(1) Show that there is no set V such that every set is a member of V.
(2) Show that $(x, y)=(a, b)$ iff $x=a$ and $y=b$.
(3) Suppose R is an equivalence relation on A. For each $a \in A$, define the R-equivalence class of a by $[a]=\{b \in A: a R b\}$. Show that $\{[a]: a \in A\}$ is a partition of A.
Furthermore, show that for every partition \mathcal{F} of A, there is an equivalence relation S on A such that \mathcal{F} is the set of all S-equivalence classes.
(4) Let (L, \prec) be a linear ordering. Prove the following.
(a) (L, \prec) is a well-ordering iff there is no sequence $\left\langle x_{n}: n<\omega\right\rangle$ in L such that $(\forall n<\omega)\left(x_{n+1} \prec x_{n}\right)$.
(b) (L, \prec) is a well-ordering iff for every $A \subseteq L,(A, \prec)$ is isomorphic to an initial segment of (L, \prec).
(5) Suppose $\left(X, \prec_{1}\right)$ and $\left(Y, \prec_{2}\right)$ are well-orderings. Then exactly one of the following holds.
(a) $\left(X, \prec_{1}\right) \cong\left(Y, \prec_{2}\right)$.
(b) For some $x \in X,\left(\operatorname{pred}\left(X, \prec_{1}, x\right), \prec_{1}\right) \cong\left(Y, \prec_{2}\right)$.
(c) For some $y \in Y,\left(\operatorname{pred}\left(Y, \prec_{2}, y\right), \prec_{2}\right) \cong\left(X, \prec_{1}\right)$.

Furthermore, in each of the three cases, the isomorphism is unique.
(6) Let $f: \mathcal{P}(\omega) \backslash\{\emptyset\} \rightarrow \omega$ be defined by $f(X)=\min (X)$. Call a well-ordering (A, \prec) f-directed iff $A \subseteq \omega$ and for every $x \in A$,

$$
f(\omega \backslash \operatorname{pred}(A, \prec, x))=x
$$

Describe all f-directed well-orderings.
(7) Show that if $\alpha<\beta$ are ordinals, then there is a unique ordinal γ such that $\alpha+\gamma=\beta$. (Hint: $\gamma=\operatorname{type}(\beta \backslash \alpha, \in)$).
(8) Suppose α, β, γ are ordinals and $\alpha+\beta=\alpha+\gamma$. Show that $\beta=\gamma$.
(9) Suppose $\alpha \cdot \alpha=\beta \cdot \beta$. Show that $\alpha=\beta$.
(10) Show that there is an uncountable chain in $(\mathcal{P}(\omega), \subseteq)$. (Hint: Identify ω with the set of rationals \mathbb{Q} and for each real number x, consider $\{r \in \mathbb{Q}: r \leq x\}$).
(11) Call an ordinal α good iff there exists $X \subseteq \mathbb{R}$ such that $(X,<)$ is order isomorphic to α. Show that α is good iff $\alpha<\omega_{1}$.
(12) Let $\left(P, \preceq_{1}\right)$ be a partial ordering. Show that there exists \preceq_{2} such that $\left(P, \preceq_{2}\right)$ is a linear ordering and \preceq_{2} extends \preceq_{1} which means the following:

$$
(\forall a, b \in P)\left(a \preceq_{1} b \Longrightarrow a \preceq_{2} b\right)
$$

(13) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is additive and $a=f(1)$.
(a) Show that $f(0)=0$.
(b) Show that for every $x \in \mathbb{R}, f(-x)=-f(x)$.
(c) Show that for every $x \in \mathbb{Q}, f(x)=a x$.
(14) Let $H \subseteq \mathbb{R}$ be a Hamel basis.
(a) Show that every nonzero $x \in \mathbb{R}$ can be uniquely written as

$$
x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

where $x_{1}<x_{2}<\cdots<x_{n}$ are in H and $a_{1}, a_{2}, \ldots a_{n}$ are nonzero rational numbers. Uniqueness means the following: Suppose

$$
x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b_{1} y_{1}+b_{2} y_{2}+\cdots+a_{m} y_{m}
$$

where $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{m}$ are in H and $a_{1}, \ldots a_{n}, b_{1}, \ldots, b_{m}$ are nonzero rationals. Show that $m=n$ and for every $1 \leq k \leq n, x_{k}=y_{k}$ and $a_{k}=b_{k}$.
(b) Let $f: H \rightarrow \mathbb{R}$. Show that there is a unique additive function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \subseteq g$.
(15) Show that for every $f: \mathbb{R} \rightarrow \mathbb{R}$ there are injective functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g+h$.
(16) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}, f(x+y)=f(x) f(y)$.
(a) Show that either f is identically zero or range $(f) \subseteq \mathbb{R}^{+}$.
(b) Suppose f is continuous and not identically zero. Show that $f(x)=a^{x}$ for some $a>0$.
(17) Show that there is a discontinuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x) f(y)$ for every $x, y \in \mathbb{R}$.
(18) Prove the following.
(a) For every ordinal $\alpha,|\alpha| \leq \alpha$.
(b) If κ is a cardinal and $\alpha<\kappa$, then $|\alpha|<\kappa$.
(c) There is an injection from X to Y iff $|X| \leq|Y|$.
(d) There is a surjection from X to Y iff $|Y| \leq|X|$.
(e) There is a bijection from X to Y iff $|X|=|Y|$.
(19) Prove the following.
(a) $\left|\mathbb{R}^{\omega}\right|=\mathfrak{c}$.
(b) $|C(\mathbb{R})|=\mathfrak{c}$ where $C(\mathbb{R})$ is the set of all continuous functions from \mathbb{R} to \mathbb{R}.
(c) Let A be the set of all real numbers which are roots of some polynomial equation with rational coefficients. Show that $|A|=\omega$.
(20) Show that \mathbb{R}^{2} cannot be partitioned into circles of positive radii.
(21) Show that \mathbb{R}^{3} can be partitioned into circles of positive radii.
(22) Suppose $A \subseteq \mathbb{R}^{2}$ and every vertical section of A is finite. Show that some horizontal section of $\mathbb{R}^{2} \backslash A$ is uncountable.
(23) Let ϕ be a propositional formula in which \neg doesn't occur. Show that ϕ is satisfiable.
(24) Suppose the set of propositional variables $\mathcal{V} a r$ is uncountable. Use Zorn's lemma to show the following: Let S be a set of propositional formulas such that every finite subset of S is satisfiable. Then S is satisfiable. Hint: Apply Zorn's lemma to (\mathcal{F}, \subseteq) where \mathcal{F} is the set of all functions h such that $\operatorname{dom}(h) \subseteq \mathcal{V} a r$, range $(h) \subseteq\{0,1\}$ and for every finite $F \subseteq S$, there exists a valuation val : V $a r \rightarrow\{0,1\}$ such that $h \subseteq$ val and every formula in F is true under val.
(25) Let $\mathcal{L}, \mathcal{L}^{\prime}$ be two first order languages where \mathcal{L}^{\prime} is obtained from \mathcal{L} by adding a new constant symbol c to \mathcal{L}. Suppose T is an \mathcal{L}-theory, ϕ is an \mathcal{L}-formula with only free variable x, ψ is an \mathcal{L}-sentence and t is an \mathcal{L}-term with no variables. Show that the following hold.
(UG) If $T \vdash_{\mathcal{L}^{\prime}} \phi(c / x)$, then $T \vdash_{\mathcal{L}}(\forall x)(\phi)$.
$(\mathbf{E I})$ If $T \cup\{\phi(c / x)\} \vdash_{\mathcal{L}^{\prime}} \psi$, then $T \cup\{(\exists x)(\phi)\} \vdash_{\mathcal{L}} \psi$.
(26) Suppose $\mathcal{L}, \mathcal{L}^{\prime}$ are first order languages and \mathcal{L}^{\prime} extends \mathcal{L}. Let T be an \mathcal{L}-theory and ϕ be an \mathcal{L}-sentence. Then $T \vdash_{\mathcal{L}} \phi$ iff $T \vdash_{\mathcal{L}^{\prime}} \phi$.
(27) Suppose T is a maximally consistent \mathcal{L}-theory and ϕ, ψ are \mathcal{L}-sentences. Show the following.
(a) $T \vdash \phi$ iff $\phi \in T$.
(b) $\neg \phi \in T$ iff $\phi \notin T$.
(c) $(\phi \wedge \psi) \in T$ iff $\phi \in T$ and $\psi \in T$.
(d) $(\phi \vee \psi) \in T$ iff either $\phi \in T$ or $\psi \in T$.
(e) $(\phi \Longrightarrow \psi) \in T$ iff either $\psi \in T$ or $\phi \notin T$.
(f) $(\phi \Longleftrightarrow \psi) \in T$ iff " $\phi \in T$ iff $\psi \in T$ ".
(28) Suppose T is a consistent complete \mathcal{L}-theory. Let S be the set all \mathcal{L}-sentences ϕ such that $T \vdash \phi$. Show that S is a maximally consistent \mathcal{L}-theory.
(29) Let $\mathcal{L}=\mathcal{L}_{P A} \cup\{c\}$ where c is a new constant symbol. Let Primes $=\{2,3,5,7, \ldots\}$ be the set of all primes numbers. For each $p \in$ Primes, let " p divides c " denote the \mathcal{L}-sentence $(\exists y)\left(S^{p}(0) \cdot y=c\right)$. For each $X \subseteq$ Primes, let T_{X} be the \mathcal{L}-theory

$$
T_{X}=T A \cup\{(p \text { divides } c): p \in X\} \cup\{\neg(p \text { divides } c): p \in \text { Primes } \backslash X\}
$$

where $T A=T h(\omega, 0, S,+, \cdot)$ denotes true arithmetic.
(a) Show that T_{X} is consistent for every $X \subseteq$ Primes.
(b) Show that TA has continuum many pairwise non-isomorphic countable models.
(30) Show that every countable linear ordering is isomorphic to a subordering of the rationals $(\mathbb{Q},<)$.
(31) Let $W \subseteq \omega$. Show that W is c.e. iff there exists a computable function $f: \omega \rightarrow \omega$ such that range $(f)=W$.
(32) Suppose $r_{1}, r_{2}, \ldots, r_{n}, d_{1}, d_{2}, \ldots, d_{n}$ are natural numbers and for every $1 \leq i \leq n$, $0 \leq r_{i}<d_{i}$. Assume that for every $1 \leq i<j \leq n, d_{i}$ and d_{j} are relatively prime. Show that there exists a positive integer N such that for every $1 \leq i \leq n$, $\operatorname{rem}\left(N, d_{i}\right)=r_{i}$.
(33) Let $W \subseteq \omega$ be nonempty. Show that W is c.e. iff there exists a computable $A \subseteq \omega^{2}$ such that $W=\{n \in \omega:(\exists m)((n, m) \in A)\}$.
(34) Suppose $X \subseteq \omega$ is numeralwise representable in PA. Show that X is computable.
(35) Let $H \subseteq \omega$ be a non-computable c.e. set. Show that H is definable in $\mathcal{N}=(\omega, 0, S,+, \cdot)$ but not numeralwise representable in PA.
(36) Do the Exercise on Lecture slide 202.

