MTH302: Set Theory and Mathematical Logic

LECTURE NOTES

Some history

(1874)

(1883)

(1879)

(1900)

Cantor showed that the set of real numbers is uncountable.

As a corollary, he deduced the existence of transcendental
numbers.

Cantor introduced ordinal and cardinal numbers, the
well-ordering principle and the continuum hypothesis. But he
could not prove the well-ordering principle or the continuum
hypothesis.

Frege laid down the foundations of first order logic. His work
remained obscure until Russell popularized it near the end of
the 19th century.

Hilbert posed his 23 problems for the next century. Problems
1, 2 and 10 would motivate further research in mathematical
logic.

Some history

(1901) Russell discovered “Russell's paradox” and, as a result,
showed that Frege's formal system was inconsistent.

(1904) Zermelo introduced the axiom of choice and proved the
well-ordering theorem.

(1920) Lowenheim (1915) and Skolem (1920) discovered that first
order theories cannot capture the cardinality of their models.
In particular, any first order axiomatization of set theory will
have countable model (Skolem's paradox).

(1925) Von Neumann gave his definition of ordinals and proposed the
axiom of foundation.

(1930) Godel established the completeness theorem for first order
logic.

Some history

(1931) Godel proved the incompleteness of arithmetic. He also
showed that there is no consistency proof of arithmetic that
can be formalized in arithmetic (Hilbert's 2nd problem).

(1935) Tarski introduces his theory of truth in a first order structure.

(1936) Church, Godel and Turing independently discover the class of
computable functions. Church and Turing independently
showed and that the decision problem for first order logic is
undecidable.

(1938) Godel proved that the continuum hypothesis cannot be proved
in ZFC.

(1963) Cohen showed that the continuum hypothesis is independent
of ZFC (Hilbert's first problem).

(1970) Matiyasevich showed that the solvability of Diophantine
equations is undecidable (Hilbert's 10th problem).

Why axioms?

In the early 20th century, sets were described as “well-defined
collections of objects”. This leads to contradictions like the
Russell’s paradox.

Surely the set of all sets that do not belong to themselves is a
well-defined collection. Call it Y. So Y = {x : x ¢ x}. Now either
Y € Y or Y ¢ Y. But each case implies the other (Why?). So we
get a contradiction!

Clearly, something has gone wrong. We must be more precise
about the notion of sets. This can be done via an axiomatic theory
of sets called ZFC (shorthand for Zermelo-Fraenkel set theory with
the axiom of choice). As is common in any axiomatic theory (like
Euclid’s axioms for plane geometry), sets and membership are
“primitive notions” and the axioms describe the precise rules to
reason with them.

Axioms of ZFC

> Axiom of empty set: There is a set with no members.

BX)(vy)(y & X)

> Axiom of extensionality: Two sets are equal iff they have
the same members.

(YX)(YY)[(X C Y&Y C X) = (X = Y)]

Extensionality implies that there is a unique empty set which we
denote by () (and later by 0).

Pairing and Union

Most of the ZFC axioms describe how to construct new sets out of
old.

» Axiom of pairing: For any two sets x, y, there is a set whose
members are x, y.

() (vy)(32)(Z = {x,¥})

» Axiom of union: For every family F of set, there is a set
whose members are the members of members of F.

(YF)EY)Y = {v: (3X € F)(v € X)}]

We write | J F to denote the union of the sets in F. If
X1, Xa, ..., Xy, are sets, we define

XLUXpU-- U Xy = J{X1, Xa,..., Xn}

Comprehension scheme

The axiom of comprehension says that for any set X and a
“first-order property” ¢(v), there is a subset Y of X whose
members are precisely those members v of X which satisfy the

property ¢(v).

(vVX)EY)(Y = {v e X:4(v)})

So axiom of comprehension is a really an axiom scheme as we get
one axiom for each “property” ¢(v). We will give a precise
definition of “first-order property” later.

Using comprehension

During the course of these lectures, we'll sometimes introduce new
sets via the expression {x : ¢(x)}. As noted before, for some
properties ¢(x) (like x ¢ x) there is no such set. Therefore, on
such occasions, one must check that that the axioms of ZFC
guarantee the existence of such sets. For example, define the
difference of two sets by

A\B={x:xe A& x ¢ B}

This is a set since it equals {x € A: x ¢ B} which exists by
comprehension.

Intersection

If F is a nonempty collection of sets, then we define
(F={y: (¥XeF)yeX)}

To see that () F exists, using the fact that F # (), fix an arbitrary
Z € F and apply comprehension to conclude that
NF={veZ: (VX e F)(veX)} exists. Define

X1NXo NN Xy = X1, X, .., Xn)

Two sets are disjoint iff their intersection is the empty set. We say
that F is a disjoint family iff for every A% Bin F, AN B = ().

Replacement scheme

Suppose X is a set and ¢(x, y) is a “first-order property” such that
for every x € X, there is a unique set y for which ¢(x, y) holds.
Then we can form the set

{y: Bx e X)(o(x,)}

We'll say more on this later when we discuss transfinite recursion.

Power set

The power set axiom says that for every set X, there is a set that
contains all subsets of X.

(VX)BY)Y ={S:SCX})
We denote that power set of X by P(X).

Natural numbers and the axiom of infinity

Definition (Natural numbers)
> 0=10
> 1=1{0},2=1{0,1},3=1{0,1,2} ...
» n+1=nU{n}
A set X is inductive iff 0 € X and for every x € X, x U {x} € X.

The axiom of infinity says that there is an inductive set. We
define w to be the intersection of all inductive sets.

Definition (The set of natural numbers)

w={0,1,2,....,n,n+1,...}

Other axioms

The remaining two axioms are
> Axiom of choice
> Axiom of foundation

We'll introduce the axiom of choice later. For the purposes of
this course, we can safely ignore the axiom of foundation.

The axioms of ZFC

VVvYyVvVYVVyVYVYyYVYY

Axiom
Axiom
Axiom
Axiom
Axiom
Axiom
Axiom
Axiom
Axiom

Axiom

of empty set

of extensionality

of pairing

of union

scheme of comprehension
scheme of replacement
of power set

of infinity

of choice

of foundation

Ordered pairs

Definition
The ordered pair with first coordinate x and second
coordinate y is defined by

(xy) ={{x} {x 3}

Note that (x, y) exists by the axiom of pairing. The key property
of ordered pairs is the following.

Proposition

If (x,y) = (a,b), then x =a and y = b.

The proof is left as an exercise.

Cartesian products

Definition
The cartesian product X X Y s defined to be the set of all
ordered pairs whose first coordinate is in X and second coordinate
isinY.

XxY={(x,y): xeX&yeY}

Note that X x Y is a subset of P(P(X U Y)) which exists by the
pairing, union and power set axioms. So the existence of

XxY={vePPXUY)):3BxeX)3TyeY)(v=(xy))}

follows from comprehension.

Relations

A relation R is a set of ordered pairs. If R is a relation, then

> dom(R) = {x: (3y)((x,y) € R)}

> range(R) = {y : (3x)((x,y) € R)}
We say that R is a relation from A to B iff R C A x B. Note
that every relation R is a relation from dom(R) to range(R). We
say that R is a relation on A iff R is a relation from A to A.

Notation: If R is a relation, we sometimes write xRy (read x is
R-related to y) instead of (x,y) € R.

Functions

F is a function iff F is a relation and for every x € dom(F), there
is a unique y € range(F) such that (x,y) € F. We write F(x) =y
instead of (x,y) € F. We say that F is a function from A to B,
and write F : A — B, iff F is a function, dom(F) = A and
range(F) C B.
Suppose F : A — B. We say that

> F is injective (one-one) if for every x # y in A, F(x) # F(y).

> F is surjective (onto) if range(F) = B

> F is bijective iff it is both injective and surjective.

Iff:A— Bandg: B — C,then gof:A— C defined by
(g of)(x) = g(f(x)) is the composition of f with g.

If f: A— B is a bijection, the inverse of f is the function
f~1: B — A defined by

) =x <= f(x) =y

Restrictions, Images/preimages, Finite/Infinite

Suppose F: A— B, X C Aand Y CB.
» The restriction of F to X, denoted F | X is defined by:
dom(F | X) = X and for every x € X, (F | X)(x) = F(x).
» The image of X under F is F[X] = {F(x): x € X}.
> The preimage of Y with respect to F is

FlY]={xeA:F(x)e Y}

A set X is finite iff for some natural number n, there exists a
bijection f : n — X. Otherwise, it is infinite.

Isomorphism

Definition (Isomorphism)

Suppose R, S are relations and A, B are sets. We say that (A, R) is
isomorphic to (B, S) and write (A, R) = (B, S) iff there is a
bijection f : A — B such that for every x,y € A, xRy iff
f(x)Sf(y).

Equivalence relations and partitions

We say that R is an equivalence relation on A iff R is a relation
from A to A which satisfies the following.

> Reflexive For every a € A, aRa.

» Symmetric If aRb, then bRa.

> Transitive If aRb and bRc, then aRc.
We say that F is a partition of A iff F is a disjoint family and
UF=A.

Exercise

Suppose R is an equivalence relation on A. For each a € A, define
the R-equivalence class of a by [a]| = {b € A: aRb}. Then

{la] : a € A} is a partition of A.

Linear orderings

Definition
A linear ordering is a pair (A, <) such that A is a nonempty set
and < is a binary relation on A that satisfies the following.

> Irreflexive: For every a € A, =(a < a) (— denotes negation).
» Transitive: /fa < b and b < c, then a < c.
> Total: Forevery a,b € A if a# b, then either a < b or b < a.

If (A, <) is a linear ordering, we define the relation < on A by
a<b <= (a<bora=0>b)

If (A, <) is a linear ordering and x € A, we define the set if
predecessors of x in (A, <) by pred(A, <,x) ={y € A:y < x}.

Well-orderings

Suppose (X, <) is a linear ordering, AC X and y € A. We say
that y is the <-least member of A iff for every z € A, y < z.

Definition
A well-ordering is a pair (X, <) such that < is a linear ordering on
X such that for every nonempty A C X, A has a <-least member.

Note that if (X, <) is a well ordering then for every x € X, either
x is <-largest member of X or x has a <-successor y which means
that x < y and for every z < y, z < x. So the first few members
of X look like: xg < x1 < xp < ...

Well-orderings

Lemma

Suppose (X, <) is a well-ordering. Then (X, <) is not isomorphic
to (pred(X, <, x), <) for any x € X.

Proof: Suppose not and let f : X — pred(X, <, x) be an
isomorphism. Note that f(x) < x so the set

W={yeX: fly)<y}

is nonempty. Let z be <-least member of W. So f(z) < z. Since
f preserves <, we also get f(f(z)) < f(z). Put w = f(z) and note
that w € W. Since z is the <-least member of W, z < w = f(z)
which is a contradiction as f(z) < z. O

Well-orderings

Lemma
Suppose (X, <) is a well-ordering and f : X — X is an
isomorphism. Then f is the identity function on X.

Proof Let f : X — X be an isomorphism and, towards a
contradiction, suppose for some v € X, f(v) # v. So the set

W ={v e X:f(v)# v} is nonempty. Let x be the <-least
member of W. Put y = f(x). Then either y < x or x < y. If

y < x, then f(y) =y as x was <-least non fixed point of f. But
since f preserves < and y < x, y = f(y) < f(x) = y which is
impossible. Next suppose x < y. Since f is surjective, there is
some w € X such that f(w) = x. Clearly, w £ x so x < w. But
then y = f(x) < f(w) = x which contradicts x < y.

Well-orderings

Corollary

Suppose (X, <1) and (Y, <2) are well-ordering and f, g : X — Y

are isomorphisms from (X, <1) to (Y, =<2). Then f = g.

Proof: Note that g~1 o f is an isomorphism from (X, <1) to

(X, <2). By the previous theorem, g~! o f is the identity function

on X. It follows that f = g. O

Well-orderings

Theorem

Suppose (X, <1) and (Y, <2) are well-orderings. Then exactly one
of the following holds.

(1) (X,=1) = (Y, =2).

(2) For some x € X, (pred(X, <1,x),<1) = (Y, <2).

(3) Forsomey €Y, (pred(Y,<2,y), <2) = (X, <1).
Furthermore, in each of the three cases, the isomorphism is unique.
Proof: See Homework. O

Well-ordering theorem

The axiom of choice says the following. For every family £ of
nonempty sets, there is a function F such that dom(F) = £ and for
every A € &€, F(A) € A. We say that F is a choice function on &.
Theorem (Zermelo, 1904)

Every set can be well-ordered.

Proof: Done in lectures. O

Ordinals

Definition (Transitive sets)
A set x is transitive iff for every y € x, y C x.

Definition (Ordinals)

x is an ordinal iff x is transitive and (x, €) is a well-ordering.
We are slightly abusing the notation here since € is not a set.
Nevertheless, for any set x, the relation

ex ={(y,z):y,z € x & y € z} is the restriction of the
membership relation on x. So € stands for e, in the pair (x, €).

Examples

0 = 0 is an ordinal.

1,2,3,...,n,n+1,... are ordinals.

The set of natural numbers w is an ordinal.
w U {w} is an ordinal.

The set of even numbers E = {0,2,4,6,...,2n,...}is
well-ordered by € but E is not an ordinal since it is not a
transitive set.

vVvYyyvyy

Ordinals

Theorem

(a) Ifx is an ordinal and y € x, then y is an ordinal and
y = pred(x, €,y).

(b) If x,y are ordinals and (x,€) = (y, €), then x = y.

(c) If x is an ordinal, then x ¢ x.

(d) If x,y are ordinals, then exactly one of the following holds:
X=Yy, Xey, yecx.

(e) If C is a non empty set of ordinals, then there exists x € C
such that (Vy € C)(y = x or x € y).

(f) If Ais a set of ordinals, then (A, €) is a well-ordering. Hence
if A is a transitive set of ordinals, then A is an ordinal.

Ordinals

Proof of (a):

(i) y is transitive: Suppose z € y. We must check that z C y. Fix
weEz Sow € z€yée x. As x is transitive, each one of z, w, y is
in x. Since x is well-ordered by &, in particular, € is a transitive
relation on x. Asw €z €y, we get w € y. Hence z C y.

(ii) y is well-ordered by €: Note that since x is transitive, y C x.
Now if (A, <) is a well-ordering and B C A, then the restriction of
< to B is also a well-order. So y is well-ordered by €. It follows
that y is an ordinal.

(iii) y = pred(x, €,y): If z € y, then z € x. So z € pred(x, €, y).
Hence y C pred(x, €, y). If z € pred(x, €,y), then z € y. So
pred(x, €,y) C y. O

Ordinals

Proof of (b): Fix an isomorphism f : (x,€) — (y, €). Towards a
contradiction, suppose f is not the identity function on x and let
v € x be €-least such that f(v) # v. Note that for every u € v,

u=f(u) € f(v). Sov C f(v). Next, suppose t € f(v). Then

t € y as y is transitive. Since f is surjective, t = f(w) for some

w € x. Since f preserves € and t = f(w) € f(v), we must have

w € v. Since v is the least non fixed point of f, t = f(w) = w.

So t € v. It follows that f(v) C v. But now f(v) = v which is a
contradiction. So f is the identity on x and hence

y = range(f) = x.

Proof of (c): Clear, since € is an irreflexive relation on x.

0o

Ordinals

Proof of (d): By a previous theorem about well-orderings, exactly
one of the following cases must occur.

(x,€) = (y,€): In this case, By part (b), x =y.

For some v € x, (pred(x, €,v),€) = (y, €): In this case,

v = pred(x, €, v) (by part (a)) and hence by part (b), v=y. So
y € Xx.

For some u € y, (pred(y, €, u), €) = (x, €): In this case,

u = pred(y, €, u) (by part (a)) and hence by part (b), u = x. So
xXey. L]

Ordinals

Proof of (e): Let x € C. If xN C =), then x is as required: If

y € C, then by part (d), either y =xory € xorx € y,and y ¢ x
because x N C = (. So assume x N C # (). Since (x, €) is a
well-ordering, we can choose €-least member z € x N C. As x is
transitive, it follows that zN C =). So z is as required. O
Proof of (f): Parts (c),(d) imply that (A, €) is a linear ordering.
That every nonempty subset of A has an €-least member follows
from part (e). So (A, €) is a well-ordering. If A is transitive, the
definition of being an ordinal implies that A is an ordinal. O

Ordinals and well-orderings

Theorem

For every well-ordering (X, <), there is a unique ordinal A such
that (X, <) = (A, €).

Proof: Uniqueness follows from clause (b) of the previous theorem.
Let Y be the set of all x € X such that (pred(X, <, x), <) is
isomorphic to an ordinal. Using the axiom of replacement, define a
function f on Y by letting f(x) to be the unique ordinal which is
isomorphic to (pred(X, <, x), <). Let A = range(f). Note that A
is a transitive set of ordinals. Hence A is an ordinal. It is also easy
to check that f : Y — A is an isomorphism from (Y, <) to (A, €).
So we would be done if Y = X. Suppose Y # X. Note that Y is
a <-initial segment of X. Let b be the <-least member of X\ Y.
Then Y = pred(X, <, b). But (pred(X, <, b), <) is isomorphic to
the ordinal A. So b € Y which is a contradiction. O]

Order types, sup/min

Definition (Order type)

If (X, <) is a well ordering, let type(X, <) be the unique ordinal A
such that (X, <) = (A, €).

We denote ordinals by Greek letters: «, 3, 7, etc. and from now
on we'll write a < 3 instead of a € 3.

Definition (sup, min)

For a set of ordinals A, define sup(A) =|JA and, if A# 0,

min(A) = A.

Check that sup(A) is the least ordinal which is greater than or
equal to every ordinal in A and min(A) is the least ordinal in A.

Definition (Successor and limit)

The successor of « is defined by S(o) = aU {a}.
An ordinal « is called a successor ordinal if for some ordinal 3,
a = S(B). Otherwise « is a limit ordinal.

Note that S(«) is the least ordinal bigger than «.
The first few ordinals are:

0<1<2<---<n<n+1l<--<w<Sw)<S(Sw)) <...

Note that w is a limit ordinal.

Sum of linear orders

Given two linear orderings (L1, <1) and (L2, <2), one can define
another linear ordering by putting a copy of (L, <2) after a copy
of (L1,<1). The following definition makes this precise.

Definition
Suppose (L1,<1) and (Lp, <2) are linear orderings. We define the
sum (L, -<) = (Ll, -<1) D (LQ, -<2) as follows.
(1) L= (L x {0} U(L2 x {1}).
(2) For every x,y € L, x < y iff one of the following holds
(i) x = (a,0), y = (b,0) and a <1 b.
(i) x = (a,1), y = (b,1) and a <3 b.
(i) x = (a,0) and y = (b, 1).

Note that we defined L = (L1 x {0})J(L2 x {1}) (and not
L = L;|JLy) because Lj, L, may not be disjoint.

Sum of ordinals

Definition (Ordinal addition)

a+ B = type((a, <) © (8, <))

It is easy to check that aw+ 3 is an ordinal. Note that

S(a) =a+1and if m,n < w, then m+ n is the usual sum.
Ordinal addition is not commutative in general: For example
w=1+4w# w+ 1. The first few ordinals are:

0<l< - <w<SWw)=wt+l<w+2< - <wtw<...

Lexicographic product of linear orders

Definition (Product of linear orders)
Suppose (L1,<1) and (Lp, <2) are linear orderings. We define the
product (L, <) = (L1, <1) ® (L2, <2) as follows.
(1) L= L1 X L2.
(2) For every (x1,y1) and (x2,y2) in L, (x1,y1) < (x2,y2) iff
(a) Either x; <1 xz or
(b) x1 = xp and y1 <2 y».

Product of ordinals

Definition (Ordinal multiplication)

a-f=type((8, <) ® (a, <))

It is easy to check that «.- B is an ordinal. If m,n < w, then m-n
is the usual product. Ordinal multiplication is not commutative in
general: w2 =w4+w#2 -w=w.

Laws of ordinal arithmetic

Fact
For any «, 8 and ~y the following hold.
(i) (Associativity) a + (8 +) = (a + 8) + v and

a-(B-7)=(a-B)-~

(i) a+0=a,a-0=0anda-1=1-a=a.

(iii) (Continuity at limits) If 5 is a limit ordinal,
a+B=sup{la+n:n<p}anda-p=sup{a-n:n<p}

(iv) (Left distributivity) o - (8 +7v) = (a - B) + (a -)

Burali-Forti paradox

Theorem
No set contains all ordinals.

Proof: Suppose there is a set X such that every ordinal is a
member of X. Using comprehension, define

={y € X :yisan ordinal}. Then I is a transitive set of ordinals
and hence I is also an ordinal. Since all ordinals are members of
X, this means that ' € I which is impossible. O

Formalizing mathematics within ZFC

We have already constructed (w, +,.) where + and . denote
addition and multiplication of finite ordinals (natural numbers).
One can go on and construct (Z, +,.) (the ring of integers),

(Q, +,.) (the field of rational numbers), (R, +,.) (the field of real
numbers) and (C, +,.) (the field of complex numbers), Euclidean
spaces R” etc. in the usual way. Once this as been done, it is not
difficult to convince oneself, that all the theorems in various fields
of mathematics can be expressed and proved within ZFC. We
won't pursue this path here.

Restrictions of functions

Suppose f is a function and X C dom(f). We define the
restriction of f to X, denoted f [X, as follows.

» dom(f | X) = X.
» Foreach a€ X, (f [X)(a) = f(a).

Sequences indexed by ordinals, Countable/uncountable

A sequence is a function whose domain is an ordinal. If f is a sequence
and dom(f) = =y, we sometimes write (f(«) : o < «y) instead of f. If f is
a sequence with dom(f) = 7, we also say that f is a sequence of length
~. We say that f is a sequence in X if range(f) C X. A set X is
countable iff there is a sequence (x, : n < w) whose range is X. If there
is no such sequence, X is uncountable. If X is a set and « is an ordinal,
define X to be the set of all functions from « to X. If n < w, members
of X" are called n-tuples in X.

Lemma

Let X be any set. Then there are an ordinal v and an injective sequence
(Xa @ a0 < 7y) whose range is X.

Proof: Let < be a well-order on X. Put v = type(X, <) and fix an order

isomorphism f from (v, <) to (X, <). For each a < , define x, = f(«).
Then (x, : a <) is an injective sequence whose range is X. O

Transfinite induction

Theorem
Suppose « is an ordinal and P C k. Assume
(Va<k)(aCP = a€P). Then P=k.

Proof: Suppose not and define @ = min(x \ X). Note that g € P
for every 5 < « and therefore a C P. Our assumption implies that

o € P. A contradiction. O

Corollary
Suppose P C w and (Vn <w)(nC P = n€ P). Then P = w.

Transfinite recursion

Theorem
Let F: V. — V be a “function from sets to sets”. Then for each ordinal
v, there is a unique function h such that

1. dom(h) =~
2. For each a < =, h(a) = F(h [).

Warning: There is no function defined on all sets otherwise its domain
will be the set of all sets which does not exist. F is supposed to be a first
order formula F(x, y) satisfying: For every x, there exists a unique y such
that F(x, y) holds. Some examples are F(x) = {x}, F(x) = Ux etc.

In applications of this theorem, we imagine the function h as being
defined in y stages. At stage 0, by clause 2, we must define

h(0) = F(h | 0) = F(0). Having defined h(8) for every 5 < «, we feed
hla=(hB):8<«a)toF toget h(w).

Proof of transfinite recursion

Proof: Note that the following proof will not use the axiom of choice. Let us
first check uniqueness. Suppose h, h" are two distinct functions satisfying
clauses 1 and 2. Let o < v be least such that h(a) # h'(a). Then

h(a) = F(h [&) = F(h' | @) = h'(a) which is a contradiction.

Next, we prove the existence of such h for each +. Towards a contradiction,
fix the least v for which there is no function h satisfying clauses 1 + 2. Note
that v > 0. Now for each 1 < 7, there exists a unique h,, such that

dom(hy,) = n and for every o < 0, hy(a) = F(hy | «). Fix such h,, for each
n<7.

Claim

For everyn < 6 <+, hy = he | 1.

Proof of Claim: Just note that both h, and hg | n satisfy clauses 1 4 2 for

v = 1. Hence by uniqueness, h, = hg [7.

Define h = J{hy, : n <~} if v is a limit ordinal and h = hg U {(8,F(g))} if
v = B + 1. Note that the claim implies that h is a function with domain ~. It
is easy to check that h also satisfies clause 2. A contradiction. O

Well-ordering theorem revisited

Let us use transfinite recursion to give another proof of the well-ordering
theorem. Let X be a set. Using the axiom of choice, fix a choice function
f:P(X)\ {0} — X. Fix a set s, ¢ X. By transfinite recursion, for each
ordinal v, define a function h, : v = X U {s,} as follows. For every
ordinal a < 7,

ho(0) = f(X \ range(hy | a)) if X & range(h, |) (1)
y s, otherwise

We claim that there must be some ordinal ~y such that s, € range(h,).
Otherwise, applying replacement axiom to the formula ¢(x, y) which says
"y is the least ordinal such that x € range(hy,41)"and the set

S ={xe X :(3y)(x €range(h,))}, we'll get the set

{7 :(3x € S)(é(x,7))} that contains all ordinals which is impossible.

Let v be least such that s, € range(h,). Then h, is a bijection from = to
X U {s,}. Hence X can be well-ordered. O

Partial orderings

A partial ordering is a pair (P, <) where < is a binary relation on
P that satisfies the following.
» Reflexive For every pe P, p<p
» Antisymmetric For every p,q € P, if p < g and g < p, then
p=gq.
» Transitive For every p,q,r € P, if p <X g and g < r, then
p=r.
Note that we do not require that any two members of P be
=<-comparable. If (P, =) is a partial ordering and p, g € P, we
write p < q iff p<gand p # g.

Examples

Examples

(1) If (L, <) is a linear ordering, then (L, <) is a partial ordering.
(2) For any family of sets F, (F,C) is a partial ordering.

The second example is universal in the following sense.

Proposition

Every partial ordering (P, <) is isomorphic to (F,C) for some F.
Proof: For each p € P, let W, ={q € P: g < p}. Define

F ={W, : p € P}. Then it is easy to check that (P, <) = (F, Q)
via the function p — W,. O

Upper/lower bounds, Maximal/minimal

Suppose (P, <) is a partial ordering, p € P and X C P.
» We say that p is an upper bound of X iff for every g € X,
q=p.
> We say that p is a lower bound of X iff for every g € X,
p=q.
» We say that p is a maximal element of P iff there is no
g € P such that p < q.

> We say that p is a minimal element of P iff there is no
g € P such that g < p.

Chains in partially ordered sets

Chains are linearly ordered subsets of partial orderings.

» Suppose (P, <) is a partial ordering and C C P. We say that
C is a chain in (P, <) iff for every p,q € C, either p < g or
q=p

> If F is a family of sets, by a chain in F, we mean a chain in
(F,).

Exercise: Show that there is an uncountable chain in P(w).

Zorn's lemma

Theorem

Let (P, =) be a partial ordering in which every chain has an upper bound.
Then P has a maximal element.

Proof: Towards a contradiction, suppose P has no maximal element. Fix an
ordinal v and an injective sequence (p, : a < 7) whose range is P. By
transfinite recursion on a < vy, construct a sequence (C, : a < 7) such that
the following hold.

» Each C, is a chainin P and Gy = 0.

» Forevery a < B <7, Cy C Cg.

> If ais limit, Co = U{Cs : B < a}.

» For every a < 7, Cq41 is defined as follows. If p, is an upper bound of
Ca, then Coy1 = Co U {py} where 7 is least such that po < py.
Otherwise, C,1+1 = C,.

Put € =J{Cs : @ <~}. Then it is easy to check that C is a chain in P and
C has no upper bound in P. A contradiction.

Equivalents of AC

Let ZF be the theory ZFC without the axiom of choice. In ZF, the
following are equivalent.

(1) Axiom of choice
(2) Well-ordering theorem
(3) Zorn's lemma

Proof: We already proved (1) = (2) and (2) = (3). So it suffices
to prove (3) = (1).

Let X be a set and F = P(X) \ {0}. Define h to be a partial choice
function on F iff his a function, dom(h) C F and for every A € dom(h),
h(A) € A. Let G be the family of all partial choice functions on F. Note
that every chain in (G, C) has an upper bound, namely its union. Using
Zorn's lemma, fix a maximal element h in G. Note that dom(h) = F,
otherwise fix some A € F\ dom(h), a € A and consider i = hU{(A, a)}.
Clearly h" € G is larger than h which contradicts the maximality of h. So
dom(h) = F and hence it is a choice function on F. O

Applications of Zorn's Lemma: Example |

Theorem
For any two sets A and B, either there is an injection from A to B
or there is an injection from B to A.

Proof: Let F be the family of all functions f such that

dom(f) C A, range(f) C B and f is injective. Then (F,C) is a
partial ordering.

Exercise: Check that every chain in F has an upper bound.

By Zorn's lemma, F has a maximal member h. We claim that
either dom(h) = A or range(h) = B. This suffices since in the
former case, h is an injection from A to B and in the latter case,
h~! is an injection from B to A. Towards a contradiction, suppose
dom(h) # A and range(h) # B. Fix x € A\ dom(h) and

y € B\ range(h). Define ¥ = hU{(x,y)}. Then b € F. Hence h
is not maximal in F which is a contradiction. O

Example Il

Lemma

Every partial ordering (P, =) contains a C-maximal chain C. In
other words, C is a chain in P and for every chain D in P, if
CCD, then C =D.

Proof: Consider the partial ordering (F, C) where F be the family
of all chains in P. If £ is a chain in F, then | J& is a chain in P
[Why?]. Hence every chain in (F, <) has an upper bound. Let C

be a maximal element of (F,C). Then C is a C-maximal chain in
P. H

Cardinality |

Definition

1. We say that A has smaller cardinality than B iff there is an
injection from A to B.

2. We say that A and B have the same cardinality iff there is a
bijection from A to B.
Note that we haven't defined “cardinality of A" yet. This will be done
later using the well-ordering theorem. The following are obvious.

1. A has smaller cardinality than A.

2. If A has smaller cardinality than B and B has smaller cardinality
than C, then A has smaller cardinality than C.

Next, we'll prove the following: If A has smaller cardinality than B and B
has smaller cardinality than A, then A and B have the same cardinality.

Schroder-Bernstein theorem

Theorem (ZF)

Suppose there is an injection from A to B and there is an injection
from B to A. Then there is a bijection from A to B.

Proof: Fix injections f : A— B and g: B — A. We'll construct a
bijection h: A — B. Recursively, define

> A=A, By =B and
» for each n < w, Bpy1 = f[An], Ant1 = g[Bn]

By induction on n < w, it is easy to check that for every n < w,
Ant1 € Ap and Byi1 C B,,. Define A, = (){An: n <w} and
B, =({Bn: n<w}. Then we have the following.

(@) A=A 2 A1 DA D DA DA 12 DA,
(b) B=By2B12B2---2B,2By112---28B,

Schroder-Bernstein theorem

Next, define
(i) Aeven = U{A2n \ A2pt1: n <w}
(i) Aodd = U{A2n+1\ Aznt2 : n < w}
(iii) Beven = U{B2n \ Ban+1: n < w}
(V) Bodd = U{B2n+1 \ Bent2 1 n < w}
Using (a) and (b) above, the following are clear.

(1) In each one of the equations (i)-(iv), the right hand side is the
union of a disjoint family.

(2) {Aeven; Aodds Aw} is a partition of A and {Beven, Bodd, Bw} is a
partition of B.

Schroder-Bernstein theorem

Claim

(3) | Aeven is a bijection from Agyen to Bodd-
(4) g | Beven is a bijection from Beyen t0 Aodd-
(5) f | Ay is a bijection from A, to B,.

Proof of Claim: Since f is injective,
f[A2ni1 \ A2n] = f[A2ni1] \ FlA20] = Bani2 \ Bany1

Taking union over n < w, we get (3). The proof of (4) is similar. For (5),
observe that

= () flA. = B,

n<w

flAL] =f lﬂ A,

n<w

where we use the fact that f is injective to interchange f and ﬂ
n<w

Schroder-Bernstein theorem

Finally, define

ho) = {f(x) if x € Acyen U A 2

Cle7ix) i x € Aodd

Using (2)-(5), it is clear that h: A — B is a bijection. Note that
this proof did not use the axiom of choice. O

Cardinality Il

Recall that by the well-ordering theorem, every set can be
well-ordered. Hence for every set X, there is an ordinal o and a
bijection f : a — X.

Definition (Cardinality and cardinals)

1. The cardinality of X, denoted |X|, is the least ordinal « such
that there is a bijection between X and .

2. A cardinal is an ordinal « such that |a| = a.

We denote cardinals by higher Greek letters like k, A, §, 6 etc.
0,1,2,..., are the finite cardinals. w is the first infinite cardinal.

w + 1 is not a cardinal since |w + 1| = w. Note that X is countable
iff [X] < w.

Cardinality Il

Exercise

1.

AN

For every ordinal o, |a| < «.

If k is a cardinal and o < K, then |a] < k.
There is an injection from X to Y iff |X| < |Y].
There is a surjection from X to Y iff |Y| < |X].
There is a bijection from X to Y iff |X| =|Y]|.

It follows that the previous definitions of “X has smaller cardinality
than Y" and “X and Y have the same cardinality” are equivalent
to “[X| < |Y]" and “|X| = |Y]|" respectively.

There is no largest cardinal

Theorem (Cantor)
For any set X, there is no surjective function f : X — P(X).

Proof.

Let f: X — P(X). Define Y ={ve X:v¢f(v)}. We claim
that Y ¢ range(f). Suppose not and let a € X be such that
f(a)=Y. Then ac Y iff a¢ f(a) iff a¢ Y which is

impossible. O

Corollary

For every cardinal k, |P(k)| > k.

Proof: Since x injects into P(k), k < |P(k)|. So either

k < |P(r)| or k = |P(k)|. The latter is ruled out by Cantor’s
theorem. n

Successor/Limit cardinals

Definition (Successor/Limit cardinals)

Suppose « is an ordinal and k is a cardinal. Then

(a) at is the least cardinal > «.

(b) k is a successor cardinal iff k. = o for some «.

(c) k is a limit cardinal iff k is not a successor cardinal.

Omega/aleph Hierarchy

Definition (Omega hierarchy)

Using transfinite recursion on «, define w, as follows.
(i) wo =w.

(i) wa+t1 = (wa)

(iii) If o is a limit ordinal, then w, = sup({wg : B < a}).

+.

For historic reasons, sometimes people also write X, instead of w,.
The first few cardinals are as follows.

0<1<2 . w=w<w1 < <Wy <Wpyt1 <+ < Wegw - -+

Note that w, is a limit cardinal iff « is a limit ordinal.

Countable sets

Theorem

(a) |w X w| =w.

(b) Foreachl<n<w, W' =w.

(c) |Q| = w where Q is the set of rational numbers.
d)

(d) |R| > w1 where R is the set of real numbers.

Proof: (a) (m, n) — 2™M3" defines an injection from w X w to w.
So |w x w| < w. Clearly, |w x w| > w. Hence |w x w| =w. (b) Use
induction on n. We leave the proof of (c) to the reader. (d) Since
R is uncountable, |R| > w. As wj is the least cardinal > w,

|R| Z w1i. L]

Cardinality of products

Lemma
Suppose k is an infinite cardinal. Then |k X k| = K.

Proof By transfinite induction on k. If kK = w, then this holds. So assume
k > w and for every cardinal § < &, |6 x 8] = 6. Define an ordering < (called
the max-lexicographic order) on x X k as follows: (a1, 1) < (a2, B2) iff

> either max({au, 81}) < max({a2, B2}) or
» max({a1, f1}) = max({az, B2}) and a1 < az or
> max({al,ﬁl}) = max({ag,ﬁg}) and a1 = a3 and Bl < 52.

It is easy to check that < is a well-ordering on k X k. If a < k is infinite, then
the set pred(k X &, <, (o, @)) of <-predecessors of (a, a) is contained in

(¢ +1) x (a4 1) and hence, by inductive hypothesis, has cardinality
[(a+1)x (a+1)]=|la+1] X |a+1]] =]||la| X |a|| = |a| < a < k. Since k is
a cardinal, it follows that every <-initial segment of (k X &, <) has order type
< K. So type(k X k,<) = k. Hence |k X k| = k. O

Cardinality of products

Corollary

1. If k and X are infinite cardinals, then |k x A\| = max({k, \}).

2. If X and Y are infinite sets, then
IXUY|=|XxY|=max({|X],|Y]}).

3. If X is an infinite set and 1 < n < w, then |X"| = |X]|. In
particular, |[R"| = |R]|.

Proof: Use the previous lemma.

Cardinalities of infinite unions

Lemma
Suppose k is an infinite cardinal and |X,| < k for every a < k.
Then || J{ Xy : a < Kk} < k.

Proof.

Put X = [J{X, : @ < k}. Using the axiom of choice, fix a function
h with domain & such that for every a < k, h(«) is an injective
function from X, to k. It follows that there is an injective function
g : X = k x k— Given x € X, pick the least a such that x € X,
and define g(x) = (o, h(a)(x)). So |X| < |k X K| = k. O

Corollary

Suppose {X, : n < w} is a countable family of countable sets.
Then |J{X, : n < w} is countable.

Cardinality of R

Definition
¢ = |R| is the continuum.
Recall that 2¢ is the set of all functions from w to 2 = {0, 1}.

Exercise

Show that |2¥| = |P(w)| = ¢.

CH (Continuum hypothesis) is the statement ¢ = w; and GCH
(Generalized continuum hypothesis) is the statement: For every
infinite cardinal «, |P(k)| = k™.

Finitary functions and closures

Definition
We say that f is an n-ary function on A iff f : A" — A. We say
that f is a finitary function on A iff for some n < w, f : A" — A.

Definition (Closure)
Suppose f : A" — A is a finitary function on A and B C A.
(a) We say that B is closed under f iff range(f | B") C B.

(b) We define the closure of B under f to be the set
(WCCA:BCC & Cis closed under f}.

Cardinality of closures

Theorem

Let k be an infinite cardinal. Suppose B C A, |B| <k and F is a
set of < k finitary functions on A. Then there exists C C A such
that

(a) BC CCA,
(b) |C| <k and
(c) for every f € F, C is closed under f.

Proof: For each f € F and D C A, define f x D = range(f | D")
where f : A” — A. Inductively, define Cy = B and

Co1 = CoUU{f xC,: f € F}. Then, for every n < w, |G| < k.
Put C =J{GC, : n <w} and note that |C| < k. It is also easy to
see that B C C C A and C is closed under every function in F. [

Additive functions

Definition
A function f : R — R is additive iff for every x,y € R,

fx+y)="~f(x)+f(y)

Exercise: Suppose f : R — R is additive and a = f(1).
» Show that f(0) = 0.
» Show that for every x € R, f(—x) = —f(x).
» Show that for every x € Q, f(x) = ax.

Continuous additive functions

Proposition

Suppose f : R — R is continuous and additive. Let f(1) = a.
Then for every x € R, f(x) = ax.

Proof: Let (x,: n < w) be a sequence of rationals converging to x.
By the previous exercise, f(x,) = ax,. By the continuity of f at x,

() = fim f(oa) = lim 250 =2 (fim x,) = ax

Question
Are these the only additive functions?

Q-linear independence

(a) X C R is Q-linearly independent iff for every finite
{Xl,XQ,. . .,Xn} C X and a1, a,...,a, € Q,

(a1x1+axo+--+apx,=0) = (a1 =a,=---=2a,=0)

(b) H C R is a Hamel basis iff H is a C-maximal Q-linearly
independent subset of R.

Exercise: Suppose H C R is a Hamel basis. Then every 0 # x € R

can be uniquely written as x = a;x; + axxo + - - - + apx, where

X1,X2,...,%X, € H and a1, ap, ... a, are nonzero rationals.

Exercise: Suppose H C R is a Hamel basis and f : H — R. Then

there is a unique additive function g : R — R such that f C g.

Hamel basis

Theorem
Let X C R be Q-linearly independent. Then there is a Hamel basis
H C R such that X C H.

Proof: Let F be the family of all Q-linearly independent sets Y such
that X C Y. Then every C-chain C in F has an upper bound, namely
J C [Why?]. Hence by Zorn's lemma, F has a maximal member H. [J

Corollary
There is a discontinuous additive function f : R — R.

Proof: Since {1} is Q-linearly independent, by the previous theorem
there is a Hamel basis H C R such that 1 € H. Define f : H — R by
f(1)=0and f(x) =1if x€ H\ {1}. Let g : R — R be the unique
additive function such that f C g. Towards a contradiction, suppose g is
continuous. Since g(1) =0 and g is continuous, we must have

g(x) = x0 =0 for every x € R — A contradiction. So g is not
continuous. O

Cardinality of Hamel basis

Lemma
Let H C R be a Hamel basis. Then |H| = c.

Proof: Foreach 1 < n<w and 3 € Q", define f5: R" — R by

fg(?) = Z AKXk

k<n

where 3 = (ax : k < n) and X = (xx : k < n). Let
F={f:1<n<w,acQk}. Then |F| = w. By the previous
theorem, there exists C C R such that H C C,

|C| < max({|H|,w}) and C is closed under every function in F.
Since every real is a finite linear combination of members of H
using coefficients in Q, C must be R. Hence |R| < max({|H|,w}).
As R is uncountable, it follows that |[H| = |R| = ¢. O

Hamel basis for C

(a) X C Cis Q-linearly independent iff for every finite
{Xl,XQ,. . .,Xn} C X and a1, a,...,a, € Q,

(a1x1+axo+--+apx,=0) = (a1 =a,=---=2a,=0)

(b) H C C is a Hamel basis for C iff H is a C-maximal
Q-linearly independent subset of C.

Exercise: Suppose H C C is a Hamel basis for C. Then every

0 # x € C can be uniquely written as x = ajxy + axxo + - - - + anxp
where x1,x2,...,x, € H and a1, ap, ... a, are nonzero rationals.
Exercise: Show that a Hamel basis for C exists and every Hamel
basis for C has cardinality c.

Proof of (C,+) = (R, +)

Proposition

There exists a bijection f : R — C such that for every x,y € R,
fix+y)=Ff(x)+f(y).

Proof. Fix Hamel bases H; and H; for R and C respectively. Since
|H1| = |H2| = ¢, there is a bijection h: H; — H». Extend h to
f:R — C as follows: If x = a;xy + axxo + - -+ + apnx, where
ai,az,...,ap € Qand x1,x2,...,Xx, € Hy, then

f(X) = alh(xl) + azh(Xz) + 4 a,,h(x,,)

It is easy to check that f is a bijection and for every x,y € R,
f(x+y)=Ff(x)+f(y). O

Two-point sets

Definition
We say that X C R? is a 2-point set iff for every line { C R?,
Xl =2

Theorem (Mazurkiewicz, 1914)

2-point sets exist.

Exercise: Show that there is a subset X of plane such that for
every line ¢ C R2, [X N{| = 10.

Zorn's lemma?

Call a subset of the plane a partial 2-point set iff it meets every
line at < 2 points. Let F be the family of all partial 2-point sets
ordered by inclusion. Every chain in (F,C) has an upper bound
(its union). So we can find a C-maximal set S € F. Must S be a
2-point set? No, S could be a circle.

Constructing two-point sets

Let £ be the family of all lines in plane. Note that

|£] = |R? x R?| = |R?| =¢. Let ({, : o < c) be an injective sequence
with range L. Using transfinite recursion, construct a sequence

(S, a < ¢) of subsets of R? such that the following hold.

1. Sp =0 and if 7y is limit, then S, =J,_., S,

a<y Dar
2. S| < latw| <.
3. No 3 points in S, are collinear.
4. f<a = |S,Nlg| =2.

Having constructed S, S.1 is obtained as follows. Let T be the set of
lines that pass through 2 points in S,. Let B be the set of points of
intersection of ¢, with the lines in 7. Note that |B| < |a +w| < ¢. By
clause 3, |Sq N{y| < 2 so we can add < 2 points from ¢, \ B to S, to
get S,+1. Having completed the construction, put S =J__.S,. Then

a<lc T

S is a 2-point set. O

Propositional logic

The language of propositional logic consists of the following.

(1) A set Var of propositional variables.

(2) Logical connectives: — (negation), A (conjunction), V
(disjunction), == (implication), <= (equivalence).

(3) Parenthesis: (,).

The set of propositional formulas, denoted PF, is defined to be

the smallest set satisfying (a) and (b) below.

(a) Every propositional variable is in PF.

(b) If ¢ and ¢ are in PF, then so are (—=¢), (¢ A1), (¢ V),
(¢ = ¥), (¢ = V).

Valuations

A valuation is a function val : Var — {0,1}. We interpret 0 as “False”
and 1 as “True". Given a valuation val : Var — {0,1}, there is a unique
H:PF — {0, 1} satisfying the following.

(A) H(p) = val(p) for every p € Var.
(B) For every ¢ and ¢ in PF, (i)-(v) hold.

1 ifH(g)=0
0 otherwise

(i) H((=¢)) = {

(i) H((¢ A 4))

1 ifH(¢)=1land H(¢y) =1
0 otherwise

0 if H(¢) =0and H(¢¥) =0

1 otherwise

(iii) H((¢ v ¥)) = {

Valuations and truth

1 if H(¢) =1and H(y) = 1
(V) H((6 <=) ={1 if H(¢)=0and H($) =0

0 otherwise

We will denote this unique extension by val (boldface val). Given a
valuation val : Var — {0,1}, and a propositional formula ¢, we say that
¢ is true under the valuation val iff val(¢) = 1. Otherwise, ¢ is false
under the valuation val.

Exercise: Suppose val : Var — {0,1}, val’ : Var — {0,1}, ¢ is a
propositional formula and for every propositional variable p occurring in
@, we have val(p) = val’(p). Then ¢ is true under val iff ¢ is true under
val'.

Satisfiability and tautologies

Definition
» A propositional formula ¢ is satisfiable iff there exists a
valuation val : Var — {0, 1} under which ¢ is true.

> A subset S C PF is satisfiable iff there exists a valuation
val : Var — {0, 1} under which every formula in S is true.

Exercise: Show that ((pV q) <= (—p)) is satisfiable and
((pAq) <= ((—p) VvV (—q))) is not satisfiable.

Definition
A propositional formula ¢ is a tautology iff for every valuation
val : Var — {0,1}, ¢ is true under val.

Exercise: Show that ((p = q) < ((—p) V q)) is a tautology.

Compactness theorem

Theorem
Let S be a set of propositional formulas. Then S is satisfiable iff
every finite subset of S is satisfiable.

Proof: If S is satisfiable, then clearly every finite subset of S is
also satisfiable. So assume that every finite subset of S is
satisfiable and we will show that S is also satisfiable. In this proof,
we will assume that the set of propositional variables Var is
countable. The general case can be proved using Zorn's lemma
(see Homework). Let Var = {po, p1, p2,- - ., } enumerate all the
propositional variables.

Compactness theorem

Define h to be a good partial valuation iff the following hold.
(a) his a function, dom(h) C Var and range(h) C {0,1}.

(b) For every finite F C S, there exists a valuation val : Var — {0,1}
such that h C val and every formula in F is true under val.

Lemma
Let h be a good partial valuation and p € Var. Let hg = hU {(p,0)} and
hi = hU{(p,1)}. Then one of hy, h1 is a good partial valuation.

Proof of Lemma: Suppose hg is not a good partial valuation. Then we
can fix a finite F C S such that there is no valuation extending hy under
which every formula in F is true. Let G be an arbitrary finite subset of S.
Put K = FU G. Since h is a good partial valuation, there is a valuation
val : Var — {0, 1} such that h C val and every formula in K is true under
val. Since there is no valuation extending hg under which every formula
in F is true, it follows that val(p) = 1. Hence h; C val and every formula
in G is true under val. This shows that h; is a good partial valuation.

Compactness theorem

Using the previous lemma, inductively construct (f, : n < w) such that
(1) fu:4{po,P1,---,pn} = {0,1} is a good partial valuation.
(2) For every m < n, f,, C f,.

To construct fy, use the Lemma with h = () and p = py. Having defined
f,, to obtain f,;1, use the previous Lemma with h = f, and p = p,41.
Having completed the construction, define val = [J{f, : n < w}.

We claim that every formula in S is true under val and therefore S is
satisfiable. To see this, let ¢ € S. Choose n large enough so that every
propositional variable occurring in ¢ is among {po, p1,...,pn}. Since f,
is a good partial valuation and {¢} is a finite subset of S, there exists a
valuation val’ : Var — {0, 1} such that f, C val’ and ¢ is true under val’.
Since val and val’ agree on all the propositional variables occurring in ¢,
we get that ¢ is also true under val. O

Some number-theoretic statements

Number theory studies the “structure” (w,+,-,0,1). Some examples of
number-theoretic statements are as follows.

(a) Addition is commutative.

(b) There are no positive integers x, y, z such that x> + y3 = z3.

These statements can be expressed using +,-,0,1 and some purely
logical notions as follows.

(2) (BIWY)(x +y =y +x).
(b) ~@ENE(x-y -2 £ A((x-x-X)+(y-y-y) =z-2-2)].

The symbols A, =, =, 3, x, y, z are what are called logical symbols and
are not confined to number theory. On the other hand, +,-,0,1 are
extra-logical symbols and specific to the structure being studied. First
order logic is the abstract study of these purely logical notions.

First order languages

A first order language £ = (Const, Rel, Funct) consists of the
following.

(1) A (possibly empty) set Const of constant symbols.

(2) A (possibly empty) set Rel of relation symbols. Each
relations symbol R € Rel has a a finite arity n > 1 and we say
that R is an n-ary relation symbol.

(3) A (possibly empty) set of function symbols. Each function
symbol F € Funct has a finite arity n > 1 and we say that F
is an n-ary function symbol.

First order structures

Let £ = (Const, Rel, Funct) be a first order language. An L-structure
M consists of the following.

(1) A nonempty set M called the domain of the structure M.

(2) For each c € Const, a member ¢ € M called the interpretation
of ¢ in M.

(3) For each R € Rel of arity n > 1, a subset RM C M" called the
interpretation of R in M.

(4) For each function symbol F € Funct of arity n > 1, a function
FM : M" — M called the interpretation of F in M.

Example: Let £ = (Const, Rel, Funct) where Const = (), Rel = {R}
where R is a ternary relation symbol and Funct = (. Define an
L-structure M as follows. The domain of M is the set of all real
numbers R and RM = {(x,y,z) e R3 : x +y = z}.

Logical symbols

Given a first order language £, we are going to define what are
called L-terms and L-formulas. For this we need to introduce the
following logical symbols.

(1) Variables: Typically denoted by x,y,z, v, vo, v1, ...

(2) Logical connectives: —, A, V, =, <=
(3) Quantifiers: 3 (Existential), V (Universal)
(4) Equality: =

(5) Parenthesis: (,)

L-terms

Let £ be a first order language. The set of L-terms is defined as
follows.

(A) Every constant symbol of £ is an L-term.
(B) Every variable is an £L-term.

(C) If ty,ta,...,t, are L-terms and F is an n-ary function symbol
of L, then F(t1,t2,...,t,) is an L-term.

(D) Nothing else is an L-term.

L-formulas

Let £ be a first order language. The set of atomic L-formulas is
defined as follows.

(A) If s, t are L-terms, then s = t is an atomic £-formula.

(B) If t1,to,...,t, are L-terms and R is an n-ary relation symbol of L,
then R(t1, t, ..., t,) is an atomic L-formula.

(C) Nothing else is an atomic £-formula.
The set of L-formulas is defined as follows.

(1) Every atomic L-formula is an L-formula.

(2) If ¢,1 are L-formulas, then so are (=¢), (¢ A1), (¢ V),
(¢ = ¥). (& =).

(3) If ¢ is an L-formula and x is any variable, then (¥x)(¢) and
(3x)(¢) are L-formulas.

(4) Nothing else is an L-formula.

Free variables and sentences

Suppose L is a first order language, ¢ is an L-formula and x is a variable.
We say that x is free in ¢ iff one of the following holds.

(1
2
3
4

) ¢ is atomic and x occurs in ¢.

(2) ¢ = () and x is free in 1.

(3) & = (v1 A1p2) and either x is free in 1y or x is free in .

(4) ¢ = (¢1 V 12) and either x is free in ¢y or x is free in .

(5) ¢ = (1 = 12) and either x is free in 91 or x is free in y.
(6) ¢

(7) ¢

(8) ¢

= (1 < 1) and either x is free in 11 or x is free in 1.
= (Vy)(¥) and y # x and x is free in 1.
= (Jy)(¢) and y # x and x is free in 1.

An L-formula ¢ is a sentence iff it has no free variables.

Valuations and terms

Suppose L is a first order language and M is an L-structure. A
valuation in M is a function from the set of variables to the universe M
of M. Given a valuation val : Variables — M, we can extend val to a
function val defined on the set of all £L-terms as follows.

(i) If x is a variable, then val(x) = val(x).

(i) If c is a constant symbol of £, then val(c) = c™.

(i) If F is an n-ary function symbol of £ and t, to,. .., t, are L-terms,
then val(F(t1, ta, .. ., t,)) = FM(val(t),val(t,), ..., val(t,))

Exercise: Suppose t is an L-term, val, val’ are two valuations such that
for every variable x that occurs in t, val(x) = val’(x). Then
val(t) = val'(¢).

Truth inside a structure

Suppose L is a first order language, M is an L-structure, ¢ is an L-formula
and val is a valuation in M. Define (M, val) = ¢ (the symbol “E=" is read
“models”) by induction on the length of ¢ as follows.

(a) If ti, t» are L-terms, then (M, val) = t; = t iff val(t;) = val(t).

(b) If R is an n-ary relation symbol of £ and t1, ..., t, are L-terms, then
(M, val) = R(t1, ..., t,) iff (val(t1),...,val(t,)) € RM.

(c) (M, val) = (3x)(¢) iff there exists val’ : Variables — M such that for
every variable y # x, val(y) = val’(y) and (M, val’') = ¢.

(d) (M, val) = (Vx)(@) iff for every val’ : Variables — M such that for every
variable y # x, val(y) = val'(y) and (M, val') = ¢.

M, val) = (—¢) iff it is not the case that (M, val) = ¢.
M, val) E (¢ AY) iff “(M,val) E ¢ and (M, val) E¢".

e) (
(
(M, val) = (¢ V) iff “(M,val) = ¢ or (M,val) =",
(
(

(

(f)
(8)
(h)
(i

M,val) = (¢ =) iff “(M,val) = ¢ implies (M, val) ="
M,val) E (¢ <=) iff “(M,val) E ¢ iff (M,val) E".

Only free variables matter

Lemma

Suppose L is a first order language, M is an L-structure and ¢ is an L-formula.
Suppose val : Variables — M and val’ : Variables — M are such that for every
free variable x of ¢, val(x) = val’(x). Then (M,val) &= ¢ iff (M, val') = ¢.

Proof: By induction on the length of ¢. The details are left to the reader. [

If all free variables of ¢ appear in the list (x1,x2,...,x,) and (a1,a2,...,an) is
a n-tuple in M, then we write

M E ¢(a1/x1,a2/x2, ..., an/Xn)

iff for some (equivalently, for every) valuation val, if val(xx) = ax for every

k < n, then (M, val) |= ¢.

Definition

Suppose L is a first order language, M is an L-structure and ¢ is an
L-sentence. Define M |= ¢ iff for some (equivalently, for every) valuation val
in M, (M, val) = ¢.

Theories, models and logical validity

Let £ be a first order language. An L-theory is a set of
L-sentences. Suppose T is an L-theory, ¢ is an L-sentence and M
is an L-structure.

(1) We say that M is a model of T and write M |= T iff for
every sentence p € T, M |= ¢.

(2) Define T = ¢ iff for every model M of T, M = ¢.

(3) ¢ is logically valid (denoted by = ¢) iff for every L-structure
M, M [¢.

The languages of arithmetic and set theory

The first order language Lp, of arithmetic has one constant
symbol: 0, one unary function symbol: S, two binary function
symbols: + and - and no relations symbols. Its “standard
interpretation” is the Lpa-structure M = (w, S, +,-,0). Here the
domain of M isw and 0, S, + and - have the usual interpretation.
We will follow the traditional practice of writing x + y for the term
+(x,y) and x - y for the term -(x, y).

The first order language Lst of set theory has a binary relation
symbol: € and no constant or function symbols.

Subformulas
Suppose L is a first order language and ¢, x are L-formula. We say that
X is a subformula of ¢ iff one of the following holds.
(1) ¢ is atomic and x = ¢.
(2) ¢ = (—)) and either x = ¢ or x is a subformula of 1.

(3) & = (¥1 A 1p) and either x = ¢ or x is a subformula of ¥ or x is a
subformula of 5.

(4) & = (¢1 V 1h2) and either x = ¢ or x is a subformula of 1 or x is a
subformula of ;.

(5) ¢ = (1 = 1) and either x = ¢ or x is a subformula of 11 or x
is a subformula of 1.

(6) ¢ = (Y1 <=) and either x = ¢ or x is a subformula of 11 or x
is a subformula of .

(7) & = (Vy)(v) and either x = ¢ or x is a subformula of 1.
(8) ¢ = (Fy)(v) and either x = ¢ or x is a subformula of 1.

Free and bound occurrences, scope of a quantifier

Suppose L is a first order language, x is a variable and ¢ is an L-formula.
We say that an occurrence of x in ¢ is bound iff there is a subformula of
¢ of the form (Vx)(¢) or of the form (3x)(¢)) that contains this
occurrence of x. An occurrence of x in ¢ is free iff it is not bound.

Example: Let ¢ = ((Vx)(y = x + S(0)) A (x = z- z)). Then the first
two occurrences of x (marked red) in ¢ are bound and the third
occurrence of x (marked blue) in ¢ is free.

Suppose (@x)(¢) is a subformula of ¢ where Q € {V,3}. The scope of
this occurence of Qx in ¢ consists of all variables that appear in .

Example: Let ¢ = ((Vx)(y = x + S(0)) A (x = z- z)). Then the scope
of the only occurrence of Vx in ¢ is {x, y}.

Term substitutions in term

Suppose L is a first order language, x is a variable and s, t are £-terms. Define
s(t/x) to be the term obtained by replacing all occurrences of x in s with t.

Example: Let s = (y - (x + v) + x) and t = z - x. Then s(t/x) is the term
(v - ((z-x) +v) +(z-x)).

Lemma

Suppose L is a first order language, x is a variable and s, t are L-terms. Let M
be an L-structure and val : Variables — M be a valuation in M. Put

a = val(t). Let val' : Variables — M be defined by: val’(y) = val(y) for every
y # x and val'(x) = a. Then val(s(t/x)) = val'(s).

Proof: By induction on the length of s. O

Term substitutions in formulas

Suppose L is a first order language, x is a variable and ¢ is an L-formula.
Let t be an L-term. We say that t is free for x in ¢ iff no free
occurrence of x is in the scope of a quantifier of the form Jy or Vy where
y is a variable that occurs in t.

Example: Let ¢ = ((Vx)(y = x+ S(0)) A (y = z- 2z)). Then the term
(x + z) is free for z in ¢ but not free for y in ¢.

If tis free for x in @, by ¢(t/x) we denote the formula obtained by
replacing every free occurrence of x in ¢ by t. Note that all occurrences
of variables in t remain free in ¢(t/x).

Example: Let ¢ = ((Vx)(y = x+ S(0)) A (y = z- 2z)). Then the term
(x + z) is free for z in ¢ and

((x+2)/2) = (W) (y =x+S(O) A (y = (x+ 2) - (x + 2)))

Free substitution and truth

Lemma (Free substitution lemma)

Suppose L is a first order language, x is a variable and ¢ is an L-formula. Let t
be an L-term which is free for x in ¢. Let M be an L-structure and

val : Variables — M be a valuation in M. Put a = val(t). Let

val’ : Variables — M be defined by: val’(y) = val(y) for every y # x and
val'(x) = a. Then (M, val) = ¢(t/x) iff (M, val') E ¢.

Proof: We argue by induction on the length of ¢.

Case 1: ¢ is an atomic formula. First suppose ¢ is s; = s», where s1 and s, are
L-terms. Then by the previous lemma on term substitution in terms,
val(sc(t/x)) = val'(sc) for k = 1,2. Hence val(s;(t/x)) = val(sz(t/x)) iff
val’(s1) = val'(sz). Since ¢(t/x) is si(t/x) = s(t/x), the result follows.

Next suppose, ¢ is R(s1,...,sn) where R is an n-ary relation symbol of £ and
S1,...,Sy are L-terms. By the previous lemma, val(sk(t/x)) = val’(sx) for each
k < n. It follows that (val(sy(t/x)),...,val(s,(t/x))) € RM iff
(val'(s1),...,val'(sy)) € RM. Since ¢(t/x) is R(si(t/x), ..., sa(t/x)), the
result follows.

Free substitution and truth

Case 2: ¢ is of the form (¢1 A ¢2). By the inductive hypothesis applied to the
shorter formulas ¢1 and ¢z, we get (M, val) = ¢i(t/x) iff (M, val’) = ¢ for
k =1,2. Now (M, val) = (¢1 A ¢2) iff (M, val) = ¢1 and (M, val) = ¢2.
Therefore, (M, val) = ¢(t/x) iff (M, val’) E ¢.

The argument for the cases when ¢ is of the form (=), (¢1 V ¢2),
(1 = ¢2) and (¢1 <= ¢») are similar to case 2 and left to the reader.

Case 3: ¢ is of the form (3y)(v) or (Vy)(¢).

First suppose that x is not free in ¢. Then ¢(t/x) is just ¢. Now since val and
val' agree at every variable except x and x is not free in ¢, we must have

(M, val) = ¢ iff (M, val') = ¢ and the lemma is clear.

So we can assume that x has at least one free occurrence in ¢. It follows that
vy # x. It also follows that y cannot occur in the term t since t is free for x in

®.

Free substitution and truth

Subcase 3(a): ¢ is of the form (3y)(¢): By definition,

(M, val) = (3y)(¢)(t/x) iff there exists a valuation val” such that val and
val” agree on Variables \ {y} and (M, val”) = ¢(t/x). Fix such a valuation
val”. Note that as y does not occur in t, we have val”(t) = val(t) = a. Define
val”’ to be the valuation such that val”’ and val” agree on Variables \ {x} and
val'’’(x) = a. By the inductive hypothesis applied to the formula 9, we get
(M, val”) = (t/x) iff (M, val”") = . So we get (M, val”’) = . Now val’
and val”’ agree on Variables \ {y}. So we get that (M, val’) = (3y)(¥).
Hence (M, val) = ¢(t/x) implies (M, val’) = ¢. The proof of the other
implication is similar.

Subcase 3(b): ¢ is of the form (Vy)(3): Similar to the above. O

Universal closure, free substitution

Definition
A universal closure of ¢ is a formula of the form (Vx1)(Vx2) ... (Vxa)(¢) such
that every free variable of ¢ is in {xi,x2,...,%a}.

For example, (Vx)(Vy)(Vz)((x +y) = (y + x)) and
(Yx)(¥y)((x + ¥) = (v + x)) are both universal closures of (x + y) = (y + x).

The following is an immediate corollary of the free substitution lemma.

Corollary (Free substitution is logically valid)

If t is free for x in ¢, then a universal closure of each one of
((Vx)(¢) = o(t/x)) and (¢(t/x) = (3x)(¢)) is logically valid.

Propositional tautologies

Let £ be a first order language. A propositional tautology of L is a formula
obtained by replacing each propositional variable in a tautology by an
L-formula.

Example: Let £ = Lpa = ({0},0,{S,+,}). Since (p = q) < (—pVq)
is a tautology, by replacing p with (3y)(x + x = y) and g with =(x = y), we
get that

(@) x+x=y) = ~(x=y)) = (@)x+x=y)V~(x=y))
is propositional tautology of L.

Exercise: Suppose L is a first order language and ¢ is a universal closure of a
propositional tautology of £. Show that for every L-structure M, we have

ME ¢,

Logical axioms for first order logic

Let £ be a first order language. A logical axiom of L is any sentence of £
which is a universal closure of a formula of one of the types below. Here
X,Y,Z,X1,X2,... denote arbitrary variables and ¢ denotes arbitrary £-formula.

1.

._.
o

[y
[y

© ®©® N o O Rk W

Propositional tautologies of £ (See previous slide).

¢ = (Vx)(¢), where x is not free in ¢.

(V)¢ = ¥) = ((Vx)(¢) = (Vx)(¥))

(vx)(¢) = ¢(t/x) where t is any L-term which is free for x in ¢.
o(t/x) = (3Ix)(¢) where t is any L-term which is free for x in ¢.
(Vx)(=¢) = —~(3x)(¢)

x1=Yy1)A- A(xa=yn)) = (F(x1,...,xn) = F(y1,...,¥n)) where
n > 1 and F is any n-ary function symbol of L.

Ca=y) A Al =yn)) = (R(x1,..., %) <= R(y1,...,yn))
where n > 1 and R is any n-ary relation symbol of L.

Logical axioms are logically valid

Theorem
Let L be a first order language. Every logical axiom of L is logically valid.

Proof: Let x be a logical axiom of £ and suppose M be an arbitrary
L-structure. We must show M |= x. By definition, x is a universal closure of
one of the formulas listed in the 11 cases before. Cases 1, 7, 8, 9, 10 and 11
are easy consequences of the definition of M |= x and are left as an exercise
for the reader. Cases 4 and 5 follow from the free substitution lemma. Let us
do cases 2, 3 and 6.

Case 2. y is of the form (Vx1)...(Vx,)(¢ = (Vx)(¢)) where every free
variable of ¢ is in {x1,...,x,}. Let val : Variables — M be any valuation in
M. We must show (M, val) = (Vx1) ... (Vxa)(¢ = (Vx)(¢)). By Clause (d)
in the definition of |=, this is equivalent to showing: For every valuation val’
that agrees with val on Variables \ {x1,...,x,}, we have

(M, val') = (¢ = (Vx)(¢)). By Clause (h) in the definition of =, this
reduces to showing: If (M, val’) = ¢, then (M, val’) = (Vx)(¢). So assume
(M, val') = ¢. Since x is not free in ¢, it follows that for every valuation val”
that agrees with val’ on Variables \ {x}, we have (M, val”) = ¢. By Clause
(d) in the definition of |=, it follows that (M, val’) = (Vx)(¢) and we are done.

Logical axioms are logically valid

Case 3. y is of the form

(V). (Va)[(V)(¢ = ¢¥) = ((vx)(¢) = (V)(¥))]

where all free variables of ¢ and v are in {xi,...,x,}. Let val : Variables — M
be any valuation in M. We must show (M, val) |= x. By Clause (d) in the
definition of |=, this is equivalent to showing: For every valuation val’ that
agrees with val on Variables \ {xi,...,x,}, we have

(M, val') |= (%)(6 = ©) = ((¥)(@) —> (X)(®)). By Clause (h) in
the definition of |=, this reduces to showing: If (M, val’) = (Vx)(¢ =)
and (M, val') = (Vx)(4) then (M, val’) E (Vx)(¢). So assume

(M, val') = (V)6 = 1) and (M, val') = (¥x)(6).

Let val” be any valuation that agrees with val’ on Variables \ {x}. By Clause
(d), it suffices to show (M, val”) = 9. Since (M, val') E (Vx)(¢p =), by
Clause (d), we get (M, val") = ¢ = v and (M, val”) = ¢. By Clause (h),
we get (M, val”) = ¢ and we are done.

Logical axioms are logically valid

Case 6. x is of the form (Vx1) ... (Vx,)((Vx)(—¢) <= —(3x)(¢)) where every
free variable of ¢ is in {x1,...,x,}. Let val : Variables — M be any valuation
in M. We must show (M, val) = (¥x1) ... (Vxa)((Vx)(—¢) <= —(3x)(¢)).
By Clause (d) in the definition of |=, this is equivalent to showing: For every
valuation val’ that agrees with val on Variables \ {x1,...,x,}, we have

(M, val') = ((Vx)(—¢) < —(3x)(#)). By Clause (i), this reduces to
showing (M, val’) = (Vx)(—¢) iff (M, val’) = =(3x)(¢). By Clause (e) and
(c), (M, val") E —=(3x)(9) iff there is no valuation val” that agrees with val’
on Variables \ {x} such that (M, val”) = ¢. The latter statement is
equivalent to: For every valuation val” that agrees with val’ on Variables \ {x}
we have (M, val”) = —¢. This is equivalent to (M, val’) = (Vx)(—¢).

Proofs and theorems in a first order theory

Suppose L is a first order language, T is an L-theory and ¢ is an
L-sentence. A proof in T is a finite sequence ¢1, ¢2, ..., ¢, of
L-sentences such that for each i < n,

(i) Either ¢; is a logical axiom or
(i) i€ T or
(iii) (Modus Ponens): There are j, k < i such that ¢, is (¢; = ¢;).

Furthermore, if ¢, is ¢, then we say that ¢1, @, ..., ¢, is a proof of ¢
in T.

Definition

Let L, T, ¢ be as above. We say that “T proves ¢" or “¢ is a theorem
in T” and write T . ¢ iff there is a proof of ¢ in T. If the underlying
language L is clear from the context, we drop it and just write T = ¢.
Note that T + ¢ iff for some finite S C T, S+ ¢. We sometimes write
¢ b1 instead of {¢} - .

Soundness theorem

Theorem (Soundness theorem)

Suppose L is a first order language, T is an L-theory and ¢ is an L-sentence.
If TH ¢, then T [= ¢.

Proof: We need to show that every model of T is a model of ¢. Assume that
M = T and we will show that M |= ¢. Fix a proof ¢1,...,¢n of ¢ in T. So
¢n is ¢. By induction on i < n, we'll show that M = ¢;.

Suppose i = 1. Then either ¢ € T or ¢ is a logical axiom. If ¢1 € T, then
M |= ¢1 since M |= T. If ¢1 is a logical axiom, then by the previous theorem,
¢1 is logically valid and hence M = ¢.

Next suppose i > 1 and M |= ¢; for every j < i. If either ¢; € T or ¢; is a
logical axiom, by repeating the argument in the previous paragraph, we get
M [= ¢;. Finally, suppose there are j, k < i such that ¢« is §; = ¢;. By the
inductive hypothesis, we get M |= ¢; and M |= (¢; = ¢;). It easily follows
that M = ¢;. O

Deduction theorem

Theorem
Suppose T is an L-theory and ¢, are L-sentences. Then

TH(¢p =) iff TU{p} 72

Proof: First suppose T (¢ =). Let ¢1,¢2,...,(¢ = 1) be a proof
of (¢ =) in T. By Modus Ponens, ¢1,¢2,...,(¢ =), ¢,9 is a proof
of ¥ in T U {¢}.

Next suppose T U {¢} F 1. Let ¢1, ¢2,...,dn be a proof of ¢ in T U{¢}. By
induction on i < n, we'll show that T+ (¢ = ¢;). This suffices since ¢, is
1. We have the following cases.

Case 1: ¢, is either a logical axiom or in T U {¢}. Note that

¢i = (¢ = &) is a propositional tautology. It follows that if either ¢; is a
logical axiom or ¢; € T, then ¢i, i = (¢ = ¢i),¢ = ¢; is a proof of
¢ = ¢iin T. Also, if ¢ is ¢, then ¢ = ¢ is a propositional tautology.
Hence in Case 1, ¢ = ¢; has a proof in T. Note that Case 1 also covers the
case i = 1 since ¢1 must be either a logical axiom or in T U {¢}.

Deduction theorem

Case 2: For some j, k < i, ¢x is (¢; = ¢i). By the inductive hypothesis,
TH(p = ¢j)and TF (¢ = (¢j = ¢i)). Observe that

(0 = @) = (¢ = (¢ = ¢1)) = (¢ = ¢i)]

is a propositional tautology. So by applying Modus Ponens twice we get
TH(p = ¢i).

Consistent theories and proofs by contradiction

A theory T in a first order language L is inconsistent iff there is an £-sentence
¢ such that T+ ¢ and T F —¢. Otherwise T is consistent.

Exercise: Let T be a theory in a first order language £. Suppose T has a
model. Show that T is consistent.

Lemma

Let T be a theory in a first order language L. Then T is inconsistent iff for
every L-sentence ¢, T + ¢.

Proof: The right to left implication is clear. Next assume T is inconsistent and
fix an L-sentence ¢ such that T+ and T F —). Let ¢ be any L-sentence.
Note that (¢ = (—@ = ¢)) is a propositional tautology. Hence

TH({W = (—y = ¢)). Applying Modus Ponens twice, we get T - ¢. [

Corollary (Proof by contradiction)
TE ¢ iff T U{~¢} is inconsistent.

Proof: If T + ¢, then TU{—¢} proves both ¢ and —¢ and so it is inconsistent.
Next assume T U {—¢} is inconsistent. By the previous lemma, T U {=¢} F ¢.
By the deduction theorem, T + (-¢ = ¢). Now ((—¢p = ¢) = ¢)isa
propositional tautology. Hence by Modus Ponens, T I ¢. O

Completeness theorems

The following theorem says that every consistent theory has a model. It
was proved by Kurt Godel in 1930.
Theorem (Completeness theorem 1)

Let T be a consistent theory in a first order language L. Then there is an
L-structure M such that M |= T.

An immediate corollary is the following.

Corollary (Completeness theorem II)

Let T be a consistent theory in a first order language L. Then for every
L-sentence ¢, T+ ¢ iff T |= ¢.

Proof of Corollary: The left to right implication is the soundness
theorem. For the converse, assume T t/ ¢. Then T U {—¢} is consistent.
By the above theorem, there is an L-structure M such that

M E T U{~¢}. It follows that T [~ ¢. O

Compactness theorem

Theorem (Compactness theorem)

Let T be a theory in a first order language L. Suppose every finite
subset of T has a model. Then T has a model.

Proof: By the completeness theorem, it suffices to show that T is
consistent. But this is obvious since every finite subset of T is
consistent. O]

Expanding languages

Suppose £ and L’ are first order languages. We say that £’
extends L iff every constant/function/relation symbol of £ is also
a constant/function/relation symbol of L'.

Theorem
Suppose L, L are first order languages and L' extends L. Let T
be an L-theory and ¢ is an L-sentence. Then T by ¢ iff T Fp1 .

Proof: See Homework. O

Closed terms

Out next goal is to prove the completeness theorem.

Let £ be a first order language with at least one constant symbol. An
L-term t is closed iff it contains no free variables. The set of closed L-terms is
denoted by CTo(L). Let T be an L-theory. Define a binary relation ~7 on
CTo(ﬁ) by s~ tiff THs=t.

Lemma
~7 is an equivalence relation on CTo(L).

Proof: We have to check that ~1 is a reflexive, symmetric and transitive
relation on CTo(L). Let t € CTo(L). Since (Vx)(x = x) is a logical axiom of
type 7 and (Vx)(x = x) = (t =t) is a logical axiom of type 4, T proves
each of these. By Modus Ponen, it follows that T . t = t. So ~7 is reflexive.
To show that ~7 is symmetric, use logical axioms 8 and 4 and to show that

~ 7 is transitive, use logical axioms 9 and 4. O

Let CT(L, T) be the set of ~r-equivalence classes of CTo(L). We will denote
members of CT(L, T) by [t] where [t] = {s € CTo(L) : s ~7 t} is the
~T-equivalence class of t € CTo(L).

Closed terms

Lemma
Suppose L is a first order language with at least one constant symbol and T is
an L-theory. Then the following hold.

(a) If R is an n-ary relation symbol of L and s1,...,5n,t1,...,t, are in
CTo(L) such that for every k < n, sx ~7 ty, then

TFR(SM...,S,,) <~ R(tl,...7tn)

(b) If F is an n-ary function symbol of L and si,...,sn, t1,...,t, are in
CTo(L) such that for every k < n, si ~7 tx, then

Tl_F(Sl,...,Sn):F(tl,...,tn)

Proof: For part (a) use logical axioms 11 and 4 and for part (b) use logical
axioms 10 and 4. O

Herbrand model

Suppose L is a first order language with at least one constant symbol and T is
an L-theory. Define the Herbrand model associated with (£, T), denoted

H =
1.
2.
3.

H(L, T) to be the following L-structure.
The domain of H is CT(L, T).
For each constant symbol ¢ of £, c* = [c].

For each n-ary relation symbol R of £, ([t:],...,[t.]) € R™ iff
TFE R(t,...,ta).

For each n-ary function symbol F of £, F*([t:],...,[ts]) = [s] iff
TFF(t,..., th) =s.

Remark: Note that by part (a) of the previous lemma, R* in clause 3 is well
defined since the truth of T F R(s1,...,ss) is independent of the choice of the

representatives s; € [t1],...,S» € [ts]. Similarly, clause 4 makes sense by part
(b) of previous lemma.

Herbrand model

Lemma
Suppose L is a first order language with at least one constant symbol, T is an
L-theory and H = H(L, T) is the associated Herbrand model.

1. If t is any closed term of L and val is any valuation in ‘H, then

val(t) = [t].
2. If ¢ is an L-sentence of the form (Vx1) ... (Vx,)(v), then H |= ¢ iff for all
closed L-terms ty, ..., t,, we have H |= ¢ (ti/x1,. .., ta/Xn).

3. If ¢ is an atomic L-sentence, then T = ¢ iff H |= ¢.
4. If ¢ is a universal closure of an atomic L-formula and T + ¢ then H = ¢.

Proof:
1. By induction on the length of t.

2. Since val(t) = [t] for every t € CTo(L), for every ti,...,t, € CTo(L),
H 'Z ’l,b([tl]/Xh Cey [t,,]/X,,) iff H 'Z ’Qb(tl/xh e, t,,/X,,).

Herbrand model

3. First suppose ¢ is s = t. Since ¢ is a sentence, s and t are closed terms.
Now H |=s=tiff [s]=[t] iff s~r tiff TEFs=1t.
Next suppose ¢ is R(t1,...,ts) where R is an n-ary relation symbol of £
and ti,...,t, are closed terms. Then H = R(t1, ..., t,) iff
([tr], ..., [ta]) € R iff T R(t,. .., tn).

4. Suppose ¢ is (Vx1) ... (Vxn)(¢)) where 1) is an atomic formula and every
free variable of v occurs in the list x1,..., x,. Since
T F (Vx1)...(¥xa) (%), it follows that for every ti,...,t, € CTo(L),
T EY(t1/x1,...,ta/xn). By part 3, it follows that for every
ti,...,ta € CTo(L), we have H = ¢(t1/x1,. .., ta/xa) and therefore
HE yY([t]/x1,- -, [ta]/Xn). So H = (Vx1) ... (Vxn)(2)).

Maximally consistent theories

An L-theory T is a maximally consistent L-theory iff T is consistent and for
every consistent L-theory S, if T C S, then T = S.

Lemma
For every consistent L-theory T, there exists a maximally consistent L-theory
S such that T C S.

Proof: Let F be the family of all consistent £-theories T’ such that T C T'.
It is easy to check that every chain in (F, C) has an upper bound (namely, its
union). So by Zorn's lemma, F has a C-maximal member S. Then T C S and
S is a maximally consistent L-theory. O

Exercise: Suppose T is a maximally consistent £-theory and ¢, are
L-sentences. Show the following.
(1) THoiffepeT.
(2) ~peTiffep¢T.
(3) (pAY)eTiff¢pe Tandyp € T.
(4) (pV) €T iffeitherpe Toryp € T.
(5) (¢ = oY) e Tiffeitheripe Tordp ¢ T.
(6) (p <= Y)eTiff "peTiffpeT".

The Herbrand model of a maximally consistent theory

Lemma

Let L be a first order language with at least one constant symbol. Suppose T
is a maximally consistent L-theory and ¢ is a quantifier-free L-sentence. Let
H = H(L, T) be the associated Herbrand model. Then ¢ € T iff H |= ¢.

Proof: By induction on the length of ¢. We have the following cases.

(a) ¢ is an atomic sentence. By a previous lemma, T + ¢ iff H |= ¢. Since T
is maximally consistent, by part (1) of the previous exercise, T ¢ iff
peT.SopeTiff H[Eo.

(b) ¢ is). By the inductive hypothesis, v € T iff H = 1. Since T is
maximally consistent, by part (2) of the previous exercise, ¢ € T iff
1 ¢ T. It follows that ¢ € T iff H | ¢.

(c) ¢is ¢1 A ¢2. Since T is maximally consistent, by part (3) of the previous
exercise, ¢ € T iff o1 € T and ¢» € T. By the inductive hypothesis,
ok € T iff H |= ¢« for each k € {1,2}. It follows that ¢ € T iff H |= ¢.

(d) ¢ is p10¢» where O is one of V, =, <= . Use the previous exercise
and the inductive hypothesis. The details are left to the reader. (I

Existential witnesses

Let T be an L-theory. We say that T has witnesses in L iff for every
L-formula ¢ with at most one free variable x, there exists t € CTo(L) such
that T F (3x)(¢) = &(t/x).

Lemma

Let L be a first order language with at least one constant symbol. Suppose T
is @ maximally consistent L-theory and T has witnesses in L. Let
H=H(L,T). Then HE=T.

Proof: We will show that for every L-sentence ¢, we have ¢ € T iff H = ¢.
Let S(¢) denote the total number of occurrences of the symbols

-, V,A\, =, <= ,V,3in ¢. We proceed by induction on S(¢). We have the
following cases.

1. ¢ is quantifier-free. By the previous lemma, ¢ € T iff H = ¢ so we are
done.

2. ¢ = (—). Since T is a maximally consistent L-theory, by the previous
exercise, we have ¢ € T iff ¢ ¢ T. By the inductive hypothesis, ¢ ¢ T
iff H W~ iff H = —. Hence ¢ € T iff H = ¢.

3. ¢ = (¢10¢2) where O € {V,A, =, <= }. Use the previous exercise
and the inductive hypothesis. The details are left to the reader.

Existential witnesses

4. ¢ = (3x)(¢h). Since ¢ is a sentence, ¥ can have at most one free variable
x. Since T has witnesses in £, we can fix t € CTo(L) such that
T F (3x)(v) = 9(t/x). First assume (Ix)(¢)) € T. It follows that
T F4(t/x). Since T is maximally consistent L-theory, we get
P(t/x) € T. Now S(¢(t/x)) = S(¢) — 1. So by the inductive
hypothesis, H = 1¢(t/x). Hence H = 9¢([t]/x). Therefore H |= (3x)(v).
Next assume H |= (3x)(¢). Then for some [s] € CT(L, T), we have
H = ¥([s]/x) and hence H = 1(s/x). Since S(¢(s/x)) = S(¢) — 1, by
the inductive hypothesis, we get 1(s/x) € T. Now ¢(s/x) = (3x)(¥)
is a logical axiom of type 5. Therefore, T F (3x)(v).

5. ¢ = (Vx)(v). First assume ¢ € T. Then for each t € CTy(L),
P(t/x) € T (since (Vx)(¥) = (t/x) is a logical axiom of type 4). By
the inductive hypothesis, it follows that H = 1(t/x). Hence for every
[t] € CT(L, T), we get H = o([t]/x). So H |= (Vx)(¥).
Next assume ¢ ¢ T. Then =¢ € T. Since F —~(Vx)(¢0) < (3x)(—v),
we get T F (3x)(—2). As T has witnesses in L, we can fix t € CTo(L)
such that T+ (3x)(—¢) = —9(t/x). Since (Ix)(—¢) € T, it follows
that T F —4(t/x). As T is consistent, 1(t/x) ¢ T. By the inductive
hypothesis, we get H = ¥(t/x). So H |= —(t/x) and therefore
H b= ~(([e)/x). Thus H I (vx)(). O

Proof of completeness theorem

Lemma

Let T be a consistent L-theory. Suppose ¢ is an L-sentence of the form
(3x)(¢b). Let L' be the language obtained by adding a new constant symbol c
to L. Then T U{(3x)(vy) = ¥(c/x)} is consistent.

Proof: Suppose not. Then T I (3x)(¢) and T + —)(c/x). Since c is not a
constant symbol in £, by (UG) we get T + (Vx)(—¢). But

F=(3x)(¥) < (¥x)(—¢). So T F =(3x)(v). It follows that T is
inconsistent which is a contradiction. O
Definition

Let T be an L-theory. Define an extension L* of L as follows. Let E(L) be the
set of all L-sentences ¢ of the form (Ix)(v)). Then L* is the language obtained

by adding the constant symbols {cs : ¢ € E(L)} to L where cy's are pairwise
distinct new constant symbols. Define T* to be the following L*-theory:

TU{(¢ = ¥(cs/x)): ¢ € E(L) and ¢ = (3x)(4)}

Exercise: If T is consistent, then so is T*.

Proof of completeness theorem

Lemma

Let T be a consistent L-theory. Then there exists an extension L' of L and an
L'-theory S such that T C S, S has witnesses in L' and S is a maximally
consistent L' -theory.

Proof: Inductively define ((L,, Tn) : n < w) as follows.
1. Lo=L, To=T,

2. Lpy1 = Ly and Tpi1 is a maximally consistent £,;1-theory such that
T: g Tn+1~

Let £’ be the union of £,'s and S be the union of T,'s. Then it is clear that S
is a consistent £'-theory. To see that S has witnesses in £’, fix any £’-sentence
(3x)(¢). Then for some n < w, (3Ix)(¢)) is an Ly-sentence. It follows that there
is a constant symbol ¢ in L,41 such that the sentence (Ix)(¢) = ¥(c/x) is
in Thi1 and hence also in S. Thus S has witnesses in £’.

To see that S is a maximally consistent £'-theory, suppose x is an £’-sentence
such that x ¢ S. Then for some n < w, x is an Ly-sentence. Since T, is a
maximally consistent L,-theory and x ¢ T,, it follows that —x € T, and so
—x € S. So SU{x} is inconsistent. Hence S is maximally consistent. O

Proof of completeness theorem

Lemma

Let T be a consistent L-theory. Then there exists an extension L' of L and an
L'-theory S such that T C S, S has witnesses in L' and S is a maximally
consistent L' -theory.

We are now ready to prove the completeness theorem.

Corollary (Completeness theorem)

Let T be a consistent L-theory. Then there exists an L-structure M such that
MET.

Proof: Fix an extension £’ of £ and an £’-theory S such that T C S, S has
witnesses in £ and S is a maximally consistent £’-theory. By a previous
lemma, H = H(L',S) is a model of S. Let M be the L-structure obtained by
throwing away the interpretations of all non-logical symbols in £’ which are not
in L. Then M = T. O

Isomorphism between first order structures

Suppose L is a first order language and M and N\ are L-structures. Let

h: M — N where M and N are the domains of M and A respectively. We say
that h is an isomorphism from M to N iff his a bijection and the following
hold.

1. For every constant symbol ¢ of £, h(c™) = cV.

2. For every n-ary function symbol F of £ and ai,...,a,, bin M,
FM(ai,...,an) = b iff FN(h(a1), ..., h(an)) = h(b).

3. For every n-ary relation symbol R of £ and a1,...,a, in M,

(a1,-..,an) € RMiff (h(a1), ..., h(an)) € RV.

We say that M is isomorphic to A and write M = A/ iff there is an
isomorphism from M to N.

Complete theory and Theory of a model

Suppose L is a first order language and M is an L-structures. The theory of
M, denoted Th(M) is the set of all L-sentence ¢ such that M = ¢.

T is a complete L-theory iff for every L-sentence ¢ either T - ¢ or T F —¢.

Exercise: Show that Th(M) is a complete theory.

Lemma

Suppose L is a first order language and M and N are L-structures. Let

h: M — N be an isomorphism from M to N. Let val be a valuation in M
and ¢ be any L-formula. Define val' = ho val and note that val’ is a valuation

in N'. Then (M, val) = ¢ iff (N,val') E ¢
Proof By induction on length of ¢. The details are left to the reader. O

The following is an easy corollary of the previous lemma.

Corollary

Suppose L is a first order language and M and N are L-structures. Then
M = N implies Th(M) = Th(N).

An application of compactness

For each n > 2, let 35>, denote the following sentence:

@x)(Fe) ... () [A~ =x)

i<j<n
For example, 3>3 is (3x1)(Ix)(Ixz)(—(x1 = x2) A =(x1 = x3) A =(x2 = x3)).

If M is an L-structure, then by cardinality of M, we mean |M| = the
cardinality of the domain of M.

Theorem

Let T be an L-theory such that for every natural number n, T has a model of
size > n. Then T has an infinite model.

Proof: Let S = T U{3>,:n>2}. Then every finite subset of S has a model.
By compactness theorem, S has a model M. Now since for every n > 2,

M |= 3>, we must have |M| > n where M is the domain of M. It follows that
M is infinite. O

Upward Lowenheim-Skolem theorem

Theorem (Upward Lowenheim-Skolem)

Let T be any L-theory such that T has an infinite model. Then for every
cardinal k, T has a model of cardinality > k.

Proof: Let C = {ca : @ < K} be a set of new constant symbols. Let £’ be the
extension of £ obtained by adding these constant symbols to £. Consider the
L’ theory

S=TU{ca#cg:a<pB <k}

Note that every finite F C S has a model: Just take any infinite model M of
T and interpret the finitely many constant symbols of C that occur in the
formulas in F as distinct members of M. The rest of the constant symbols in C
can be interpreted arbitrarily.

By the compactness theorem, it follows that S has a model NV. Since

N [ca # cg, it follows that cN''s are pairwise distinct members of N. Hence
IN| > k. O

Substructures

Let £ be a first order language and suppose M and N are L-structures.
We say that M is a substructure of A/ (denoted M C N) iff the
following hold.

1. M C N where M and N are domains of M and N respectively.

2. For every constant symbol ¢ of £, cM = V.

3. For every n-ary relation symbol R of L, for every ai,...,a, in M,
we have (ay,...,a,) € RMiff (ar,...,a,) € RV.

4. For every n-ary function symbol f of L, for every a1,...,a, in M,
we have fM(ay, ..., a,) = N (a1,...,a,).

Note that Clause 4 implies that M is closed under V.

Let £ = {+} where + is a binary function symbol. Let N' = (w, +)
where + is interpreted as the usual addition on w. Let M = (M, +)
where M ={0,2,4,6,...} is the set of even numbers and + is
interpreted as usual addition. Then M C N.

Substructures

Let £ be a first order language and suppose A is an L-structure with domain
N. Suppose M C N. We say that M is closed in N iff the following hold.

(A) For every constant symbol ¢ of £, ¢ € M.

(B) For every n-ary function symbol f of L, for every a1,...,a, in M, we
have fN(al, ...,an) € M. Note that this is just saying that M is closed
under V.

In this case, we can define an £-substructure M C N with domain M as
follows.

1. For every constant symbol c of £, ¢™ = V. This is well-defined by

Clause (A).

2. For every n-ary relation symbol R of L, for every ai1,...,a, in M, we have
(a1,...,an) € RMiff (ar,...,a,) € RV.

3. For every n-ary function symbol f of L, for every ai,...,a, in M, we have

fM(ar,...,a0) = fN¥(a1,...,a,). This is well-defined by Clause (B).
We say that M is the restriction of N to M.

Substructures and quantifier free formulas

Lemma
Let M and N be L-structures and suppose M C N. Let ¢ be a
quantifier free L-formula whose free variables are among x, . ..,x,. Then

for every ay,...,a, € M we have M |= ¢(a1/x1, ..., an/xn) iff
N)z(b(al/xl,...,a,,/x,,).

Proof: Done in lecture. O

Example: Let £ = {+} where + is a binary function symbol. Let
N = (w,+) where + is interpreted as the usual addition on w. Let
M = (M,+) where M = {0,2,4,6, ...} is the set of even numbers.
Then M C N. Let ¢ be the L-formula (3y)(x =y +y). Then

N E ¢(2/x) but M £ ¢(2/x). This shows that we cannot drop the
assumption that ¢ is quantifier free in the above lemma.

Elementary submodel

Let £ be a first order language and suppose M and N are L-structures.
We say that M is an elementary submodel of N (denoted M < N) iff
M C N and for every L-formula ¢ whose free variables are among
X1,---,Xn, and for every ap,...,a, in M, we have

ME¢(ar/x1,---,an/xn) <= N E d(ar/x1,...,an/xn)

Exercise: Show that M < N implies Th(M) = Th(N).

Exercise: Let £ = {4} where + is a binary function symbol. Let
N = (w,+) where + is interpreted as the usual addition on w. Show
that the only elementary submodel of A is V.

Tarski-Vaught criterion for elementary submodels

Theorem (Tarski-Vaught criterion)

Let N be an L-structure and suppose M C N. Suppose for every
L-formula 1) whose free variables are among x, y1,...,yn, and for every
a,...,an € M,

(A) If there exists b € N such that N |=1(b/x,a1/y1,...,an/¥n), then
there exists ¢ € M such that N = i(c/x,a1/y1, .-, an/yn)-

Then M is closed in N'. Let M be the restriction of N' to M. Then
M=<N.

Proof: Done in lecture. O

Skolem functions for a structure

Let N be an L-structure. Let 1) be an L-formula whose free variables are

among x, y1,...,ys. A Skolem function in A/ associated with 1) and
(X, ¥1,-..,yn) is a function f : N" — N that satisfies the following. For every
ai,...,an €N,

(A) If there exists b € N such that N |= ¢(b/x, a1/x1,...,an/xn), then
N EU(f(ar,-..,a0)/x,a1/X1, .-, an/Xn)

We say that F is a complete set of Skolem functions for \ iff for every

L-formula ¢ with free variables among x, y1, ..., y», there exists f € F such

that f is Skolem function in N associated with ¢ and (x, y1,...,ya).

Lemma
Suppose L is a countable language and N is an L-structure. Then there exists
a countable F such that F is a complete set of Skolem functions for N.

Proof: Since L is countable, there are only countably many tuples

(¥, X, ¥1, - -, ¥n) where ¢ is an L-formula and x, y1, ..., y, is a finite list of
variables in which every free variable of 1) occurs. So we only have to add
countably many Skolem functions to F. O

Elementary submodels

Lemma
Suppose L is a countable language and N is an L-structure. Let X C N.
Then there exists M < N such that X C M and |M| < max(|X],w).

Proof: Fix a countable F such that F is a complete set of Skolem
functions for A/. Using the theorem on lecture slide 81, choose M C N
such that X C M, |[M| < max(|X|,w) and M is closed under every
function in F. Now observe that M satisfies the following: For every
L-formula ¢ whose free variables are among x, y1, ..., y,, and for every
ay,...,an €M,

(A) If there exists b € N such that N' = 1(b/x, a1/y1,-..,an/¥n), then
there exists ¢ € M such that N = ¢(c/x, a1/y1,---,an/Yn)-

By the Tarski-Vaught criterion, M is closed in A and letting M be the
restriction of A to M, it follows that M < N O

Lowenheim-Skolem theorem and Skolem's paradox

Theorem (Lowenheim-Skolem theorem)

Suppose L is a countable language. Let T be any L-theory such that T
has an infinite model. Then for every infinite cardinal k, T has a model
of cardinality k.

Proof: By the Upward Léwenheim-Skolem theorem, T has a model N of
cardinality > x. Fix X C N such that | X| = k. By the previous Lemma,
there exists M =< A such that X C M and |M| < max(|X|,w) = k. As
X C M, [M| > k. It follows that |[M| = k. Since M < N, we also have
T C Th(N) = Th(M). Hence M is a model of T of cardinality k. [

Corollary (Skolem's paradox)
If ZFC is consistent, then ZFC has a countable model.

Peano Arithmetic

Recall that the language of arithmetic Lpa = (0, S,+,+). Peano
arithmetic (abbreviated PA) is the £pa-theory whose axioms are as
follows.

L (vx)(S(x) # 0)

(v
2. (W, y)(S(x) =5S(y) = x=y)
3. (Vx)(x +0 = x)
4. (9x,y)(x + S(y) = S(x +y))
5. (Vx)(x -0 = 0)
6. (VX)(Vy)(x - S(y) = (x-y) +x)
7

. Induction scheme: Suppose ¢ is an Lpa-formula and x is a variable.
Then any universal closure of the following is an axiom of PA:

[¢(0/x) A (vX)(¢ = &(S(x)/x))] = (Vx)(¥)

Models of PA

The standard model of PA is (w,0, S, +,) where w is the set of
natural numbers and 0, S, + and - are interpreted in the usual
way. The following is easily verified.

Theorem
(w,0,S5,+,-) E PA.

Some theorems of PA

We list some frequently used theorems in PA here.

) (

) (

) (

) (Vx,y,Z)[X'(erZ):(X'y)+(X'2)]

6) (Vx)(x+0=0+x=x)

) (Vx)(x-1=1-x=x)

) (Y%.y,2)[(x+y=x+2) = y=12]
) (

x,¥,Z)[(x#0and (x-y =x-2)) = y=12]

\

True arithmetic

Definition (True arithmetic)

True arithmetic is TA = Th(w,0,S,+,").

Since (w,0,S,+,) = PA, every theorem of PA is in TA. However,
we will later see that there exist sentences ¢ € TA such that

PA/ ¢. So PA is not a complete Lpa-theory. By the
Lowenheim-Skolem theorem, we get the following.

Theorem
For every infinite cardinal k, TA has a model of cardinality k.

But what about countable models of TA? Are all countable models
of TA isomorphic to the standard model (w,0,S,+,-)? We will
show that the answer is no.

A non-standard countable model of TA

For each n < w, let $"(0) be the closed Lpa-term defined as follows: S°(0) =0
and for each n < w, $"71(0) = $(5"(0)). Let L be the language obtained by
adding a new constant symbol ¢ to Lpa. Define an L-theory T as follows:

T=TAU{c#S5"(0): n<w}

Note that every finite subset of TA has a model. Just take the standard model
(w,0,4+,-) and interpret c to be a sufficiently large natural number. By the
compactness theorem, T has a model as well. By the Lowenheim-Skolem
theorem, T has a countable model A" = (N, 0V, +V, N V). Let

M = (N,0N,+V N) It is clear that M is a model of TA. It is easy to see
that M is not isomorphic to the standard model (w, 0, +, -).

One can also show that TA has continuum many pairwise non-isomorphic
countable models. See Homework.

Categoricity

Let T be an L-theory and k be a cardinal. We say that T is
k-categorical iff any two models of T of cardinality x are isomorphic.

For example, TA is not w-categorical.

Theorem

Let T be a consistent L-theory where L is a countable language. Assume
T has no finite models. Suppose for some infinite cardinal k, T is
k-categorical. Then T is a complete L-theory.

Proof: Towards a contradiction, suppose T is incomplete and fix an
L-sentence ¢ such that T does not prove either one of ¢, —¢. Then
Ti=TU{¢} and T, = T U{—¢} are both consistent L-theories. Since
T has no finite models, every model of Ty (resp. T») is infinite. As L is
countable, by the Lowenheim-Skolem theorem, we can find M, N such
that M = T1, N = Tz and [M| = [N| = k. Since T is k-categorical, we
must have M = N. But this is impossible since Th(M) # Th(N). [

Dense linear orderings without end-points

Let £ consist of just one binary relation symbol: <. Define DLO to be
the L-theory whose axioms are as follows.

1. (Vx)(=(x < x))

2. (W) (W)(V2)((x < y) Ay < 2)) = (x=<2))
3. (W)W (x =y) V(x <y) V(¥ < x))

4. (W)(Wy)3B2)(x <y) = ((x <2) A (2 <))
5. (Vx)(Fy)(x < y)

6. (V)(Ey)(y < x)

Axioms 1, 2, 3 are saying that < is a linear ordering. Axiom 4 says that
< is a dense linear ordering. Axiom 5 is saying that there is no <-largest
element and axiom 6 is saying that there is no <-least element.

DLO is w-categorical

Theorem
DLO is w-categorical.

Proof: Let (L1, <1) and (L2, <2) be two models of DLO where |L;1| = |L5| = w.
Let L1 = {ao, a1,...} and L = {bo, b1, ..., }. Recursively, define (f, : n < w)
such that the following hold.

1. Each f, is a finite function, dom(f,) C L; and range(f,) C L.

2. fo = {(ao0, bo)} and for every m < n < w, fm C f,.

3. For every n < w, a, € dom(f,) and b, € range(font1).

4. For every a,a’ € dom(f,), a <1 a' iff f,(a) <2 fa(a").
Note that Clause 3 can be satisfied using the fact that L; and L, are dense
linear orders without endpoints (See video). Having constructed (f, : n < w),
define f = |J{f, : n < w}. By Clause 3, dom(f) = L; and range(f) = L>. It
follows that f is an isomorphism from (L1, <1) to (L2, <2). O
Corollary
DLO is a complete theory.

Proof: Every model of DLO is infinite and DLO is w-categorical. Hence DLO
is complete. O

Torsion free divisible abelian groups

Let £ = {0,+} where 0 is a constant symbol and + is a binary function
symbol. For every n < w, let nx be the L-term defined as follows: O0x = 0 and
(n+4 1)x = (nx + x). Define TFDAG to be the L-theory whose axioms are as

follows.
1L (W) (My)Vz)(x+y)+z=x+(y + 2)).
2. (W) (x+0=0+x=x)
3 (P)EN(x+y =y +x=0))
4 (W) x+y =y + %)
5. (Vx)(x #0 = nx #0) for each n > 1.
6. (Vx)(3y)(ny = x) for each n > 1.

Axioms 1, 2 and 3 are axioms for group theory. Axiom 4 says that the group is
abelian/commutative. Axiom scheme 5 says that the group is torsion free.
Axiom scheme 6 says that the group is divisible.

Torsion free divisible abelian groups

Let (V,0,4) be a model of TFDAG. The following are easy to check.

1. For each x € V/, there is a unique y € V such that x + y = 0. We denote
this unique member by —x.
2. For each x € V and n > 1, there is a unique y € V such that ny = x.
We denote this unique member by x/n.
For each n > 1 and m > 0, define (m/n)(x) = m(x/n) and
(=m/n)(x) = —((m/n)(x)). Then (V,0,+) is a vector space over the field Q
with the scalar product defined above. Let dim(V') denote the cardinality of
any basis of V over Q.

Exercise: If V is uncountable, then dim(V) = |V/|.

Recall that any two vector spaces over the same field are isomorphic iff they
have the same dimension. Therefore we get the following.

Theorem
TFDAG is k-categorical for every uncountable cardinal k.

Alphabets and Strings/Words

1. An alphabet X is a set of symbols.

2. A string/word over ¥ is a finite sequence of symbols from X.
3. The empty string is denoted by ().
4

. 2* is the set of all strings over X.

Suppose o, T are strings over an alphabet ¥. The concatenation
of o and 7, denoted o7, is the string obtained by writing 7 after
.

Example: Let ¥ = {0,1}. Then
¥* = {(),0,1,00,01,11, 10,000, 001, 010, 011, 100, . .. }

Let 0 =001 and 7 = 10. Then o7 = 00110.

Language over an Alphabet

Definition (Language)
Let X be an alphabet. We say that L is a language over X iff
LC ™.

Example: Let ¥ be an alphabet. Define
Palindrome(X) ={c € X*: 0 =r(o)}

where r(o) is the string obtained by reversing the symbols in o.
For example, r(abc) = cba.

Decidable Languages: Informal Definition

Suppose X is a finite alphabet and L is a language over ¥. We say
that L is decidable iff there is a computer program P that on
input o € ¥* does the following.

1. If o € L, the program P halts and outputs 1.
2. If o ¢ L, the program P halts and outputs 0.
If there is no such program P, we say that L is undecidable.

Example: Let L be the set of palindromes over ¥ = {0,1}. Then
L is decidable.

This definition of a computer program can be made precise via
Turing machines. But we will not do it here.

Computable Functions: Informal Definition

Suppose ¥ and [1 are finite alphabets and F : ¥* — I1*. We say
that F is computable iff there is a computer program P that on
each input o € X*, halts and outputs F(o).

Example: Let ¥ = {0,1,2,...,9}, M ={0,1} and F: X* — I*
be defined by F(o) is the binary representation of o. For example,
F(13) = 1101 and F(008) = 1000. Then F is computable.

Definition (Computable function on natural numbers)

We say that f : w™ — w is computable iff there is a computer
program P that on each input (x1,...,x,) € w", halts and outputs
f(x1,...,Xn)-

Primitive recursive functions

Recall that a finitary function on w is an n-ary function f : w” — w for some
1 < n < w. The set of primitive recursive functions, denoted PRec, is defined
to be the smallest set of finitary functions on w satisfying the following.

1. (Identically Zero) Every f : w" — w defined by f =0 is in PRec.

2. (Projections) For each 1 < k < n, the function f : w" — w defined by
f(x1,...,%n) = xx is in PRec.

3. (Successor function) f : w — w defined by f(x) = x + 1 is in PRec.
4. (Compositions) If f: w" — w is in PRec and for each 1 < k < n,
gk - w™ — wisin PRec, then h: w™ — w is in PRec where h is defined by

h(xt, ...y xm) = F(ga(X1y- -y Xm), @ (X1, ooy Xm)y o, 8n(X1y - - oy Xm))

5. (Recursion) If g : w™! — w and h: w"™! — w are both in PRec, then
f:w" — wisin PRec where

h(x2, ..., Xn) ifx1=0

g(fa —1,x2, .., Xn)y X1 ...y Xn) ifxg>1

f(x1,%2,...,Xn) = {

Primitive recursive functions

Most elementary functions that arise in arithmetic are primitive
recursive. For example, addition, multiplication, exponentiation,
factorial, the function f(n) = n" prime etc.

Observe that the set of primitive recursive functions is countable so
most functions f : w — w are not primitive recursive.

It is not difficult to convince oneself that every primitive
recursive function is computable in the sense that one can
write a computer program that computes it.

Diagonalization

Is every computable function also primitive recursive? The answer is no.
Let us see why.

To every primitive recursive function f, one can associate a “certificate”
C which shows how f was built from the basic functions (identically zero,
projections and successor) using a finite number of applications of
compositions and recursion. We can enumerate all of these certificates in
a computable way as Gy, G, G,

Now define a function f : w — w as follows. If C, is a certificate of a
unary primitive recursive function g : w — w, then f(x) = g(x) + 1.
Otherwise, f(x) = 0. It should be intuitively clear that f is computable in
the sense that one could write a computer program to compute it. We
claim that f is not primitive recursive. Suppose it is. Then f has a
certificate C. Since every certificate appears in the list C;, Gy, ..., we
can find an x such that C = C,. Now by definition, f(x) = f(x) +1: A
contradiction. So f is not primitive recursive.

Unbounded search and halting

#include<stdio.h>
/*Finding rational square roots.*/

int main(){

}

}

int nl1, n2, x, s = 0;
printf ("Numerator:"); scanf ("%d", &nl);
printf ("Denominator:"); scanf (")d", &n2);
if(nl > n2){x = n2; n2 = nl; nl = x; s = 1;}
int t = 0, a, b;
for(a = 1; t==0; a++){
for(b = 1; b <=a; b++){
if (b*b*n2 == nil*xaxa){
if (s==0)1{
printf ("Success:");
printf (" (%d/%d)"2=%d/%d", b, a, nl, n2);
t = 1;break;}
else{printf (" (%d/%d)"2=%d/%d", a, b, n2,
t = 1;break;}}
else{printf ("Fail:%d,%d\n", b, a);}
}

nl);

Partial computable functions: Informal Definition

We say that f is a partial function from A to B iff f is a function,
dom(f) C A and range(f) C B. A partial finitary function on w is a partial
function from w" to w for some n > 1.

Definition (Partial computable function on natural numbers)

We say that f is an n-ary partial computable function iff it is a partial function
from w" to w and there is a computer program P that on each input
(x1,...,%n) € W" does the following.

1. If (x1,...,%n) € dom(f), then P halts and outputs f(xi, ..., Xn).
2. If (x1,...,xa) ¢ dom(F), then P does not halt.

Definition (Total computable functions on natural numbers)

If f is an n-ary partial computable function on w and dom(f) = w", then we
say that f is a total computable function. It is customary to drop the “total”
and just write computable function. So “computable function” will mean a
“total computable function”.

General recursive functions

The set of general recursive functions, denoted GRec, is defined to be the
smallest set of partial finitary functions on w that satisfies the following.

1.
2.

Every primitive recursive function is in GRec.

(Compositions) If f is an n-ary function in GRec and for each 1 < k < n,
gk is an m-ary function in GRec, then h is in GRec where h is defined by

h(xty ..., xm) = f(g(x1, -y Xm), &@(X1, oy Xm)y -+, &n(X1, - - -y Xm))

(Primitive recursion) If g, h € GRec where g is (n+ 1)-ary and h is
(n — 1)-ary, then f is in GRec where

h(x2,...,Xn) ifx1=0
f(Xl,X27...,Xn)=)

gf(xi — Lixo, ..oy Xn)y X1 ooy Xn) ifxa >1
(Unbounded search) If g € GRec is an (n + 1)-ary, then f € GRec where
f is an n-ary partial function on w defined by: f(x1,...,xy) = z iff
g(z,x1,...,xn) =0 and for every y < z, g(y,x1,...,Xn) is defined and is
nonzero.

Is every partial computable function general recursive?

We saw that there are total computable functions on w which are not primitive
recursive. The proof of this used diagonalization to produce a computable
function which disagreed with every primitive recursive function on some input.
Let us try to produce such a proof for the class of general recursive functions.

As before, we can associate to every general recursive function f, a certificate
C which describes how f was built from the basic functions using a finite
number of applications of compositions, primitive recursion and unbounded
search. Let Ci, (,,... be a computable listing of all such certificates. As
before, define a partial unary function f on w as follows: If C is the certificate
of a unary general recursive function g, then f(x) = 1+ g(x). Clearly, f is a
partial computable function. Let us assume that f is general recursive and try
to get a contradiction. Fix x such that C is a certificate of 7. Now if

x € dom(f), then f(x) = 1+ f(x) which is impossible. So the only thing we
can conclude here is that x ¢ dom(f) which is not a contradiction.

One could try to modify this argument by insisting that C;, G, ... be a list of
certificates of only total computable functions. But it is not clear at all if we
can list them in a computable way.

General recursive = Partial computable

Theorem
Every partial computable function is general recursive and every general
recursive function is partial computable.

That every general recursive function is partial computable is not hard to
see. One has to check that the basic functions are computable and the
set of partial computable functions are closed under compositions,
primitive recursion and unbounded search. The proof of the fact that
every partial computable function is general recursive would require a
precise analysis of the notion of a “computer program” and will not be
covered in this course.

C.e. sets

Let W C w. We say that W is c.e. (computably enumerable) iff there is there
is a unary partial computable function f on w such that W = dom(f). We say
that W is computable iff its characteristic function 1y : w — w is computable.
Here, lw(x) =1if x € W and 1w(x) =0if x ¢ W.

Theorem
Let W C w. Then W is computable iff both W and w \ W are c.e.

Proof: First suppose W is computable and fix a computer program P which
computes 1y. Define another program @ which does the following: On input
x, Q runs the program P with input x. If P halts and outputs 1, then Q halts
and outputs 1. If P halts and outputs 0, then @ enters an infinite loop. It is
clear that @ computes a partial computable function whose domain is W.
Hence W is c.e. A similar argument shows that w \ W is also c.e.

Next suppose both W and w \ W are c.e. Let f and g be unary partial
computable functions on w such that W = dom(f) and w \ W = dom(g). Fix
programs P and @ such that P computes f and @ computes g. Define a
program R as follows: On input x, R starts running both P and Q with the
same input x. If P halts, then R halts and outputs 1. If Q halts, then R halts
and outputs 0. Note that on each input x, exactly one of P, Q halts. It is clear
that R computes 1y. Hence W is computable. O

Universal Turing Machines

Recall that every C-code is a string of keyboard characters. One can
therefore write a C-program U which takes two inputs S and n where S
is a finite string of keyboard characters and n is a natural number. The
program U on input (S, n) first checks if S is a valid C-code (using a
compiler). If S is not a C-code, U enters an infinite loop. Otherwise it
runs the program S on input n and outputs whatever S does. This
program U is an example of a universal computing machine in the sense
that it can simulate every program. An easy corollary is the following.

Theorem
There exists a partial computable binary function ¢ on w such that for
every partial computable unary function h on w, there exists an e < w
such that

1. For every k < w, we have k € dom(h) iff (e, k) € dom(¢).
2. For every k € dom(h), ¢(e, k) = h(k).

Halting problem is c.e. but not computable

Suppose ¢ is as in the previous theorem. For each e < w, we write @, to
denote the unary partial computable function k — ¢(e, k). So {pe : e < w} is
the set of all unary partial computable functions.

Define the halting problem H C w by

H={e<w:e&dom(p.)}

Theorem (Halting problem)
H is c.e. but not computable.

Proof: Let U be a program that computes ¢. Consider the program P which
on input e runs U with input (e, e) and halts whenever U does. Then P halts
on input e iff U halts on input (e, e) iff (e, e) € dom(9) iff e € dom(¢p.) iff

e € H. Hence H is c.e.

Next, towards a contradiction, suppose H is computable. Then w \ H is c.e.
and hence there exists a partial computable function h such that

dom(h) = w \ H. Since {p. : e < w} has every partial computable function, we
can fix an n < w such that ¢, = h. Now observe that n € H iff n € dom(pn)
iff n € dom(h) iff n € w\ H: A contradiction. So H cannot be computable. [

C.e. languages

Suppose X is a finite alphabet and L C X*.
1. We say that L is computable/recursive iff L is decidable.
2. We say that L is c.e (computably enumerable) iff there is a

computer program P which on each input o € ¥*, halts iff
o€ L.

The following can be proved just like the fact that W C w is
computable iff both W and w\ W are c.e.

Theorem
Suppose ¥ is a finite alphabet and L C X*. Then L is computable
iff both L and ¥* \ L are c.e.

First order logic with finite alphabet

Suppose L is a finite first order language. Let ¥ be the alphabet which
consists of the following.

1. All non-logical symbols of L.
2. x and’.
3. VA, =, <=,(,) V3 =

Define the set of variables to be {x,x’,x"”,x",...}. L-terms and
L-formulas are defined in the usual way. Recall that L C Y7 is decidable
iff there is a computer program that decides whether a given input

o € X} isin L. The following should be clear.

Theorem
The set of all L-terms, the set of all L-formulas and the set of all
L-sentences are all decidable subsets of ¥7..

Logical validity is c.e.

Theorem
Suppose L is a finite first order language.

(1) {% : 9 is a logical axiom of L} is computable.

(2) Let T be a computable set of L-sentences. Then
{¢ : ¢ is an L-sentence and T + 1} is c.e.

Proof: (1) Recall that an L-sentence v is a logical axiom of L iff ¢ is a
universal closure of an L£-formula of one of the 11 types defined on slide 116. It
should be clear that each one of these types of logical axiom is computable.
Hence {4 : v is a logical axiom of L} is also computable.

(2) First observe that checking whether a finite string 11,2, ..., %, is a proof
in T is computable. This is because for each i < n, checking each one of

“i € T", "j is a logical axiom of £" and “there are j, k < i such that ¢ is
(v = i) is computable. Now consider a computer program P which on
input ¢ starts listing all possible proofs in T and halts as soon as it finds a
proof of ¥. Note that P halts on input % iff T - . So

{¢ : ¢ is an L-sentence and T F ¢} is c.e. O

PA and ZFC

(A)

(B)

Let £ be a finite first order language. Then the set of all logically
valid L-sentences is c.e.

Let Lpa = {0,S,+, -} be the language of Peano arithmetic. It is
easy to see the set of axioms of PA is computable. It follows the the
set Thmpy consisting of all £Lpa-sentences 1 which are theorems of
PA is c.e.

Let £ = {€} be the language of ZFC. It is easy to see the set of
axioms of ZFC is computable. It follows the the set Thmzgc
consisting of all L-sentences ¢ which are theorems of ZFC is c.e.

We'll later show that neither one of the sets Thmps and Thmzec is
computable.

Computable axiomatizations

Suppose L is a finite first order language and T is an L-theory.

1. Let A be a set of L-sentences. We say that A axiomatizes T iff for every
L-sentence ¢, T = iff A .

2. We say that T is computably axiomatizable iff there exists a
computable set A of L-sentences such that A axiomatizes T.

3. We say that T is decidable iff {¢ : ¢ is an L-sentence and T F ¢} is
computable.

Theorem
Suppose L is a finite first order language and T is a consistent complete
L-theory. Assume T is computably axiomatizable. Then T is decidable.

Proof: Let A be a computable set of L-sentences that axiomatizes T. Since T
is complete, for every L-sentence 1, either A+ ¥ or AF —). Put

W = {4 : ¢ is an L-sentence and A+ 1}. Then by the previous theorem, W
is c.e. so we can fix a program P such that P halts on input v iff » € W. Now
consider the program @ which on input ¢ runs P simultaneously on inputs ¥
and —). If P halts on input v, then @ outputs 1. If P halts on input —), then
Q outputs 0. It is clear that @ computes W hence W is computable. So T is
decidable. O

Definability in (w,0,S,+,)

Notation: In what follows, whenever we write “¢)(xi, ..., xx) is a
formula” we mean " is a formula whose free variables are among
Xi,...,Xk . Furthermore, we will write ¢(a,. .., ax) to denote

w(al/xl,...7ak/xk).

Let N = (w,0,S,+,-). Suppose k > 1 and f : w* — w. We say that f is
definable in A iff there is an Lpa-formula ¢(y, x1, X, - . ., xk) such that
the following holds: For every (m, ny, na, ..., nx) € w**t, we have

f(m,na,...,ng)=miff N |=w(m,ng, ... ng)

Suppose X C wk. We say that X is definable in A iff 1x is definable in
N where 1x : wX — w is the characteristic function of X.

Exercise: Suppose X C wk. Then X is definable in A\ iff there exists a
Lpa-formula ¥(xq, ..., xx) such that

X ={(n,...,n) €N = (m,...,nK)}

Definability of computable functions

Our next goal is to show that every total computable function is definable in

N.
Theorem
Every total computable function is definable in N' = (w,0, S, +, -).

Proof: It suffices to show that every total general recursive function is
definable in A. The proof will be broken down into a series of lemmas. The
first lemma says that the basic functions are definable in .

Lemma
Let 1 < j < k. Then the following are definable in N .

(1) f:w" > wandf(x,...,x)=0.
(2) f:w* > wandf(x,...,x)=x.
(3) f:w—wandf(x)=x+1.

Proof: (1) Take v to be the formula y = 0.

(2) Take v to be the formula y = x;.
(3) Take % to be the formula y = S(x). O

Definability of computable functions

The next lemma says that definable functions are closed under
composition.

Lemma
Suppose f : w" — w and for each 1 < k < n, gx : w™ — w. Assume that
each one of f,g1,8,...,8n is definable in N'. Then h: w™ — w is

definable in N' where

h(X1y ..y xm) = Flgr(x1, - s Xm)y -« &a(X1, -+ Xm))

Proof: Let ¢(y,xi,...,x,) be the formula witnessing that f is definable
in A/, For each 1 < k < n, let ¥ (y,x1, X2, -.,Xm) be a formula
witnessing that g is definable in A/, Let n(y,xy,. .., xn) be the formula

(3217227 oo 7zn)(/\ wk(zkaxla v aXm) A w()/azla v azn))

k<n

Then 71 witnesses that h is definable in \V. OJ

Definability of computable functions

For n < w and d > 1, define rem(n, d) to be the remainder when n is
divided by d. For example, rem(7,1) = 0 and rem(14,5) = 4. Note that
0 <rem(n,d) < d.

Definition (5-function)

Define B(x1, x2, x3) = rem(xy1, xox3 + x2 + 1).

It is easy to see that rem(x, y) and ((x1, x2, x3) are definable in \V.
Lemma ([-function lemma)

For any finite sequence of natural numbers (ry, r1, ..., r,), there exist
natural numbers a and b such that for every 0 < i < n,

5(13, a, I) =TI

Definability of computable functions

Proof of the S-function lemma: Let (ry, r1,...,r,) be a finite sequence
of natural numbers. Choose m > n large enough such that a = m! is
greater than each r;.

We claim that the integers 1 + a(i 4+ 1) are pairwise relatively prime for
0 <7 < n (this means that the GCD of any two of them is 1). Suppose
not and fix a prime p and 0 < < j < n such that p divides both

14+ a(i+1)and 1+ a(j + 1). Then p divides their difference a(j — /).
Since p is prime, either p divides a = m! or p divides j — i. In either case,
p < m. So p divides a which means that p does not divide 1 + a(i + 1):
A contradiction.

By the Chinese remainder theorem (see homework), there exists a natural
number b such that for each 0 < i < n, rem(b,1+ a(i + 1)) = r;. Hence
a and b are as required. O

Definability of computable functions

Using the S-function lemma, we can now show that the set of definable
functions in A/ are closed under primitive recursion.

Theorem
Suppose g : W™ — w and h: w"™' — w are both definable in N'. Then
f:w" — w is definable in N where

h(x2, ..., Xxn) ifx1=0
g(f(xi — 1, xoy ..oy Xn)y X1 ...y Xn) ifx1>1

f(xi,x2,...,%n) :{

Proof: Let ¢(y, vi,..., Vat1) witness that g is definable in A and
n(y,w, ..., wn_1) witness that h is definable in A/. Let x(y,x1,...,x,) be the
formula which says the following: There exist a and b such that

(1) 77(5(’% a, 0)7X2a e ?Xn)) and
(2) forevery 0 <i < xi, ¥(B(b,a,i+1),8(b,a,i),x1,...,xs) and
(3) y = B(b,a,x1).
Then witnesses that f is definable in A. O

Definability of computable functions

By the previous theorem and the fact that the zero functions, projections and
successor functions are definable in NV, it follows that every primitive
recursive function is definable in A/. To show that every total general
recursive function is computable, we will use the following theorem. It says that
every general recursive function can be obtained by at most one application of
“unbounded search” to a primitive recursive function. Its proof will not be
covered in this class.

Theorem (Kleene's normal form)

For each k > 1, there exist primitive recursive functions T : w**? — w and
U : w — w such that for every k-ary partial computable function f, there exists
e < w such that for every (x1,...,xx) € Wk, the following hold.

(A) (x1,...,xk) € dom(f) iff there exists z such that T(z,e, xi,...,xx) = 0.

(B) If(x1,...,xx) € dom(f), then f(xi,...,xx) = U(z) where z satisfies:
T(z,e,x1,...,xx) =0 and forevery y < z, T(y,e,x1,...,xk) # 0.

Definability of computable functions

The next theorem says that definable functions in A/ are closed under
“unbounded searches that always terminate”.

Theorem

Suppose g : W — w is definable in N'. Assume that f : w" — w is total
where f is defined by f(xi,...,x,) = z iff g(z,x1,...,xn) =0 and for every
y <z g(y,x1,...,xn) #0. Then f is definable in N.

Proof: Let ¢(y, vi,..., Vay1) witness that g is definable in \V. Let
n(z,x1, ..., %) be the formula that says (0, z, x1, ..., X,) and for every t < z,
=(¥(0, t, x1,...,Xn)). Then n witnesses that f is definable in N. O

Theorem (Computable functions are definable)
Every total computable function is definable in N .

Proof: As noted before, it suffices to show that every total general recursive
function is definable in A. But this easily follows from the above theorem and
Kleene's normal form theorem. O

Godel numbering

Let X pa be the alphabet that has the following 16 symbols:
0757+a'ax7/7_‘7va/\a -) — a(7)av7aa:

For each symbol s, define pos(s) = m iff s is the mth symbol listed
above. For example, pos(0) =1, pos(S) = 2 and pos(=) = 16. Let py
denote the kth prime number. So pg =2, p1 = 3, ps = 11 and so on.
For a string o over L pa, define the Godel number of ¢, denoted "¢, as
follows. If o = sps1s,. .. s, then o' = pg°pi* ... pi* where a; = pos(s;).

Example: "(x' = S(x))7 = 2123556716112131217519132313,

A fixed point theorem

Theorem (Fixed point theorem)

For every Lpa-formula n(x), there exists an Lpa-sentence 1) such that
N EYffN En(y7)

Proof: In what follows, for n < w we will write 7 for the closed term 5"(0).
Define d : w — w as follows.

(1) If nis not the Gddel number of an Lpa-formula with exactly one free
variable, then d(n) = 0.

(2) Suppose n is the Godel number of an Lpa-formula ¢(x) with exactly one
free variable x. Let 6 be the sentence ¢(7). So 6 is obtained by replacing
every free occurrence of x in ¢(x) by the closed term 7. Define
d(n)="0".

Note that d is computable and hence definable in NV. It follows that there is an
Lpa-formula ¢(x) such that for every n < w, N |= ¢(n) iff N |= n(d(n)). Let
m =T¢(x)7. Let ¢ be the sentence ¢(m). Then N = ¢ iff N = ¢(m) iff

N E n(d(m)). By definition, d(m) is the Godel number of v. Therefore

N EYiff N En("y™). So ¢ is as required. O

Tarski's undefinability of truth

Recall that TA (true arithmetic) is the set of all £Lpa-sentences 1) such
that NV |= 4.

Definition

Define Truen = {797 : 4 € TA}.

Theorem (Undefinability of truth in arithmetic)

Truey is not definable in N .

Proof: Suppose not and towards a contradiction, fix an Lpa-formula
@(x) such that for every n < w,

n € Truey iff N = ¢(n)

Applying the fixed point theorem to n = —¢, it follows that there is an
Lpa-sentence 1 such that N = o iff N = —¢(T™). Put m= "y
Then m € Truey iff N |= ¢ iff N |= =¢p(m): A contradiction. O

Axiomatizing true arithmetic

Theorem (Arithmetical truth is undecidable)
TA is not computable.

Proof: Suppose TA is computable. Then Truey is also computable and
hence definable in A/. But we just showed that this is impossible. O

Theorem (Godel’s incompleteness theorem)
TA is not computably axiomatizable. In particular, PA is incomplete.

Proof: Assume TA is computably axiomatizable and fix a computable set
A of Lpa-sentences such that A axiomatizes TA. Since TA is complete, A
is a complete Lpa-theory. By a previous theorem, this implies that the
set of theorems in A must be computable. Since A axiomatizes TA, the
set of theorems in A is TA. So TA is computable: A contradiction.

Since PA is a computable subset of TA, it follows that PA does not
axiomatize TA. So there exists a sentence ¢ € TA such that PA I/ ¢.
Since every theorem in PA is in TA, it also follows that PA I/ —¢.
Therefore PA is incomplete.]

Numeralwise representability in PA

For n < w, we will denote the closed Lpa-term S"(0) by 7.

Definition
Let R C w*. We say that R is numeralwise representable in PA iff there exists
an Lpa-formula (x1, ..., xx) such that for every (m, ..., ng) € w*,

(1) If(m,...,nk) € R, then PAF4(ny, ..., 1K)
(2) If(n1,...,n) ¢ R, then PAF —(7L, ...,)

A function f : w¥ — w is numeralwise representable in PA iff the its graph
R={(y,x1,...,xx) €W : f(x1,...,xx) = y} is numeralwise representable
in PA.

Theorem
Every computable function/relation is numeralwise representable in PA.

Proof: The proof of this fact is essentially the same as the one that showed
that every computable function/relation is definable in N. O

Undecidability of PA

Theorem (PA is undecidable)
{¢: ¢ is an Lpa-sentence and PAF ¢} is not computable.

Proof: Suppose not and towards a contradiction, fix a program P such that for
every Lpa-sentence ¢, the program P on input ¢ returns 1 if PAF ¢ and
returns O otherwise.

Let H C w be a non-computable c.e. set (for example, the halting problem).
Since every c.e. set is the range of some total computable function (see
Homework), there exists a computable f : w — w such that range(f) = H.
Being computable, f is numeralwise representable in PA so we can fix a
formula 1(y, x) such that for every (m, n) € w?,

1. If f(n) = m, then PA+ ¢ (m,n) and

2. If f(n) # m, then PAF —(m,n).
Exercise: Let Q be a program that on input m < w runs P with input
(3x)(¥(m, x)) and outputs whatever P does. Show that @ computes H.

But H is not computable so we get a contradiction. Hence
{¢: ¢ is an Lpa-sentence and PAF ¢} is not computable. O

