(1) Show that there is no set V such that every set is a member of V.
(2) Show that $(x, y)=(a, b)$ iff $x=a$ and $y=b$.
(3) Suppose R is an equivalence relation on A. For each $a \in A$, define the R-equivalence class of a by $[a]=\{b \in A: a R b\}$. Show that $\{[a]: a \in A\}$ is a partition of A.
Furthermore, show that for every partition \mathcal{F} of A, there is an equivalence relation S on A such that \mathcal{F} is the set of all S-equivalence classes.
(4) Let (L, \prec) be a linear ordering. Prove the following.
(a) (L, \prec) is a well-ordering iff there is no sequence $\left\langle x_{n}: n<\omega\right\rangle$ in L such that $(\forall n<\omega)\left(x_{n+1} \prec x_{n}\right)$.
(b) (L, \prec) is a well-ordering iff for every $A \subseteq L,(A, \prec)$ is isomorphic to an initial segment of (L, \prec).
(5) Suppose $\left(X, \prec_{1}\right)$ and $\left(Y, \prec_{2}\right)$ are well-orderings. Then exactly one of the following holds.
(a) $\left(X, \prec_{1}\right) \cong\left(Y, \prec_{2}\right)$.
(b) For some $x \in X,\left(\operatorname{pred}\left(X, \prec_{1}, x\right), \prec_{1}\right) \cong\left(Y, \prec_{2}\right)$.
(c) For some $y \in Y,\left(\operatorname{pred}\left(Y, \prec_{2}, y\right), \prec_{2}\right) \cong\left(X, \prec_{1}\right)$.

Furthermore, in each of the three cases, the isomorphism is unique.
(6) Let $f: \mathcal{P}(\omega) \backslash\{\emptyset\} \rightarrow \omega$ be defined by $f(X)=\min (X)$. Call a well-orderings (A, \prec) f-directed iff $A \subseteq \omega$ and for every $x \in A$,

$$
f(\omega \backslash \operatorname{pred}(A, \prec, x))=x
$$

Describe all f-directed well-orderings.
(7) Prove the following.
(a) If x is an ordinal and $y \in x$, then y is an ordinal and $y=\operatorname{pred}(x, \in, y)$.
(b) If x, y are ordinals and $(x, \in) \cong(y, \in)$, then $x=y$.
(c) If x is an ordinal, then $x \notin x$.
(d) If x, y are ordinals, then exactly one of the following holds: $x=y, x \in y$, $y \in x$.
(e) If C is a nonempty set of ordinals, then there exists $x \in C$ such that $(\forall y \in C)(y=x$ or $x \in y)$.
(f) If A is a set of ordinals, then (A, \in) is a well-ordering. Hence if A is a transitive set of ordinals, then A is an ordinal.
(8) Show that if $\alpha<\beta$ are ordinals, then there is a unique ordinal γ such that $\alpha+\gamma=\beta$. (Hint: $\gamma=\operatorname{type}(\beta \backslash \alpha, \in)$).
(9) Suppose α, β, γ are ordinals and $\alpha+\beta=\alpha+\gamma$. Show that $\beta=\gamma$.
(10) Suppose $\alpha \cdot \alpha=\beta \cdot \beta$. Show that $\alpha=\beta$.
(11) Show that there is an uncountable chain in $(\mathcal{P}(\omega), \subseteq)$. (Hint: Identify ω with the set of rationals \mathbb{Q} and for each real number x, consider $\{r \in \mathbb{Q}: r \leq x\})$.
(12) Call an ordinal α good iff there exists $X \subseteq \mathbb{R}$ such that $(X,<)$ is order isomorphic to α. Show that α is good iff $\alpha<\omega_{1}$.
(13) Let $\left(P, \preceq_{1}\right)$ be a partial ordering. Show that there exists \preceq_{2} such that $\left(P, \preceq_{2}\right)$ is a linear ordering and \preceq_{2} extends \preceq_{1} which means the following:

$$
(\forall a, b \in P)\left(a \preceq_{1} b \Longrightarrow a \preceq_{2} b\right)
$$

(14) Let $H \subseteq \mathbb{R}$ be a Hamel basis.
(a) Show that every nonzero $x \in \mathbb{R}$ can be uniquely written as

$$
x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

where $x_{1}<x_{2}<\cdots<x_{n}$ are in H and $a_{1}, a_{2}, \ldots a_{n}$ are nonzero rational numbers.
(b) Let $f: H \rightarrow \mathbb{R}$. Show that there is a unique additive function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \subseteq g$.
(15) Show that for every $f: \mathbb{R} \rightarrow \mathbb{R}$ there are injective functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g+h$.
(16) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}, f(x+y)=f(x) f(y)$.
(a) Show that either f is identically zero or range $(f) \subseteq \mathbb{R}^{+}$.
(b) Suppose f is continuous and not identically zero. Show that $f(x)=a^{x}$ for some $a>0$.
(17) Show that there is a discontinuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x) f(y)$ for every $x, y \in \mathbb{R}$.
(18) Prove the following.
(a) For every ordinal $\alpha,|\alpha| \leq \alpha$.
(b) If κ is a cardinal and $\alpha<\kappa$, then $|\alpha|<\kappa$.
(c) There is an injection from X to Y iff $|X| \leq|Y|$.
(d) There is a surjection from X to Y iff $|Y| \leq|X|$.
(e) There is a bijection from X to Y iff $|X|=|Y|$.
(19) Prove the following.
(a) $\left|\mathbb{R}^{\omega}\right|=\mathfrak{c}$.
(b) $|C(\mathbb{R})|=\mathfrak{c}$ where $C(\mathbb{R})$ is the set of all continuous functions from \mathbb{R} to \mathbb{R}.
(c) Let A be the set of all real numbers which are roots of some polynomial equation with rational coefficients. Show that $|A|=\omega$.
(20) Show that \mathbb{R}^{2} cannot be partitioned into circles of positive radii.
(21) Show that \mathbb{R}^{3} can be partitioned into circles of positive radii.
(22) Suppose $A \subseteq \mathbb{R}^{2}$ and every vertical section of A is finite. Show that some horizontal section of $\mathbb{R}^{2} \backslash A$ is uncountable.
(24) Let \mathcal{U} be a non-principal ultrafilter over ω. Suppose $\left\langle x_{n}: n\langle\omega\rangle\right.$ is a sequence of real numbers. We say that x is the \mathcal{U}-limit of $\left\langle x_{n}: n<\omega\right\rangle$ and write $\mathcal{U} \lim _{n} x_{n}=x$ iff for every $\varepsilon>0,\left\{n<\omega:\left|x_{n}-x\right|<\varepsilon\right\} \in \mathcal{U}$.

Show the following.
(a) If $\lim _{n} x_{n}=x$, then $\mathcal{U} \lim _{n} x_{n}=x$.
(b) If $\mathcal{U} \lim _{n} x_{n}=a$ and $\mathcal{U} \lim _{n} x_{n}=b$, then $a=b$.
(c) If $\left\langle x_{n}: n<\omega\right\rangle$ is bounded in \mathbb{R}, then there exists a unique real x such that $\mathcal{U} \lim _{n} x_{n}=x$.
(25) Let $\left\langle A_{n}: n<\omega\right\rangle$ be a sequence of infinite subsets of ω such that for every $n<\omega$, $A_{n+1} \subseteq A_{n}$. Define $\mathcal{F}=\left\{X \subseteq \omega:(\exists n<\omega)\left(A_{n} \subseteq X\right)\right\}$.
(a) Show that \mathcal{F} is a filter on ω.
(b) Show that \mathcal{F} is not an ultrafilter on ω.
(26) Let (P, \preceq) be a partial ordering where P is an infinite set. Show that there exists an infinite $X \subseteq P$ such that either X is a chain in (P, \preceq) or X is an antichain in $P-$ This means that for every distinct $a, b \in X$ neither $a \preceq b$ nor $b \preceq a$.
(27) Suppose $1 \leq N<\omega$ and $h: \omega \rightarrow N$. Show that there exist $a<b<c<d<e<\omega$ such that $h(a)=h(b)=h(c)=h(d)=h(e)$ and $a+b+c+d=e$.
(28) Suppose $1 \leq N<\omega$ and $h: \omega \rightarrow N$. Show that there exist $a<b<c<d<e<\omega$ such that $h(a)=h(b)=h(c)=h(d)=h(e)$ and $a b c d=e$.
(29) Suppose $S \subseteq \mathbb{R}^{2}$ and \mathcal{F} is a family of circles in \mathbb{R}^{2}. Assume $|S|<\mathfrak{c},|\mathcal{F}|<\mathfrak{c}, S$ does not contain 11 concyclic points and $|S \cap C|=10$ for every $C \in \mathcal{F}$. Show that for every circle $T \subseteq \mathbb{R}^{2}$, there exists $F \subseteq T$ such that $|F| \leq 10, S \cup F$ does not contain 11 concyclic points and $|(S \cup F) \cap T|=10$.
(30) Find $\operatorname{gcd}(1887,1295)$.
(31) Show that for every integer $n \geq 1,6 \mid n(n+1)(n+2)$ and $24 \mid n(n+1)(n+2)(n+3)$.
(32) Show that there are no positive integers a, b such that $a^{2}=17 b^{2}$.
(33) Show that the equation $2 x^{2}-5 y^{2}=1$ has no integer solution.
(34) Show that $\operatorname{gcd}(a, b, c)=\min (\{a x+b y+c z: x, y, z \in \mathbb{Z}$ and $a x+b y+c z>0\})$.
(35) Show that the minimum positive value of $112 x-105 y+49 z$ for integers x, y, z is 7 .
(36) Find the remainder when 554^{455} is divided by 5 .
(37) Show that for some integer n, every member of $\{n+k: 1 \leq k \leq 2020\}$ is composite.
(38) Let a, b be positive integers. Define $\operatorname{Icm}(a, b)$ to be the least common positive multiple of a, b. Show that $\operatorname{Icm}(a, b) \operatorname{gcd}(a, b)=a b$.
(39) Find all the units in $\mathbb{Z} / 20 \mathbb{Z}$ and for each one of them, compute its multiplicative inverse.
(40) Show the following.
(a) Let $E_{n}=\{(a, b): a \equiv b(\bmod n)\}$. Then E_{n} is an equivalence relation on \mathbb{Z} whose equivalence classes are $\{[r]: 0 \leq r<n\}$.
(b) If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a-c \equiv b-d(\bmod n)$.
(c) If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod n)$.
(d) If $a \equiv b(\bmod n)$ and $k \geq 1$, then $a^{k} \equiv b^{k}(\bmod n)$.
(e) If $\operatorname{gcd}(c, n)=1$ and $a c \equiv b c(\bmod n)$, then $a \equiv b(\bmod n)$.
(41) Let a, b, c be positive integers. Show that the equation $a x+b y=c$ has integers solutions iff $\operatorname{gcd}(a, b) \mid c$.
(42) Prove or disprove: If $a^{2} \equiv b^{2}(\bmod n)$, then either $a \equiv b(\bmod n)$ or $a \equiv-b(\bmod n)$.
(43) Let ϕ be the Euler's totient function. Show the following.
(a) $\phi(1)=1$ and for every prime $p, \phi(p)=p-1$.
(b) If p is prime and $k \geq 1$, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
(c) If $\operatorname{gcd}(a, b)=1$, then $\phi(a b)=\phi(a) \phi(b)$.
(d) For each $n \geq 2, \phi(n)$ is the number of units in $\mathbb{Z} / n \mathbb{Z}$.
(44) Suppose p is a prime and a, b are integers. Assume that neither a nor b is a multiple of p. Show that $p \mid\left(a^{p-1}-b^{p-1}\right)$.
(45) Let $p \geq 3$ be a prime. Show that $p \mid\left(1^{p}+2^{p}+\cdots+(p-1)^{p}\right)$.
(46) Let G be a finite graph. Show that the sum of the degrees of all the vertices in G is twice the number of its edges. This is called the handshaking lemma.
(47) Recall that a tree is a connected acyclic graph.
(a) Show that every tree with n vertices has exactly $n-1$ edges.
(b) A vertex in T is called a leaf iff it has degree one. Let T be a tree on 101 vertices. Suppose T has a vertex of degree 5 . Show that T has at least 5 leaves.
(48) The complement of a graph $G=(V, E)$ is defined by $\bar{G}=(V, \bar{E})$ where $\bar{E}=[V]^{2} \backslash E$. Show that for every graph G, either G or \bar{G} is connected.
(49) Let G be a finite graph with $n \geq 3$ vertices and strictly more than $\binom{n-1}{2}$ edges. Show that G is connected.
(50) Let G be a connected graph on 100 vertices such that each vertex has degree at least 5. Show that G contains a path of length 10 .
(51) Let G be a 5 -regular finite bipartite graph with bipartition (A, B).
(a) Show that $|A|=|B|$.
(b) Show that G has a perfect matching.
(52) Show that for any partition of a deck of playing cards into 13 stacks of 4 cards each, we can choose one card from each stack in a way such that the resulting set of 13 cards consists of one card of each one of the ranks: Ace, 2, 3, ..., 10, Jack, Queen, King.
(53) Complete the proof of De Bruijn-Erdős theorem: Suppose $G=(V, E)$ is an infinite graph and $1 \leq n<\omega$. Suppose for every finite $A \subseteq V$, the chromatic number of the induced subgraph of G on A is at most n. Then $\chi(G) \leq n$.
(54) Show that every countable linear ordering is order-isomorphic to a subset of the set of rational numbers.
(55) Let $G=(V, E)$ be a Rado graph. Let $H=\left(V_{1}, E_{1}\right)$ be a graph such that V_{1} is countable. Show that there exists an injective function $f: V_{1} \rightarrow V$ such that for every $x, y \in V_{1}$,

$$
\{x, y\} \in E_{1} \Longleftrightarrow\{f(x), f(y)\} \in E
$$

