
MTH302: Set Theory and Mathematical Logic
Homework: These will be periodically updated. Odd Semester, 2021/22

(1) Show that there is no set V such that every set is a member of V .

(2) Show that (x, y) = (a, b) iff x = a and y = b.

(3) Suppose R is an equivalence relation on A. For each a ∈ A, define the R-equivalence
class of a by [a] = {b ∈ A : aRb}. Show that {[a] : a ∈ A} is a partition of A.
Furthermore, show that for every partition F of A, there is an equivalence relation S
on A such that F is the set of all S-equivalence classes.

(4) Let (L,≺) be a linear ordering. Prove the following.

(a) (L,≺) is a well-ordering iff there is no sequence 〈xn : n < ω〉 in L such that
(∀n < ω)(xn+1 ≺ xn).

(b) (L,≺) is a well-ordering iff for every A ⊆ L, (A,≺) is isomorphic to an initial
segment of (L,≺).

(5) Suppose (X,≺1) and (Y,≺2) are well-orderings. Then exactly one of the following
holds.

(a) (X,≺1) ∼= (Y,≺2).

(b) For some x ∈ X, (pred(X,≺1, x),≺1) ∼= (Y,≺2).

(c) For some y ∈ Y , (pred(Y,≺2, y),≺2) ∼= (X,≺1).

Furthermore, in each of the three cases, the isomorphism is unique.

(6) Let f : P(ω) \ {∅} → ω be defined by f(X) = min(X). Call a well-ordering (A,≺)
f -directed iff A ⊆ ω and for every x ∈ A,

f(ω \ pred(A,≺, x)) = x

Describe all f -directed well-orderings.

(7) Show that if α < β are ordinals, then there is a unique ordinal γ such that α+ γ = β.
(Hint: γ = type(β \ α,∈)).

(8) Suppose α, β, γ are ordinals and α + β = α + γ. Show that β = γ.

(9) Suppose α · α = β · β. Show that α = β.

(10) Show that there is an uncountable chain in (P(ω),⊆). (Hint: Identify ω with the set
of rationals Q and for each real number x, consider {r ∈ Q : r ≤ x}).

(11) Call an ordinal α good iff there exists X ⊆ R such that (X,<) is order isomorphic to
α. Show that α is good iff α < ω1.



(12) Let (P,�1) be a partial ordering. Show that there exists �2 such that (P,�2) is a
linear ordering and �2 extends �1 which means the following:

(∀a, b ∈ P )(a �1 b =⇒ a �2 b)

(13) Suppose f : R→ R is additive and a = f(1).

(a) Show that f(0) = 0.

(b) Show that for every x ∈ R, f(−x) = −f(x).

(c) Show that for every x ∈ Q, f(x) = ax.

(14) Let H ⊆ R be a Hamel basis.

(a) Show that every nonzero x ∈ R can be uniquely written as

x = a1x1 + a2x2 + · · ·+ anxn

where x1 < x2 < · · · < xn are in H and a1, a2, . . . an are nonzero rational numbers.
Uniqueness means the following: Suppose

x = a1x1 + a2x2 + · · ·+ anxn = b1y1 + b2y2 + · · ·+ amym

where x1 < x2 < · · · < xn and y1 < y2 < · · · < ym are in H and a1, . . . an, b1, . . . , bm
are nonzero rationals. Show that m = n and for every 1 ≤ k ≤ n, xk = yk and
ak = bk.

(b) Let f : H → R. Show that there is a unique additive function g : R→ R such
that f ⊆ g.

(15) Show that for every f : R→ R there are injective functions g : R→ R and h : R→ R
such that f = g + h.

(16) Suppose f : R→ R satisfies: For every x, y ∈ R, f(x+ y) = f(x)f(y).

(a) Show that either f is identically zero or range(f) ⊆ R+.

(b) Suppose f is continuous and not identically zero. Show that f(x) = ax for
some a > 0.

(17) Show that there is a discontinuous function f : R→ R such that f(x+ y) = f(x)f(y)
for every x, y ∈ R.

(18) Prove the following.

(a) For every ordinal α, |α| ≤ α.

(b) If κ is a cardinal and α < κ, then |α| < κ.

(c) There is an injection from X to Y iff |X| ≤ |Y |.
(d) There is a surjection from X to Y iff |Y | ≤ |X|.
(e) There is a bijection from X to Y iff |X| = |Y |.



(19) Prove the following.

(a) |Rω| = c.

(b) |C(R)| = c where C(R) is the set of all continuous functions from R to R.

(c) Let A be the set of all real numbers which are roots of some polynomial
equation with rational coefficients. Show that |A| = ω.

(20) Show that R2 cannot be partitioned into circles of positive radii.

(21) Show that R3 can be partitioned into circles of positive radii.

(22) Suppose A ⊆ R2 and every vertical section of A is finite. Show that some horizontal
section of R2 \ A is uncountable.

(23) Let φ be a propositional formula in which ¬ doesn’t occur. Show that φ is satisfiable.

(24) Suppose the set of propositional variables Var is uncountable. Use Zorn’s lemma to
show the following: Let S be a set of propositional formulas such that every finite
subset of S is satisfiable. Then S is satisfiable. Hint: Apply Zorn’s lemma to (F ,⊆)
where F is the set of all functions h such that dom(h) ⊆ Var, range(h) ⊆ {0, 1} and
for every finite F ⊆ S, there exists a valuation val : Var → {0, 1} such that h ⊆ val
and every formula in F is true under val.

(25) Let L,L′ be two first order languages where L′ is obtained from L by adding a new
constant symbol c to L. Suppose T is an L-theory, φ is an L-formula with only free
variable x, ψ is an L-sentence and t is an L-term with no variables. Show that the
following hold.

(UG) If T `L′ φ(c/x), then T `L (∀x)(φ).

(EI) If T ∪ {φ(c/x)} `L′ ψ, then T ∪ {(∃x)(φ)} `L ψ.

(26) Suppose L,L′ are first order languages and L′ extends L. Let T be an L-theory and
φ be an L-sentence. Then T `L φ iff T `L′ φ.

(27) Suppose T is a maximally consistent L-theory and φ, ψ are L-sentences. Show the
following.

(a) T ` φ iff φ ∈ T .

(b) ¬φ ∈ T iff φ /∈ T .

(c) (φ ∧ ψ) ∈ T iff φ ∈ T and ψ ∈ T .

(d) (φ ∨ ψ) ∈ T iff either φ ∈ T or ψ ∈ T .

(e) (φ =⇒ ψ) ∈ T iff either ψ ∈ T or φ /∈ T .

(f) (φ ⇐⇒ ψ) ∈ T iff “φ ∈ T iff ψ ∈ T”.

(28) Suppose T is a consistent complete L-theory. Let S be the set all L-sentences φ such
that T ` φ. Show that S is a maximally consistent L-theory.



(29) Let L = LPA ∪ {c} where c is a new constant symbol. Let Primes = {2, 3, 5, 7, . . . } be
the set of all primes numbers. For each p ∈ Primes, let “p divides c” denote the
L-sentence (∃y)(Sp(0) · y = c). For each X ⊆ Primes, let TX be the L-theory

TX = TA ∪ {(p divides c) : p ∈ X} ∪ {¬(p divides c) : p ∈ Primes \X}

where TA = Th(ω, 0, S,+, ·) denotes true arithmetic.

(a) Show that TX is consistent for every X ⊆ Primes.

(b) Show that TA has continuum many pairwise non-isomorphic countable
models.

(30) Show that every countable linear ordering is isomorphic to a subordering of the
rationals (Q, <).

(31) Let W ⊆ ω. Show that W is c.e. iff there exists a computable function f : ω → ω
such that range(f) = W .

(32) Suppose r1, r2, . . . , rn, d1, d2, . . . , dn are natural numbers and for every 1 ≤ i ≤ n,
0 ≤ ri < di. Assume that for every 1 ≤ i < j ≤ n, di and dj are relatively prime.
Show that there exists a positive integer N such that for every 1 ≤ i ≤ n,
rem(N, di) = ri.

(33) Let W ⊆ ω be nonempty. Show that W is c.e. iff there exists a computable A ⊆ ω2

such that W = {n ∈ ω : (∃m)((n,m) ∈ A)}.

(34) Suppose X ⊆ ω is numeralwise representable in PA. Show that X is computable.

(35) Let H ⊆ ω be a non-computable c.e. set. Show that H is definable in
N = (ω, 0, S,+, ·) but not numeralwise representable in PA.

(36) Do the Exercise on Lecture slide 202.


