show that α is good iff α < ω1.

(13) Let (P,�1) be a partial ordering. Show that there exists �2 such that (P,�2) is a
linear ordering and �2 extends �1 which means the following:

(∀a, b ∈ P )(a �1 b =⇒ a �2 b)

(14) Let H ⊆ R be a Hamel basis.

(a) Show that every nonzero x ∈ R can be uniquely written as

x = a1x1 + a2x2 + · · ·+ anxn

where x1 < x2 < · · · < xn are in H and a1, a2, . . . an are nonzero rational numbers.

(b) Let f : H → R. Show that there is a unique additive function g : R→ R such
that f ⊆ g.

(15) Show that for every f : R→ R there are injective functions g : R→ R and h : R→ R
such that f = g + h.

(16) Suppose f : R→ R satisfies: For every x, y ∈ R, f(x+ y) = f(x)f(y).

(a) Show that either f is identically zero or range(f) ⊆ R+.

(b) Suppose f is continuous and not identically zero. Show that f(x) = ax for
some a > 0.

(17) Show that there is a discontinuous function f : R→ R such that f(x+ y) = f(x)f(y)
for every x, y ∈ R.

(18) Prove the following.

(a) For every ordinal α, |α| ≤ α.

(b) If κ is a cardinal and α < κ, then |α| < κ.

(c) There is an injection from X to Y iff |X| ≤ |Y |.
(d) There is a surjection from X to Y iff |Y | ≤ |X|.
(e) There is a bijection from X to Y iff |X| = |Y |.



(19) Prove the following.

(a) |Rω| = c.

(b) |C(R)| = c where C(R) is the set of all continuous functions from R to R.

(c) Let A be the set of all real numbers which are roots of some polynomial
equation with rational coefficients. Show that |A| = ω.

(20) Show that R2 cannot be partitioned into circles of positive radii.

(21) Show that R3 can be partitioned into circles of positive radii.

(22) Suppose A ⊆ R2 and every vertical section of A is finite. Show that some horizontal
section of R2 \ A is uncountable.

(24) Let U be a non-principal ultrafilter over ω. Suppose 〈xn : n < ω〉 is a sequence of real
numbers. We say that x is the U -limit of 〈xn : n < ω〉 and write U lim

n
xn = x iff for

every ε > 0, {n < ω : |xn − x| < ε} ∈ U .

Show the following.

(a) If lim
n
xn = x, then U lim

n
xn = x.

(b) If U lim
n
xn = a and U lim

n
xn = b, then a = b.

(c) If 〈xn : n < ω〉 is bounded in R, then there exists a unique real x such that
U lim

n
xn = x.

(25) Let 〈An : n < ω〉 be a sequence of infinite subsets of ω such that for every n < ω,
An+1 ⊆ An. Define F = {X ⊆ ω : (∃n < ω)(An ⊆ X)}.

(a) Show that F is a filter on ω.

(b) Show that F is not an ultrafilter on ω.

(26) Let (P,�) be a partial ordering where P is an infinite set. Show that there exists an
infinite X ⊆ P such that either X is a chain in (P,�) or X is an antichain in P –
This means that for every distinct a, b ∈ X neither a � b nor b � a.

(27) Suppose 1 ≤ N < ω and h : ω → N . Show that there exist a < b < c < d < e < ω
such that h(a) = h(b) = h(c) = h(d) = h(e) and a+ b+ c+ d = e.

(28) Suppose 1 ≤ N < ω and h : ω → N . Show that there exist a < b < c < d < e < ω
such that h(a) = h(b) = h(c) = h(d) = h(e) and abcd = e.

(29) Suppose S ⊆ R2 and F is a family of circles in R2. Assume |S| < c, |F| < c, S does
not contain 11 concyclic points and |S ∩ C| = 10 for every C ∈ F . Show that for
every circle T ⊆ R2, there exists F ⊆ T such that |F | ≤ 10, S ∪ F does not contain
11 concyclic points and |(S ∪ F ) ∩ T | = 10.



(30) Find gcd(1887, 1295).

(31) Show that for every integer n ≥ 1, 6 | n(n+ 1)(n+ 2) and 24 | n(n+ 1)(n+ 2)(n+ 3).

(32) Show that there are no positive integers a, b such that a2 = 17b2.

(33) Show that the equation 2x2 − 5y2 = 1 has no integer solution.

(34) Show that gcd(a, b, c) = min({ax+ by + cz : x, y, z ∈ Z and ax+ by + cz > 0}).

(35) Show that the minimum positive value of 112x− 105y + 49z for integers x, y, z is 7.

(36) Find the remainder when 554455 is divided by 5.

(37) Show that for some integer n, every member of {n+ k : 1 ≤ k ≤ 2020} is composite.

(38) Let a, b be positive integers. Define lcm(a, b) to be the least common positive multiple
of a, b. Show that lcm(a, b) gcd(a, b) = ab.

(39) Find all the units in Z/20Z and for each one of them, compute its multiplicative
inverse.

(40) Show the following.

(a) Let En = {(a, b) : a ≡ b (mod n)}. Then En is an equivalence relation on Z
whose equivalence classes are {[r] : 0 ≤ r < n}.

(b) If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n) and
a− c ≡ b− d (mod n).

(c) If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

(d) If a ≡ b (mod n) and k ≥ 1, then ak ≡ bk (mod n).

(e) If gcd(c, n) = 1 and ac ≡ bc (mod n), then a ≡ b (mod n).

(41) Let a, b, c be positive integers. Show that the equation ax+ by = c has integers
solutions iff gcd(a, b) | c.

(42) Prove or disprove: If a2 ≡ b2 (mod n), then either a ≡ b (mod n) or a ≡ −b (mod n).

(43) Let φ be the Euler’s totient function. Show the following.

(a) φ(1) = 1 and for every prime p, φ(p) = p− 1.

(b) If p is prime and k ≥ 1, then φ(pk) = pk − pk−1.

(c) If gcd(a, b) = 1, then φ(ab) = φ(a)φ(b).

(d) For each n ≥ 2, φ(n) is the number of units in Z/nZ.

(44) Suppose p is a prime and a, b are integers. Assume that neither a nor b is a multiple
of p. Show that p | (ap−1 − bp−1).



(45) Let p ≥ 3 be a prime. Show that p | (1p + 2p + · · ·+ (p− 1)p).

(46) Let G be a finite graph. Show that the sum of the degrees of all the vertices in G is
twice the number of its edges. This is called the handshaking lemma.

(47) Recall that a tree is a connected acyclic graph.

(a) Show that every tree with n vertices has exactly n− 1 edges.

(b) A vertex in T is called a leaf iff it has degree one. Let T be a tree on 101
vertices. Suppose T has a vertex of degree 5. Show that T has at least 5 leaves.

(48) The complement of a graph G = (V,E) is defined by G = (V,E) where E = [V ]2 \ E.
Show that for every graph G, either G or G is connected.

(49) Let G be a finite graph with n ≥ 3 vertices and strictly more than
(
n−1
2

)
edges. Show

that G is connected.

(50) Let G be a connected graph on 100 vertices such that each vertex has degree at least
5. Show that G contains a path of length 10.

(51) Let G be a 5-regular finite bipartite graph with bipartition (A,B).

(a) Show that |A| = |B|.
(b) Show that G has a perfect matching.

(52) Show that for any partition of a deck of playing cards into 13 stacks of 4 cards each,
we can choose one card from each stack in a way such that the resulting set of 13
cards consists of one card of each one of the ranks: Ace, 2, 3, ..., 10, Jack, Queen, King.

(53) Complete the proof of De Bruijn-Erdős theorem: Suppose G = (V,E) is an infinite
graph and 1 ≤ n < ω. Suppose for every finite A ⊆ V , the chromatic number of the
induced subgraph of G on A is at most n. Then χ(G) ≤ n.

(54) Show that every countable linear ordering is order-isomorphic to a subset of the set of
rational numbers.

(55) Let G = (V,E) be a Rado graph. Let H = (V1, E1) be a graph such that V1 is
countable. Show that there exists an injective function f : V1 → V such that for
every x, y ∈ V1,

{x, y} ∈ E1 ⇐⇒ {f(x), f(y)} ∈ E


