
MTH404: Analysis II

LECTURE NOTES



σ-ideals

Definition (Ideals)
Let X be a nonempty set. We say that I is an ideal on X iff I is a family
of subsets of X satisfying the following.

(i) ∅ ∈ I and X /∈ I.

(ii) If A ⊆ B ⊆ X and B ∈ I, then A ∈ I.

(iii) If A,B ∈ I, then A ∪ B ∈ I. So I is closed under finite unions.

Definition (Sigma-ideals)
I is a σ-ideal on X iff I is an ideal on X and for every countable A ⊆ I,⋃
A ∈ I.

Example: Let X be an uncountable set and I be the family of all
countable subsets of X . Then I is a σ-ideal on X .



Meager sets

Let (X , d) be a metric space and D ⊆ X .

(a) D is dense in X iff for every nonempty open U ⊆ X , D ∩ U 6= ∅.
(b) D is nowhere dense in X iff for every nonempty open U ⊆ X , there

exists a nonempty open V ⊆ X such that V ⊆ U and V ∩ D = ∅.
(c) D is open dense in X iff it is both open and dense in X .

(d) D is meager in X iff there exists a countable family {Dn : n ≥ 1} such
that each Dn is nowhere dense in X and D ⊆

⋃
{Dn : n ≥ 1}.

(e) For historical reasons, some people also write “D is of the first category
in X” instead of “D is meager in X” and “D is of the second category
in X” instead of “D is non-meager in X”.

Exercise: Let (X , d) be a metric space and D ⊆ X . Show that the following
are equivalent.

(1) D is nowhere dense in X .

(2) cl(D) (closure of D) is nowhere dense in X .

(3) X \ D contains an open dense subset of X .



Baire Category Theorem

Recall that a metric space (X , d) is complete iff every Cauchy sequence in X
converges to some point in X .

Theorem (Baire Category Theorem)
Suppose (X , d) is a complete metric space and {Dn : n ≥ 1} is a countable
family of nowhere dense subsets of X . Then X \

⋃
{Dn : n ≥ 1} is dense in X .

Proof: Put D =
⋃
{Dn : n ≥ 1}. Let U be a nonempty open subset of X . We

must show that U \ D 6= ∅. Indutively, choose a sequence 〈Bn : n ≥ 1〉 of open
balls in X as follows. B1 is an open ball of radius ≤ 1 such that cl(B1) ⊆ U
and B1 ∩ D1 = ∅. This can be done because D1 is nowhere dense in X . Having
chosen Bn, let Bn+1 be an open ball of radius ≤ 2−n such that cl(Bn+1) ⊆ Bn

and Bn+1 ∩ Dn+1 = ∅. Once again, we are using the fact that Dn+1 is nowhere
dense in X . Note that Bn+1 ⊆ Bn ⊆ U for every n ≥ 1. Let an be the center of
Bn. Since the radii of Bn converge to 0, it follows that 〈an : n ≥ 1〉 is a Cauchy
sequence in X . Since X is complete, this sequence converges to say a ∈ X . It
is easy to see that a ∈ U \ D. It follows that X \ D is dense in X .



Meager ideal

Corollary
Let (X , d) be a complete metric space and M be the family of all meager
subsets of X . Then M is a σ-ideal on X .

Proof: The only nontrivial thing to check is X /∈M. But this follows from the
Baire Category theorem.

Lemma
Let M be the meager ideal on Rn. Let I be the σ-ideal of all countable
subsets of Rn. Then I is a proper subideal of M.

Proof: Note that {x} is nowhere dense in Rn for every x ∈ Rn. So I ⊆M.
Next suppose n = 1. Let A be the set of all x ∈ [0, 1] whose decimal expansion
contains only two digits: 0, 1. Then it is easy to see that A is uncountable and
nowhere dense in R. So A ∈M \ I.
Finally suppose n ≥ 2. Let A be a line in Rn. Then A is uncountable and
nowhere dense in Rn. So A ∈M \ I. It follows that I is a proper subideal of
M.



Null subsets of R

Definition (Null sets)
Let X ⊆ R. We say that X is Lebesgue null (or just null) iff for every ε > 0,
there exists a countable family {Jk : k ≥ 1} of open intervals in R such that

(a) X ⊆
⋃
{Jk : k ≥ 1} and

(b)
∑

k≥1 length(Jk) < ε.

Lemma
Suppose Xn ⊆ R is null for each n ≥ 1. Then

⋃
{Xn : n ≥ 1} is also null.

Proof: Put X =
⋃
{Xn : n ≥ 1}. Let ε > 0. Since each Xn is null, we can find

a countable family {Jn,k : k ≥ 1} of open intervals such that
Xn ⊆

⋃
{Jn,k : k ≥ 1} and

∑
k≥1 length(Jn,k) < ε/2n.

Since the union of a countable family of countable sets is countable, the family
F = {Jn,k : n, k ≥ 1} is countable. Let {Ik : k ≥ 1} enumerate all members of
F . Then X ⊆

⋃
{Ik : k ≥ 1} and

∑
k≥1 length(Ik) <

∑
n≥1 ε/2n = ε. It follows

that X is null.



Null ideal on R

Lemma
(i) Every countable X ⊆ R is null.

(ii) For every a < b, the interval (a, b) is not null.

(iii) The ternary Cantor set is an uncountable null set.

Proof: See Homework.

Corollary
Let N be the family of Lebesgue null subsets of R. Then N is a σ-ideal on R
that properly extends the σ-ideal of countable subsets of R.

Proof: Follows from the previous two lemmas.



Null vs Meager

The following theorem says that the null and the meager ideals on
R are orthogonal in the following sense.

Theorem
There is a partition AtB = R such that A is null and B is meager.

Proof: Let {ak : k ≥ 1} be an enumeration of all rationals. For
each n ≥ 1, let

Un =
⋃
k≥1

(
ak − 2−(n+k), ak + 2−(n+k)

)
Define A =

⋂
{Un : n ≥ 1} and B = R \ A. The reader should

check that A,B are as required.



What is a measure?

Our starting point is the following question. Are there any interesting
generalizations of the notions of length/area/volume to arbitrary subsets of
R/R2/R3?

To simplify matters, let us try to extend the notion of “length” to arbitrary
subsets of R. So we are looking for a function m : P(R)→ [0,∞] that satisfies
some desirable properties. Here’s a list of such properties.

(1) m((a, b)) = b − a for every a < b in R.

(2) (Isometric invariant) If A is congruent to B, then m(A) = m(B).

(3) (Countably additive) For every countable family {An : n ≥ 1} of pairwise

disjoint subsets of R, m
(⋃

n≥1 An

)
=
∑

n≥1 m(An).

Unfortunately, there is no such generalization.

Theorem (Vitali, 1905)
There is no m : P(R)→ [0,∞] that satisfies (1)− (3) above.



Vitali’s obstruction

First note that any m satisfying (3) is also monotone is the following sense: If
A ⊆ B ⊆ R, then m(A) ≤ m(B).

Towards a contradiction, suppose there is such an m. Define a binary relation
E on R by aEb iff a− b ∈ Q. It is easy to check that E is an equivalence
relation on R. For each a ∈ R, let [a]E denote the E -equivalence class of a.
Then [a]E = Q + a and F = {[a]E : a ∈ R} is a partition of R. Since each
[a]E = a + Q is dense in R, the sets [a]E ∩ [0, 1] are all nonempty. Therefore,
using the axiom of choice, we can find V ⊆ [0, 1] such that V intersects each
member of F at exactly one point. Observe that if a 6= b are rationals, then
V + a and V + b are disjoint.

We first claim that m(V ) > 0. Suppose not. Then by properties (2) and (3),
∞ = m(R) =

∑
r∈Q m(V + r) = 0 which is a contradiction. So m(V ) > 0.

Define W =
⋃
{V + r : r ∈ Q ∩ [0, 1]}. Since V ⊆ [0, 1], we get W ⊆ [0, 2].

Now m(W ) = m(
⋃
{V + r : r ∈ Q ∩ [0, 1]}) =

∑
r∈Q∩[0,1] m(V + r) =∞. But

W ⊆ [0, 2]. So 2 = m([0, 2]) ≥ m(W ) =∞ which is a contradiction. It follows
that no such m exists.



Banach Measure Problem

Banach measure problem asks the following. Is there a function
m : P([0, 1])→ [0, 1] that satisfies the following?

(1) For every 0 ≤ a < b ≤ 1, m((a, b)) = b − a.

(2) (Countably additive) For every countable family {An : n ≥ 1} of pairwise
disjoint subsets of [0, 1],

m

⋃
n≥1

An

 =
∑
n≥1

m(An)

Banach and Kuratowski (1920) showed that under the continuum hypothesis
(CH), there is no such m. Godel (1938) showed that CH cannot be disproved
in ZFC. Solovay (1971) showed that it is consistent with ZFC that there is such
an m. So Banach’s measure problem is undecidable in ZFC.



Lebesgue outer measure on R
Definition (Lebesgue outer measure on R)
Define µ? : P(R)→ [0,∞] as follows.

µ?(X ) = inf
{∑

n≥1

length(Jn) : 〈Jn : n ≥ 1〉 is a sequence of open

intervals such that X ⊆
⋃
n≥1

Jn
}

Lemma
(1) X ⊆ R is Lebesgue null iff µ?(X ) = 0.

(2) (Translation invariant) For every X ⊆ R and t ∈ R, µ?(X + t) = µ?(X ).

(3) (Monotone) If X ⊆ Y ⊆ R, then µ?(X ) ≤ µ?(Y ).

(4) (Countably subadditive) If Xn ⊆ R for each n ≥ 1 and X =
⋃

n≥1 Xn, then

µ?(X ) ≤
∑
n≥1

µ?(Xn)



Lebesgue outer measure on R
Proof: Facts (1), (2) and (3) are immediate from the definition of µ?. Let us
check (4). Suppose Xn ⊆ R for each n ≥ 1 and X =

⋃
n≥1 Xn. We can assume

that µ?(Xn) <∞ for every n ≥ 1, otherwise the inequality is trivial. Let ε > 0
be arbitrary. For each n ≥ 1, choose a sequence 〈Jn,k : k ≥ 1〉 of open intervals
such that Xn ⊆

⋃
k≥1 Jn,k and∑

k≥1

length(Jn,k) < µ?(Xn) + ε/2n

Let 〈Ik : k ≥ 1〉 enumerate all intervals in the countable family
{Jn,k : k, n ≥ 1}. Then∑
k≥1

length(Ik) ≤
∑
n≥1

∑
k≥1

length(Jn,k) <
∑
n≥1

(µ?(Xn) + ε/2n) = ε+
∑
n≥1

µ?(Xn)

Since X ⊆
⋃

k≥1 Ik , it follows that µ?(X ) ≤ ε+
∑

n≥1 µ
?(Xn). As this

inequality holds for all ε > 0, we must have

µ?(X ) ≤
∑
n≥1

µ?(Xn)



Lebesgue outer measure on R

Lemma
For every closed interval J ⊆ R, µ?(J) = length(J).

Proof: Let J = [a, b] where −∞ < a < b <∞. For each ε > 0, the open
intervals (a, b), (a− ε, a + ε) and (b − ε, b + ε) cover [a, b] and the sum of
their lengths is (b − a) + 2ε. So µ?(J) ≤ b − a. For the other inequality,
suppose 〈Jn : n ≥ 1〉 is a sequence of open intervals that cover [a, b]. Since
[a, b] is compact, finitely many of Jn’s already cover [a, b]. Fix k ≥ 1 such that
[a, b] ⊆

⋃
n≤k Jn. Now use induction on k to show that∑

n≤k

length(Jn) ≥ b − a

Hence
∑

n≥1 length(Jn) ≥ b − a. It follows that µ?(J) ≥ b − a and we are
done.

Corollary
For every open interval J ⊆ R, µ?(J) = length(J).

Proof: Exercise.



Lebesgue outer measure on Rn

Definition (Open boxes, Volumes)
A subset B ⊆ Rn is an open n-box iff there are bounded open intervals
J1, J2, . . . , Jn in R such that B = J1 × J2 × · · · × Jn. We define the n-volume of
B by

voln(B) =
∏

1≤k≤n

length(Jk)

Definition (Lebesgue outer measure on Rn)
Define µ?n : P(Rn)→ [0,∞] as follows.

µ?n(X ) = inf
{∑

n≥1

voln(Bn) : 〈Bn : n ≥ 1〉 is a sequence of

n-boxes such that X ⊆
⋃
n≥1

Bn

}



Lebesgue outer measure on Rn

The following lemma can be proved exactly like the one for 1-dimensional
Lebesgue outer measure.

Lemma
(1) (Translation invariant) For every X ⊆ Rn and t ∈ Rn, µ?n(X + t) = µ?n(X ).

(3) (Monotone) If X ⊆ Y ⊆ Rn, then µ?n(X ) ≤ µ?n(Y ).

(4) (Countably subadditive) If Xm ⊆ Rn for each m ≥ 1 and X =
⋃

m≥1 Xm,
then

µ?n(X ) ≤
∑
m≥1

µ?n(Xm)

We will sometimes write µ? instead of µ?n if the dimension n is clear from the
context.

µ? is a highly non-additive function: A result of Lusin says that for every
X ⊆ Rn, there exists a partition X = AtB such that µ?(A) = µ?(B) = µ?(X ).
But Caratheodory showed that there is a reasonably “large family” M of
subsets of Rn such that µ? �M is countably additive. His arguments for
proving this work in a much more general setting that will now be described.



Abstract outer measures and measurable sets

Definition (Outer measure)
Let X be a nonempty set. An outer measure on X is a function
m : P(X )→ [0,∞] satisfying the following.

(1) m(∅) = 0.

(2) (Monotone) If A ⊆ B ⊆ X , then m(A) ≤ m(B).

(3) (Countably subadditive) If An ⊆ X for every n ≥ 1 and A =
⋃

n≥1 An,
then m(A) ≤

∑
n≥1 m(An)

Definition (Caratheodory’s criterion)
Suppose m is an outer measure on X . We say that E ⊆ X is m-measurable iff
for every A ⊆ X , m(A) = m(A ∩ E) + m(A \ E).

Remark: Note that m(A) ≤ m(A∩ E) + m(A \ E) follows from the fact that m
is countably subadditive. Therefore, to show that E ⊆ X is m-measurable it
suffices to show that m(A) ≥ m(A ∩ E) + m(A \ E) for every A ⊆ X .



Caratheodory’s theorem

Theorem (Caratheodory)
Suppose m is an outer measure on X . Let M = {E ⊆ X : E is m-mesurable}.

(1) ∅ ∈ M and X ∈M. If m(E) = 0, then E ∈M.

(2) If E ∈M, then X \ E ∈M.

(3) If E1,E2 ∈M, then E1 ∪ E2 ∈M.

(4) If E1,E2 ∈M are disjoint, then m(E1 ∪ E2) = m(E1) + m(E2).

(5) If En ∈M for every n ≥ 1, then
⋃

n≥1 En ∈M.

(6) If 〈En : n ≥ 1〉 is a sequence of pairwise disjoint sets in M and
E =

⋃
n≥1 En, then m(E) =

∑
n≥1 m(En).

Proof: (1) and (2) are obvious from the definition of m-measurable.

(3) Assume E1,E2 ∈M. For W ⊆ X , we will write W c (complement of W )
for X \W . Let A ⊆ X be arbitrary. As E1,E2 ∈M, we have
m(A) = m(A ∩ E1) + m(A ∩ E c

1 ) =
= m(A ∩ E1 ∩ E2) + m(A ∩ E1 ∩ E c

2 ) + m(A ∩ E c
1 ∩ E2) + m(A ∩ E c

1 ∩ E c
2 ).



Caratheodory’s theorem

Since E1 ∪ E2 = (E1 ∩ E2) ∪ (E1 ∩ E c
2 ) ∪ (E c

1 ∩ E2), after intersecting both sides
with A and applying countable subadditivity of m, we get
m(A ∩ (E1 ∪ E2)) ≤ m(A ∩ (E1 ∩ E2)) + m(A ∩ (E1 ∩ E c

2 )) + m(A ∩ (E c
1 ∩ E2)).

Adding m(A ∩ (E1 ∪ E2)c) on both sides and using the fact that
(E1 ∪ E2)c = E c

1 ∩ E c
2 , we get m(A ∩ (E1 ∪ E2)) + m(A ∩ (E1 ∪ E2)c) ≤ m(A).

As A ⊆ X was arbitrary, it follows that E1 ∪ E2 ∈M.

(4) Since E1 ∩ E2 = ∅, we get (E1 ∪ E2) ∩ E c
1 = E2. Using the fact that E1 is

m-measurable, we get
m(E1 ∪ E2) = m((E1 ∪ E2) ∩ E1) + m((E1 ∪ E2) ∩ E c

1 ) = m(E1) + m(E2).

(5) Suppose En ∈M for every n ≥ 1. Define F1 = E1 and for n ≥ 2,
Fn = En ∩ (E1 ∪ · · · ∪ En−1)c . Then Fn’s are pairwise disjoint members of M
(by clauses (2)-(3) above) and

⋃
n≥1 En =

⋃
n≥1 Fn. It follows that to prove

(5), it suffices to show that M is closed under countable unions of pairwise
disjoint sets.



Caratheodory’s theorem

So assume that En’s are pairwise disjoint members of M. Put E =
⋃

n≥1 En,
G0 = ∅ and Gk = E1 ∪ · · · ∪ Ek for each k ≥ 1. Since Ek ∈M, for any A ⊆ X ,
we have m(A ∩ Gk) = m((A ∩ Gk) ∩ Ek) + m((A ∩ Gk) ∩ E c

k ) =
= m(A ∩ Ek) + m(A ∩ Gk−1) for every k ≥ 1. It follows that
m(A ∩ Gk) =

∑
n≤k m(A ∩ En). Hence

m(A) = m(A ∩ Gk) + m(A ∩ G c
k ) ≥

∑
n≤k

m(A ∩ En) + m(A ∩ E c)

Letting k →∞, we get m(A) ≥
∑

n≥1 m(A ∩ En) + m(A ∩ E c). Using
countable subadditivity of m, we have

m(A) ≥
∑
n≥1

m(A ∩ En) + m(A ∩ E c) ≥ m(A ∩ E) + m(A ∩ E c)

So m(A) ≥ m(A ∩ E) + m(A ∩ E c) which implies that E ∈M and that all
inequalities above are equalities. Plugging A = E gives

∑
n≥1 m(En) = m(E).

This proves both (5) and (6).



Sigma-algebras and measurable spaces

The family M of m-measurable sets in Caratheodory’s theorem is an example
of a σ-algebra.

Definition (Sigma-algebra)
Let X be a nonempty set. A σ-algebra on X is a family F of subsets of X that
satisfies the following.

(1) ∅ ∈ F and X ∈ F .

(2) (Closed under complements) If E ∈ F , then X \ E ∈ F .

(3) (Closed under countable unions) If En ∈ F for every n ≥ 1, then⋃
n≥1 En ∈ F .

Definition (Measurable space)
A measurable space is a pair (X ,F) where X is a nonempty set and F is a
σ-algebra on X .



Measures and measure spaces

Suppose F is a σ-algebra on a nonempty set X and m : F → [0,∞]. We say
that m is a measure iff the following hold.

(1) m(∅) = 0.

(2) (Countably additive) For every sequence 〈En : n ≥ 1〉 of pairwise disjoint
sets in F ,

m(
⋃
n≥1

En) =
∑
n≥1

m(En)

If m(X ) <∞, we say that m is a finite measure. If m(X ) = 1, we say that m
is a probability measure.

Definition (Measure space)
A measure space is a triplet (X ,F , ν) where (X ,F) is a measurable space and
ν : F → [0,∞] is a measure.

Example: Let m : P(X )→ [0,∞] be an outer measure on X . Let M be the
family of all m-measurable sets and ν = m �M. Then (X ,M, ν) is a measure
space.



Lebesgue measure on Rn

Definition (Lebesgue measure)
Recall that µ?n is an outer measure on Rn. We say that E ⊆ Rn is
Lebesgue measurable iff E is µ?n-measurable (Caratheodory criterion). Let
Mn denote that family of all Lebesgue measurable subsets of Rn. By
Caratheodory’s theorem, Mn is a σ-algebra on Rn and µ?n �Mn is a
measure. We denote the restricted map µ?n �Mn by µn and call it
Lebesgue measure. So a set is Lebesgue measurable iff it belongs to
dom(µn) =Mn. The triplet (Rn, dom(µn), µn) is called Lebesgue
measure space.



Intervals are Lebesgue measurable

Lemma
Every open interval J ⊆ R is Lebesgue measurable.

Proof: Let J = (a, b). We need to show that for every A ⊆ R,
µ?(A) ≥ µ?(A ∩ J) + µ?(A \ J). If µ?(A ∩ J) + µ?(A \ J) =∞, this is clear as
µ? is monotone. So assume both µ?(A ∩ J) and µ?(A \ J) are finite. If
µ?(A) =∞, we are done. So assume µ?(A) is also finite. Let ε > 0 be
arbitrary. Choose a sequence of open intervals 〈Jn : n ≥ 1〉 whose union
contains A such that

∑
n≥1 length(Jn) < µ?(A) + ε. Let In = Jn ∩ (a, b),

K1,n = Jn ∩ (−∞, a) and K2,n = (b,∞). Then A ∩ J ⊆
⋃

n≥1 In and
A \ J ⊆

⋃
n≥1(K1,n ∪ K2,n) ∪ {a, b}. Therefore, µ?(A ∩ J) ≤

∑
n≥1 length(In)

and µ?(A \ J) ≤
∑

n≥1(length(K1,n) + length(K2,n)). Now adding these two
inequalities and using length(Jn) = length(In) + length(K1,n) + length(K2,n), we
get

µ?(A ∩ J) + µ?(A \ J) ≤
∑
n≥1

length(Jn) < µ?(A) + ε

Letting ε→ 0, we get µ?(A) ≥ µ?(A ∩ J) + µ?(A \ J). It follows that J is
Lebesgue measurable.



Open sets are Lebesgue measurable

The following can be proved just like the previous Lemma. We
omit the tedious details.

Lemma
Every open n-box B ⊆ Rn is Lebesgue measurable.

Let U ⊆ Rn be open. Let F be the family of all open n-boxes
B = J1 × · · · × Jn where B ⊆ U and J1, . . . , Jn are open intervals
with rationals end points. Then each member of F is Lebesgue
measurable and since F is countable,

⋃
F = U is also Lebesgue

measurable. So we have the following.

Corollary

Every open U ⊆ Rn is Lebesgue measurable.



σ-algebra generated by a family of sets

Suppose X is a nonempty set and A is a collection of subsets of X .
The σ-algebra generated by A is defined to be the smallest
(under inclusion) σ-algebra F on X such that A ⊆ F .

Exercise: Suppose X is a nonempty set and A is a collection of
subsets of X . Show that the σ-algebra generated by A is the
intersection of all σ-algebras on X that contain A.



Borel subsets of Rn

The Borel σ-algebra on Rn is the σ-algebra generated by the family of all open
subsets of Rn. We denote it by Borel(Rn). If the dimension n is clear from the
context, we drop Rn and just write Borel.

For each k ≥ 1, define Σ0
k(Rn) and Π0

k(Rn) as follows.

(a) Σ0
1(Rn) is the family of all open subsets of Rn and Π0

1(Rn) is the family of
all closed subsets of Rn.

(b) Σ0
k+1(Rn) is the family of all countable unions of members of Π0

k(Rn) and
Π0

k+1(Rn) is the family of all countable intersections of members of
Σ0

k(Rn).

We sometimes drop Rn and just write Σ0
n and Π0

n. Members of Σ0
2 (resp. Π0

2)
are also called Fσ-sets (resp. Gδ-sets). Members of Σ0

3 (resp. Π0
3) are also

called Gδσ-sets (resp. Fσδ-sets) and so on. It can be shown that Σ0
k (resp. Π0

k)
is a proper subset of Σ0

k+1 (resp. Π0
k+1) and their union does not exhaust Borel⋃

k≥1

Σ0
k ∪ Π0

k ( Borel



Borel hierarchy

This section assumes some background in ordinals and cardinals. Recall that ω1

is the least uncountable cardinal. Using transfinite recursion, define for each
1 ≤ α < ω1, the families Σ0

α(Rn) and Π0
α(Rn) as follows.

(a) Σ0
1(Rn) is the family of all open subsets of Rn and Π0

1(Rn) is the family of
all closed subsets of Rn.

(b) Σ0
α+1(Rn) is the family of all countable unions of members of Π0

α(Rn) and
Π0
α+1(Rn) is the family of all countable intersections of members of

Σ0
α(Rn).

(c) If α is a limit ordinal, then Σ0
α(Rn) =

⋃
{Σ0

β(Rn) : 1 ≤ β < α} and
Π0
α(Rn) =

⋃
{Π0

β(Rn) : 1 ≤ β < α}.
Since every countable subset of ω1 is bounded below ω1, it follows that
Borel =

⋃
{Σ0

α ∪ Π0
α : 1 ≤ α < ω1}. Let c = |R| be the cardinality of R. Using

the fact that |cω| = c, it is easy to check that |Σ0
α| = |Π0

α| = c for each
1 ≤ α < ω1. Hence |Borel| = |c× ω1| = c.



Borel vs Lebesgue measurable

Since each open subset of Rn is Lebesgue measurable and the family
dom(µn) of Lebesgue measurable sets is a σ-algebra, it follows that every
Borel set is Lebesgue measurable.

Lemma
Borel(Rn) ( dom(µn).

Proof: We only need to show that this inclusion is proper. Fix A ⊆ Rn

such that |A| = c and µn(A) = 0. Such A exists because when n = 1, we
can take A to be the ternary Cantor set and when n ≥ 2, we can take A
to be a line in Rn. Note that for every B ⊆ A, µn(B) = 0. So every
subset of A is Lebesgue measurable. It follows that the cardinality of the
set of all Lebesgue measurable subsets of Rn is 2c. Since
|Borel(Rn)| = c < 2c, it follows that Borel(R)n ( dom(µn).



Regularity of Lebesgue measure

E ⊆ Rn is bounded iff for some 0 < M <∞, E ⊆ [−M,M]n. This
implies that µ?(E ) ≤ (2M)n is finite.

Theorem
Let E ⊆ Rn be bounded and Lebesgue measurable. Then for every ε > 0,
there exists a compact set K and an open set U such that K ⊆ E ⊆ U
and µ(U \ K ) < ε.

Proof: Fix 0 < M <∞ such that E ⊆ [−M,M]n. Let µ?(E ) = a <∞.
Choose a sequence 〈Bk : k ≥ 1〉 on open n-boxes such that E ⊆

⋃
k≥1 Bk

and
∑

k≥1 µ(Bk) < a + ε/2. Let U =
⋃

n≥1 Bk . Then U is open, E ⊆ U
and µ(U) < a + ε/2. Hence µ(U \ E ) = µ(U)− µ(E ) < ε/2.
Repeating this argument with F = [−M,M]n \ E , we can find an open
set V such that F ⊆ V and µ(V \ F ) < ε/2. Put K = [−M,M]n \V and
note that K is compact being both bounded and closed. Next as F ⊆ V ,
we get K ⊆ E . Also E \ K = V \ F . So µ(E \ K ) = µ(V \ F ) < ε/2.
Finally, µ(U \ K ) = µ(U \ E ) + µ(E \ K ) < ε/2 + ε/2 = ε.



Regularity of Lebesgue measure

The following is an immediate corollary. The proof is left to the reader.

Corollary
Let E ⊆ Rn be bounded and Lebesgue measurable.

(1) µ(E ) = sup{µ(K ) : K ⊆ E and K is compact}.

(2) µ(E ) = inf{µ(U) : E ⊆ U and U is open}.

(3) There exists a Gδ-set G ⊆ Rn such that E ⊆ G and µ(G \ E ) = 0.

(4) There exists an Fσ-set F ⊆ Rn such that F ⊆ E and µ(E \ F ) = 0.

It also follows that E ⊆ Rn is Lebesgue measurable iff there exist B ⊆ Rn

Borel and X ⊆ Rn such that µ(X ) = 0 and E = B∆X . Here,
B∆X = (B \ X ) ∪ (X \ B) is the symmetric difference of B and X .



Baire property

Define

Baire(Rn) = {U∆X : X ,U ⊆ Rn where U is open and X is meager}

Members of Baire(Rn) are called sets with property of Baire.

Exercise: Show that Baire(Rn) is a σ-algebra on Rn.



Inner Lebesgue measure

Definition (Inner measure)
Let X ⊆ Rn. The inner Lebesgue measure of X is defined by

µ?(X ) = sup{µ(K ) : K ⊆ X and K is compact}

Lemma
Suppose X ⊆ Rn is bounded. Then X is Lebesgue measurable iff
µ?(X ) = µ?(X ).

Proof: The left to right implication follows from Clause (2) of the
Corollary on the previous slide. For the other direction, suppose X ⊆ Rn

is bounded and µ?(X ) = µ?(X ) = a <∞. For each m ≥ 1, choose
Km,Um such that Km is compact, Um is open, Km ⊆ X ⊆ Um and
a− 1/m < µ(Km) ≤ µ(Um) < a + 1/m. Put F =

⋃
m≥1 Km and

G =
⋂

m≥1 Um. Then F ,G are Borel, F ⊆ X ⊆ G and
µ(X \ F ) ≤ µ(G \ F ) = 0. So X \ F is Lebesgue measurable. Hence
X = F ∪ (X \ F ) is also Lebesgue measurable.



Lebesgue density theorem in R

Suppose E ⊆ R is Lebesgue measurable and x ∈ R. The upper and lower
Lebesgue densities of E at x are defined as follows

dup(E , x) = lim sup
ε→0

µ(E ∩ (x − ε, x + ε))

2ε

dlow (E , x) = lim inf
ε→0

µ(E ∩ (x − ε, x + ε))

2ε

Note that 0 ≤ dlow (E , x) ≤ dup(E , x) ≤ 1. If dup(E , x) = dlow (E , x) = d ,
then we write d(E , x) = d and say that the Lebesgue density of E at x is
d .

Theorem (Lebesgue density theorem)
Suppose E ⊆ R is Lebesgue measurable. Then {x ∈ E : d(E , x) 6= 1} is
Lebesgue null.



An application of Lebesgue density theorem

Lemma
There is no Lebesgue measurable E ⊆ R such that for every open interval
J, we have µ(E ∩ J) = µ(J)/2.

Proof: Suppose not and fix an E such that for every open interval J, we
have µ(E ∩ J) = µ(J)/2. Clearly, µ(E ) > 0. By Lebesgue density
theorem, there exists x ∈ E such that d(E , x) = 1. Choose ε > 0 such
that

µ(E ∩ (x − ε, x + ε))

2ε
> 0.9

Put J = (x − ε, x + ε) and note that µ(J)/2 = µ(E ∩ J) > 0.9µ(J). A
contradiction.



Proof of Lebesgue density theorem

Recall that every open U ⊆ R can be written as a countable union of
pairwise disjoint open intervals. These open intervals are called the
components of U.

Lemma
Let f : [a, b]→ R be a continuous function. Let U ⊆ (a, b) be open. Let
Uf = {x ∈ U : (∃y > x)(f (x) > f (y) and (x , y) ⊆ U)}. Then Uf is open
and for every component (c , d) ⊆ Uf , we have f (c) ≥ f (d).

Proof of Lemma: See video/notes.

Proof of Lebesgue density theorem: See video/notes.



Steinhaus theorem

Theorem (Steinhaus)
Let E ⊆ R be measurable and µ(E ) > 0. Then
E − E = {x − y : x , y ∈ E} contains an open interval around 0.

Proof: By Lebesgue density theorem, there exists x ∈ E such that
d(E , x) = 1. Fix an interval (a, b) centered at x such that
µ(E ∩ (a, b)) > 0.9(b − a). Let δ = 0.1(b − a). We claim that
(−δ, δ) ⊆ E − E . Suppose 0 ≤ ε < δ. Note that

µ((E + ε) ∩ (a, b)) ≥ µ(E ∩ (a, b))− ε ≥ 0.8(b − a)

It follows that E ∩ (E + ε) 6= ∅. Choose x ∈ E ∩ (E + ε). Since x ∈ E + ε,
we can choose y ∈ E such that x = y + ε. So x − y = ε and x , y ∈ E .
Hence both ε,−ε are in E − E . It follows that (−δ, δ) ⊆ E − E .



Erdős similarity problem

Let A ⊆ R. A similar copy of A is a set of the form
sA + t = {sa + t : a ∈ A} where s 6= 0 (scaling factor) and t ∈ R
(translation). The following fact can be proved using the Lebesgue
density theorem.

Fact
Let A ⊆ R be finite. Then for every E ⊆ R with µ(E ) > 0, E contains a
similar copy of A.

Question (Erdős)
Let A be any infinite subset of R. Must there exist E ⊆ R such that
µ(E ) > 0 and E does not contain any similar copy of A? What if
A = {2−n : n ≥ 1}?



Uniqueness of Lebesgue measure

Theorem
Let M be the family of all Lebesgue measurable subsets of R. Let
ν :M→ [0,∞] be a measure such that for every open interval J, we have
ν(J) = µ(J). Then for every E ∈M, we have µ(E) = ν(E).

Proof: Since every open U ⊆ R is a a countable union of pairwise disjoint
open intervals, it follows that ν(U) = µ(U). Next suppose K ⊆ R is compact.
Choose N > 0 such that K ⊆ (−N,N) and let V = (−N,N) \ K . Since V is
open, µ(V ) = ν(V ). Now observe that
µ(K) = µ((−N,N))− µ(V ) = ν((−N,N))− ν(V ) = ν(K). So µ and ν agree
on every compact set. Let E be a bounded measurable set. Then µ(E) =
inf{µ(U) : E ⊆ U and U is open} = inf{ν(U) : E ⊆ U and U is open} ≥ ν(E)
where the last inequality follows from the monotonicity of ν. Similarly,
µ(E) = sup{µ(K) : K ⊆ E and K is compact} ≤ ν(E). Hence µ(E) = ν(E)
for every bounded E ∈M. The general case follows by using countable
additivity of µ, ν and the fact that E =

⊔
n∈Z[n, n + 1) ∩ E .



Perfect sets

We say that P ⊆ Rn is a perfect set iff P is a nonempty closed set and P has
no isolated points.

Lemma (Perfect kernel)
Suppose C is an uncountable closed subset of Rn. Then there exists P ⊆ C
such that P is perfect and C \ P is countable.

Proof: Let U be the union of all open n-boxes of the form B = J1 × · · · × Jn
where J1, . . . , Jn are open intervals with rational end-points such that B ∩ C is
countable. The reader should check that P = C \ U is as required.

The set P in the above lemma is called the perfect kernel of C .

Lemma
Suppose P ⊆ Rn is perfect. Then |P| = |R| = c. Hence every uncountable
closed set in Rn has cardinality c.

Proof: Homework.



Fat Cantor sets in R

Definition
C ⊆ R is a fat Cantor set iff C is compact nowhere dense set and
µ(C ) > 0.

Lemma
Suppose E ⊆ R is Lebesgue measurable and µ(E ) > 0. Then E contains
a fat Cantor set.

Proof: By thinning out E , we can clearly assume that E is bounded and
Q ∩ E = ∅. Since µ(E ) = sup{µ(K ) : K ⊆ E and K is compact} > 0, we
can choose K ⊆ E compact such that µ(K ) > 0. Since K is closed and
K ∩Q = ∅, K must be nowhere dense in R. Hence K is a fat Cantor set
contained in E .



Fat Cantor sets

Theorem
There exists E ⊆ R such that for every interval J, both J ∩ E and
J ∩ (R \ E ) have positive measure.

Proof: Homework.



Vitali sets revisited

Let E be the equivalence relation on R defined by xEy iff x − y ∈ Q. We
say that V ⊆ R is a Vitali set iff V meets every E -equivalence class at
exactly one point.

Theorem
Let V be a Vitali set. Then µ?(V ) = 0 and µ?(V ) > 0. So every Vitali
set is Lebesgue non-measurable.

Proof: Let K ⊆ V be compact. Observe that K − K ⊆ V − V and
(V − V ) ∩Q = {0}. So by Steinhaus theorem, µ(K ) = 0. Hence
µ?(V ) = 0.
Next, towards a contradiction, assume µ?(V ) = 0. Observe that
R =

⋃
{V + r : r ∈ Q}. Since µ? is translation invariant,

µ?(V + r) = µ?(V ) = 0. By countable subadditivity of µ?, it follows that
µ(R) ≤

∑
r∈Q µ

?(V + r) = 0 which is a contradiction. So
µ?(V ) > 0.



Bernstein sets

B ⊆ Rn is called a Bernstein set iff for every perfect set P ⊆ Rn,
both B ∩ P and (Rn \ B) ∩ P are nonempty.

Theorem
There exists a Bernstein set B ⊆ Rn.

Proof: See video/notes.

Exercise: Suppose E ⊆ Rn is Lebesgue measurable and B ⊆ Rn is
a Bernstein set. Assume µn(E ) > 0. Show that B ∩ E is Lebesgue
non-measurable. Conclude that for every E ⊆ Rn, either
µn(E ) = 0 or E has a Lebesgue non-measurable subset.



Baire class one functions

f : Rn → R is a Baire class one function iff there exists a sequence
〈fk : k ≥ 1〉 of continuous functions from Rn to R such that for every
x ∈ Rn,

lim
k

fk(x) = f (x)

Example: Let g : R→ R be an everywhere differentiable function. Then
for every x ∈ R, g ′(x) = lim

n
n(g(x + 1/n)− g(x)). So g ′ is a Baire class

one function.

Exercise: Let U ⊆ R be open. Show that the characteristic function of
U, denoted 1U is a Baire class one function.



Points of continuity of Baire class one functions

Theorem (Baire)
Let f : R→ R be a Baire class one function. Then the set of points of
discontinuity of f is meager.

Proof: Fix a sequence 〈fn : n ≥ 1〉 of continuous functions that pointwise
converges to f . Let ε > 0 be arbitrary. It suffices to show that
Wε = {x ∈ R : osc(f , x) < ε} is a dense subset of R. Let I be a closed
interval. We’ll show that I ∩Wε 6= ∅. For i , j ≥ 1, define
Ci,j = {x ∈ R : |fi (x)− fj(x)| ≤ ε/3}. Since |fi − fj | is continuous, each Ci,j is a
closed set. Let An =

⋂
{Ci,j : i , j ≥ n}. Then An’s form an increasing sequence

of closed sets. Since for every x ∈ R, limn fn(x) = f (x), it follows that⋃
n≥1 An = R. By Baire category theorem, we can fix an n ≥ 1 such that An ∩ I

is not nowhere dense in I . Since An ∩ I is closed, there exists an open interval
J ⊆ An ∩ I . Let x be the center of J. Choose δ > 0 such that
(x − δ, x + δ) ⊆ J and for every y , z ∈ (x − δ, x + δ), we have
|fn(y)− fn(z)| < ε/4. Now for any k > n, we have
|fk(y)−fk(z)| ≤ |fk(y)−fn(y)|+|fn(y)−fn(z)|+|fn(z)−fk(z)| < ε/3+ε/4+ε/3.
Letting k →∞, we get |f (y)− f (z)| < ε. It follows that x ∈Wε ∩ I .



Pointwise limits

Lemma
The set of Baire class one functions is not closed under pointwise
limits.

Proof: Let 1Q : R→ R be the characteristic function of the set of
rationals Q. Since 1Q is an everywhere discontinuous function, the
previous theorem implies that 1Q is not a Baire class one function.
Let {a1, a2, . . . } be an enumeration of Q. Define fn to be the
characteristic function of {a1, . . . , an}. Then 〈fn : n ≥ 1〉 is a
sequence of Baire class one functions that pointwise converges to
1Q.



The Baire hierarchy

Using transfinite recursion, for each α < ω1, define the set FBaireα(Rn)
of Baire class α functions as follows.

(1) FBaire0(Rn) consists of all continuous functions from Rn to R.

(2) FBaireα+1(Rn) is the set of all functions that are pointwise limits of
a sequence of functions in FBaireα(Rn).

(3) If α is a limit ordinal, then FBaireα(Rn) =
⋃
β<α FBaireβ(Rn).

Define FBaire(Rn) =
⋃
α<ω1

FBaireα(Rn). Lebesgue showed that this is
a proper hierarchy in the sense that FBaireα(Rn) ( FBaireα+1(Rn).
The following should be clear.

Fact
FBaire(Rn) is the smallest family of functions from Rn to R that contains
all continuous functions and is closed under pointwise limits.



Borel functions

If f : X → Y and A ⊆ Y , the preimage of A under f is defined by

f −1[A] = {x ∈ X : f (x) ∈ A}

Definition
f : Rn → R is a Borel function iff for every Borel B ⊆ R, f −1[B] is
a Borel subset of Rn.

Lemma
f : Rn → R is a Borel function iff for every open interval J ⊆ R,
f −1[J] is Borel.

Proof: Let F = {A ⊆ R : f −1[A] is Borel}. Check that F is a
σ-algebra on R that contains every open interval.



Borel equals Baire

Lemma
FBorel(Rn) is closed under pointwise limits. Hence, FBaire(Rn) ⊆ FBorel(Rn).

Proof: Suppose fk : Rn → R is Borel for every k ≥ 1, and limk fk(x) = f (x).
To see that f is Borel, it is enough to show that f −1[(a, b)] is Borel for every
a < b in R. Now a < f (x) < b iff a < limk fk(x) < b iff there exists M ≥ 1
such that for all sufficiently large k, a + 1/M < fk(x) < b − 1/M. It follows
that

f −1[(a, b)] =
⋃
M≥1

⋃
N≥1

⋂
k≥N

f −1
k [(a + 1/M, b − 1/M)]

is Borel. Since every continuous function is Borel, it follows that
FBaire(Rn) ⊆ FBorel(Rn).

Fact (Lebesgue, Hausdorff)
FBorel(Rn) = FBaire(Rn). Hence FBorel(Rn) is the smallest class of real valued
functions on Rn that contains all continuous functions and is closed under
pointwise limits.



Lebesgue measurable functions

Suppose (X , E) and (Y ,F) are measurable spaces and f : X → Y .
We say that f is (E ,F)-measurable iff for every B ∈ F ,
f −1[B] ∈ E .

Let f : Rn → Rm. We say that f is Lebesgue measurable iff it is
(M,Borel(Rm))-measurable where M is the σ-algebra of all
Lebesgue measurable subsets of Rn.

Lemma
Let f : Rn → R. Then f is Lebesgue measurable iff for every open
interval J, f −1[J] is Lebesgue measurable in Rn.

Proof: Let F = {A ⊆ R : f −1[A] is Leb. measurable}. Check that
F is a σ-algebra on R that contains every open interval.



Lebesgue vs Borel

Lemma
Let f : Rn → R. If f is Borel, then it is Lebesgue measurable. The
converse is false.

Proof: The first part easily follows from the fact that every Borel set is
Lebesgue measurable. Next, let X ⊆ Rn be a non-Borel set such that
µ(X ) = 0. Then the characteristic function of X is Lebesgue measurable
but not Borel.

Definition
Let f , g : Rn → R. We say that f and g are almost everywhere equal iff
µ({x ∈ Rn : f (x) 6= g(x)}) = 0.

Exercise: For every Lebesgue measurable function f : Rn → R, there
exists a Borel function g : Rn → R such that f and g are almost
everywhere equal.



Measurable functions

Let F be the smallest family of functions from Rn to R satisfying
the following.

(a) F contains all continuous functions from Rn to R.

(b) F is closed under pointwise limits.

(c) If f ∈ F , g : Rn → R and f and g are almost everywhere
equal, then g ∈ F .

Then F is the family of all Lebesgue measurable functions from Rn

to R.



Closure properties

Lemma
Suppose f , g : Rn → R are Lebesgue measurable functions,
h : R→ R is a Borel function and a, b ∈ R. Then |f |, af + bg , fg
and h ◦ f are also Lebesgue measurable. Furthermore, if
0 /∈ range(f ), then 1/f is also Lebesgue measurable.

Proof: Homework.



Restrictions

Suppose E ⊆ Rn and f : E → R. We say that f is Lebesgue
measurable iff E is Lebesgue measurable and there exists a
Lebesgue measurable g : Rn → R such that f = g � E .

Let (X , d) be a metric space, f : X → R and K ⊆ X . Recall that
f � K is continuous iff either one of the following holds.

(i) For every sequence 〈xn : n ≥ 1〉 of points in K if limn xn = x
and x ∈ K , then limn f (xn) = f (x).

(ii) For every open interval J with rational end-points, there exists
an open U ⊆ X such that f −1[J] = U ∩ K (so f −1[J] is
relatively open in K ).



Continuity

Theorem (Lusin)
Suppose E ⊆ Rn is bounded and f : E → R is Lebesgue measurable. Then for
every ε > 0, there exists a compact K ⊆ E such that µ(E \ K) < ε and f � K
is continuous.

Proof: Let 〈Jn : n ≥ 1〉 list all open intervals with rational end-points. Then
En = f −1[Jn] is a bounded Lebesgue measurable. Choose Kn,Un such that
Kn ⊆ En ⊆ Un, Kn is compact, Un is open and µ(Un \ Kn) < ε/2n+1. Put
A =

⋃
n≥1(Un \ Kn). Then µ(A) ≤ ε/2. Let g = f � (E \ A). Then

g−1[Jn] = Un ∩ (E \ A) is relatively open in E \ A for every n ≥ 1. So g is
continuous. Choose a compact K ⊆ (E \ A) such that µ((E \ A) \ K) < ε/2.
Then µ(E \ K) < ε and f � K is continuous.

Exercise: Suppose f : [a, b]→ R is Lebesgue measurable. Then for every
ε > 0, there exists a continuous g : [a, b]→ R such that
µ({x ∈ Rn : f (x) 6= g(x)}) < ε.



Almost uniform convergence

Theorem (Egoroff)
Suppose E ⊆ Rn is bounded and for every n ≥ 1, fn : E → R is Lebesgue
measurable. Assume that fn’s pointwise converge to f : E → R. Then for each
ε > 0, there exists a compact K ⊆ E such that µ(E \ K) < ε and fn � K
uniformly converges to f � K .

Proof: For each k,m ≥ 1, define

Ek,m = {x ∈ E : (∀j ≥ k)(|fj(x)− f (x)| < 1/m)}

Since |fj − f | is Lebesgue measurable, it follows that each Ek,m is Lebesgue
measurable. Note that Ek,m’s are increasing with k and since fk ’s pointwise
converge to f , we have

⋃
k≥1 Ek,m = E . Fix k(m) ≥ 1 such that

µ(E \ Ek(m),m) < ε/2m+1. Put F =
⋂

m≥1 Ek(m),m. Then µ(E \ F ) < ε/2 and it
is easily checked that fn � F uniformly converges to f � F . Choose a compact
K ⊆ F such that µ(F \ K) < ε/2. Then µ(E \ K) < ε and fn � K uniformly
converges to f � K .



Measurable functions on (X ,F)

Let (X ,F) be a measurable space and f : X → R. We say that f is
F-measurable iff for every Borel B ⊆ R, f −1[B] ∈ F .
The following can be proved exactly like Homework problems 20-21.

(1) Suppose f , g : X → R are F-measurable functions, h : R→ R is a
Borel function and a, b ∈ R. Then |f |, af + bg , fg and h ◦ f are
also F-measurable. Furthermore, if 0 /∈ range(f ), then 1/f is also
F- measurable.

(2) Suppose fk : X → R are F-measurable for every k ≥ 1. Assume
that for every x ∈ X , g(x) = lim supk fk(x) and h(x) = lim infk fk(x)
are finite. Show that g , h : X → R are F-measurable.



Simple functions

Definition (Simple functions)

Suppose (X ,F) is a measurable space and h : X → R is
F-measurable. We say that h is simple iff range(h) is finite.

Suppose h : X → R is a simple function and
range(h) = {a1, a2, . . . , an}. Define Xk = h−1[{ak}]. Then
{Xk : k ≤ n} is a partition of X into sets in F and

h =
∑
k≤n

ak1Xk

where 1Xk
: X → R is the characteristic function of Xk . It is easy

to see that the family of simple functions is closed under linear
combinations and products.



Approximations via simple functions

Theorem
Suppose (X ,F) is a measurable space and f : X → [0,∞) is F-measurable.
Then there exists a sequence 〈hn : n ≥ 1〉 of simple functions such that
hn ≤ hn+1 and for every x ∈ X , lim

n
hn(x) = f (x). Furthermore, if f is bounded,

then hn’s uniformly converge to f .

Proof: For each n ≥ 1 and 0 ≤ k < 4n, define Bn = f −1[[2n,∞)],

A(k, n) = f −1

[[
k

2n
,
k + 1

2n

)]
and

hn = 2n1Bn +
∑

0≤k<4n

(
k

2n

)
1A(k,n)

It is easy to check that hn ≤ hn+1 and 0 ≤ f (x)− hn(x) ≤ 2−n for every
x ∈ f −1[[0, 2n)]. It follows that hn’s pointwise converge to f . Furthermore, if
range(h) ⊆ [0,N), then f −1[[0, 2n)] = X for all n ≥ N and therefore the
convergence is uniform.



Integrating non-negative simple functions

Let (X ,F ,m) be a measure space. Let h =
∑
k≤n

ak1Xk
be a

non-negative simple function on X (So each ak ≥ 0). We define
the Lebesgue integral of h as follows∫

h dm =
∑
k≤n

akm(Xk)

where, by definition, 0 · ∞ = 0. For A ∈ F , define the Lebesgue
integral of h on A by ∫

A
h dm =

∫
1Ah dm



Integrating non-negative simple functions

Lemma
Let (X ,F ,m) be a measure space. Suppose h1, h2 are
non-negative simple functions on X .

(a) For every a ≥ 0,

∫
(ah1 + h2) dm = a

∫
h1 dm +

∫
h2 dm

(b) If h1 ≤ h2, then

∫
h1 dm ≤

∫
h2 dm

Proof: Exercise.



Integrating non-negative simple functions

Lemma
Let (X ,F ,m) be a measure space and let h be a non-negative simple function
on X . Define ν : F → R by ν(E) =

∫
E
h dm. Then ν is a measure.

Proof: Let h =
∑

k≤n ak1Xk where {Xk : k ≤ n} is a partition of X into sets in
F and each ak ≥ 0. It is clear that ν(E) ≥ 0 for every E ∈ F and ν(∅) = 0.
So it suffices to show that ν is countably additive. Fix a countable family
{Ej : j ≥ 1} of pairwise disjoint sets in F and let E =

⋃
j≥1 Ej . For each k ≤ n,

consider
∫
E
ak1Xk dm =

∫
ak1E1Xk dm =

∫
ak1E∩Xk dm = akµ(E ∩ Xk). As µ is

countably additive, akµ(E ∩ Xk) = ak
∑

j≥1 µ(Ej ∩ Xk) =
∑

j≥1

∫
Ej
ak1Xk dm.

Hence for every k ≤ n, ∫
E

ak1Xk dm =
∑
j≥1

∫
Ej

ak1Xk dm

Summing over k ≤ n and using part (a) of the previous lemma, we get

ν(E) =

∫
E

h dm =
∑
j≥1

∫
Ej

h dm =
∑
j≥1

ν(Ej)



Lebesgue integral of non-negative functions

Let (X ,F ,m) be a measure space and suppose f : X → [0,∞) is
F-measurable.

(1) The Lebesgue integral of f is defined by∫
f dm = sup

{∫
h dm : h is simple and 0 ≤ h ≤ f

}
(2) For A ∈ F , the Lebesgue integral of f on A is defined by∫

A

f dm =

∫
1Af dm

If f : X → [0,∞) is simple, then part (b) of the previous lemma implies that
this definition agrees with the old definition.

Exercise: Suppose f , g : X → [0,∞) are F-measurable. Show that f ≤ g

implies

∫
f dm ≤

∫
g dm and for every constant c ≥ 0,

∫
cf dm = c

∫
f dm.



Monotone convergence theorem

Theorem
Let (X ,F ,m) be a measure space and suppose for each n ≥ 1, fn : X → [0,∞)
is F-measurable. Assume fn ≤ fn+1 for every n ≥ 1 and for every x ∈ X ,
limn fn(x) = supn fn(x) <∞. Define f : X → [0,∞) by f (x) = limn fn(x). Then
f is F-measurable and ∫

f dm = lim
n

∫
fn dm

Proof: As f ≥ fn, we get
∫
f dm ≥

∫
fn dm. Taking limits as n→∞, we get∫

f dm ≥ limn

∫
fn dm. For the other inequality, it suffices to show that for

every 0 < ε < 1 and a simple function h : X → [0,∞) such that 0 ≤ h ≤ f , we
have limn

∫
fn dm ≥ (1− ε)

∫
h dm. Put En = {x ∈ X : fn(x) ≥ (1− ε)h(x)}.

Then En’s are increasing with n and
⋃

n En = X . Since the map E 7→
∫
E
h dm is

a measure on (X ,F) (by Slide 63), it follows that limn

∫
En

h dm =
∫
h dm.

Furthermore,
∫
fn dm ≥

∫
En

fn dm ≥ (1− ε)
∫
En

h dm. It follows that

lim
n

∫
fn dm ≥ lim

n

∫
En

fn dm ≥ (1− ε) lim
n

∫
En

h dm = (1− ε)

∫
h dm



Linearity for non-negative functions

Theorem
Let (X ,F ,m) be a measure space and suppose for each n ≥ 1, fn : X → [0,∞)
is F-measurable. Let a ≥ 0.

(1)

∫
af1 + f2 dm = a

∫
f1 dm +

∫
f2 dm

(2) Assume
∑
n≥1

fn(x) <∞ for every x ∈ X . Then

∫ ∑
n≥1

fn dm =
∑
n≥1

∫
fn dm

Proof: (1) Using the theorem on Slide 60, we can fix simple functions hk , gk
for k ≥ 1 such that 0 ≤ hk ≤ hk+1, 0 ≤ gk ≤ gk+1, hk ’s pointwise converge to
f1 and gk ’s pointwise converge to f2. It follows that ahk + gk pointwise
converges to af1 + f2. By the monotone convergence theorem,

∫
(af1 + f2) dm =

limk

∫
(ahk + gk) dm = limk(a

∫
hk dm +

∫
gk dm) = a

∫
f1 dm +

∫
f2 dm.

(2) Put gn =
∑

k≤n fk and f =
∑

k≥1 fk . Then gn’s are monotonically
increasing and they pointwise converge to f . So by the monotone convergence
theorem, limn

∫
gn dm =

∫
f dm. By part (1),

∫
gn dm =

∑
k≤n

∫
fk dm. Hence∑

k≥1

∫
fk dm =

∫
f dm.



Integrable functions

Let (X ,F) be a measurable space and suppose f : X → R is F-measurable.
Define f + : X → [0,∞) and f − : X → [0,∞) as follows: f +(x) = max(0, f (x))
and f −(x) = max(0,−f (x)). Note that f + and f − are both F-measurable and
f = f + − f −.
Suppose (X ,F ,m) is a measure space and f : X → R is F-measurable. If at
least one of

∫
f + dm,

∫
f − dm is finite, then we define∫

f dm =

∫
f + dm −

∫
f − dm

Suppose (X ,F ,m) is a measure space and f : X → R is F-measurable. We say

that f is integrable iff

∫
|f | dm <∞ iff both

∫
f + dm,

∫
f − dm are finite.

The set of all integrable functions f : X → R is denoted by L1(m). The
following should be clear.

Exercise: Let (X ,F ,m) be a measure space and suppose f , g ∈ L1(m). Then

af + g ∈ L1(m) and

∫
(af + g) dm = a

∫
f dm +

∫
g dm.



Fatou’s lemma

Theorem
Let (X ,F ,m) be a measure space. Suppose fn : X → [0,∞) is F-measurable
for every n ≥ 1. Define f : X → [0,∞) by f (x) = lim infn fn(x). Then f is
F-measurable and ∫

f dm ≤ lim inf
n

∫
fn dm

Proof: That f is F-measurable is clear (see Slide 58). Put gn = infk≥n fk .
Then gn ≤ gn+1 and gn’s pointwise converge to f . By the monotone
convergence theorem, ∫

f dm = lim
n

∫
gn dm

Also for every n, gn ≤ fn. Therefore,
∫
gn dm ≤

∫
fn dm. Taking lim infn on

both sides, we get∫
f dm = lim

n

∫
gn dm = lim inf

n

∫
gn dm ≤ lim inf

n

∫
fn dm



Interchanging limits and Lebesgue integral

Suppose f , fn : R→ [0,∞) are Lebesgue integrable functions for every n ≥ 1
and fn’s pointwise converge to f . Must the following hold?

lim
n

∫
fn dµ =

∫
lim
n

fn dµ

(1) Define fn : R→ [0,∞) as follows: fn(x) = n if x ∈ (0, 1/n) and 0
otherwise. Then fn’s pointwise converge to 0 everywhere on R but∫
fn dµ = 1 does not converge to

∫
0 dµ = 0.

(2) Define fn : R→ [0,∞) as follows: fn(x) = 1 if x ∈ [n, n + 1] and 0
otherwise. Then fn’s pointwise converge to 0 everywhere on R but∫
fn dµ = 1 does not converge to

∫
0 dµ = 0.

Note that in both examples, there is no function g ∈ L1(µ) such that fn ≤ g for
every n ≥ 1.



Dominated convergence theorem

Theorem
Let (X ,F ,m) be a measure space. Let fn : X → R be F-measurable for
every n ≥ 1. Assume fn’s pointwise converge to f : X → R. Suppose
there exists g ∈ L1(m) such that |fn| ≤ g for every n ≥ 1. Then

f ∈ L1(m) and

∫
f dm = lim

n

∫
fn dm.

Proof: f is clearly F-measurable. As |fn| ≤ g for every n ≥ 1, taking
limits as n→∞, we get |f | ≤ g . So

∫
|f | dm ≤

∫
g dm <∞ and hence

f ∈ L1(m).

Next observe that g − fn ≥ 0 and g + fn ≥ 0 for every n ≥ 1 and g + fn
and g − fn pointwise converge to g + f and g − f respectively. So we can
apply Fatou’s lemma to the sequences g + fn and g − fn to get the
following.



Dominated convergence theorem

∫
g dm +

∫
f dm ≤ lim inf

n

∫
(g + fn) dm =

∫
g dm + lim inf

n

∫
fn dm∫

g dm −
∫

f dm ≤ lim inf
n

∫
(g − fn) dm =

∫
g dm − lim sup

n

∫
fn dm

where we used lim inf
n
−an = − lim sup

n
an. Since

∫
g dm <∞, we can

cancel it to get

lim sup
n

∫
fn dm ≥ lim inf

n

∫
fn dm ≥

∫
f dm ≥ lim sup

n

∫
fn dm

But this means that all inequalities are equalities here and the result
follows.



Dominated convergence theorem

Corollary

Let (X ,F ,m) be a finite measure space. Let 0 < M <∞ and
suppose fn : X → [−M,M] is F-measurable for every n ≥ 1.
Assume fn’s pointwise converge to f : X → [−M,M]. Then

f ∈ L1(m) and

∫
f dm = lim

n

∫
fn dm.

Proof Apply the dominated convergence theorem with g = M.



Riemann Integral

An interval partition of [a, b] is a finite P ⊆ [a, b] with a, b ∈ P. Suppose
f : [a, b]→ R is a bounded function and

P = {a = a0 < a1 < · · · < an = b}

is an interval partition of [a, b]. For each 0 ≤ k < n, let
mk = inf{f (x) : x ∈ [ak , ak+1]} and Mk = sup{f (x) : x ∈ [ak , ak+1]}. Define

L(P, f ) =
∑

0≤k<n

mk(ak+1 − ak) and U(P, f ) =
∑

0≤k<n

Mk(ak+1 − ak).

The lower Riemann integral of f is defined by∫ b

a

f (x) dx = sup {L(P, f ) : P is an interval partition of [a, b]}

The upper Riemann integral of f is defined by∫ b

a

f (x) dx = inf {U(P, f ) : P is an interval partition of [a, b]}



Riemann Integrability

We say that f : [a, b]→ R is Riemann integrable iff
∫ b

a
f (x) dx =

∫ b

a
f (x) dx

is finite and this common value is denoted by
∫ b

a
f (x) dx .

Definition
Let f : [a, b]→ R. For A ⊆ [a, b], define the oscillation of f on A by

osc(f ,A) = sup{|f (x)− f (y)| : x , y ∈ A}

Exercise: Show that f : [a, b]→ R is Riemann integrable iff for every ε > 0,
there exist a = a0 < a1 < · · · < an = b such that

n−1∑
k=0

osc(f , [ak , ak+1])(ak+1 − ak) < ε



Oscillations

Lemma
Let f : [c, d ]→ [−M,M] where 0 < M <∞. Let ε > 0. Assume that for every
x ∈ (c, d), osc(f , x) < ε. Then there exist c = c0 < c1 < · · · < cn = d such
that

n−1∑
k=0

osc(f , [ck , ck+1])(ck+1 − ck) < 2ε(d − c)

Proof: For each x ∈ (c, d) choose an open interval Jx ⊆ (c, d) centered at x

such that osc(f , cl(Jx)) < ε. Let I1 = (c − ε(d−c)
4M

, c + ε(d−c)
4M

) and

I2 = (d − ε(d−c)
4M

, d + ε(d−c)
4M

). Then U = {Jx : x ∈ (c, d)} ∪ {I1, I2} is an open
cover of [c, d ]. As [c, d ] is compact, U has a finite subcover F . Let
c1 < c2 < · · · < cn−1 list the set of end points of the intervals in F \ {I1, I2}.
As I1, I2 ∈ F , we must have c1 ≤ c + ε(d−c)

4M
and cn−1 ≥ d − ε(d−c)

4m
.

Furthermore, for every 1 ≤ k < n1, [ck , ck+1] ⊆ Jx for some Jx ∈ F . Therefore,
osc(f , [ck , ck+1]) < ε. It is now easy to check that

n−1∑
k=0

osc(f , [ck , ck+1])(ck+1 − ck) < 2ε(d − c)



Riemann Integrability

Theorem
Let f : [a, b]→ [−M,M] where 0 < M <∞. Then f is Riemann integrable iff
the set of points of discontinuity of f has measure zero.

Proof: Let D = {x ∈ [a, b] : f is discontinuous at x}. First assume that D has
measure zero. Fix ε > 0. Let Dε = {x ∈ (a, b) : osc(f , x) ≥ ε} ∪ {a, b}. Then
Dε is a closed set of measure zero. Let 〈Ik : k ≥ 1〉 be a sequence of open
intervals such that Dε ⊆

⋃
k≥1 Ik and

∑
k≥1 |Ik | < ε. Since Dε is compact, we

can fix N ≥ 1 such that {Ik : k ≤ N} already covers Dε. Let
Uε = [a, b] \

⋃
k≤N cl(Ik). Then Uε is a finite union of open intervals. For each

such open interval (c, d), by the previous lemma, we can fix a finite
W (c, d) = {c = c0 < c1 < · · · < cm = d} such that

m−1∑
k=0

osc(f , [ck , ck+1])(ck+1 − ck) < 2ε(d − c)

Let a = a0 < a1 < · · · < an = b list all members of these W (c, d)’s together
with the end points of {Ik : k ≤ N}.



Riemann Integrability

Note that for each 0 ≤ k < n,

(i) Either osc(f , [ak , ak+1])(ak+1 − ak) < 2ε(ak+1 − ak), or

(ii) [ak , ak+1] ⊆ Ij for some 1 ≤ j ≤ N. And therefore,
osc(f , [ak , ak+1])(ak+1 − ak) < 2M|Ij |.

It follows that

n−1∑
k=0

osc(f , [ak , ak+1])(ak+1 − ak) ≤ 2εµ(Uε) +
∑
j≤N

2M(|Ij |) < 2ε(M + b − a)

which goes to zero as ε→ 0. So f is Riemann integrable.

Next suppose D is not Lebesgue null. We will show that f is not Riemann
integrable. For each δ > 0, let Dδ = {x ∈ (a, b) : osc(f , x) ≥ δ}. Since
D ⊆

⋃
δ∈Q+ Dδ, we can fix δ > 0 such that µ(Dδ) > 0. Let ε = δµ(Dδ)/2. It

suffices to show that for every a = a0 < a1 < · · · < an = b,

n−1∑
k=0

osc(f , [ak , ak+1])(ak+1 − ak) ≥ ε



Riemann Integrability

Note that if (ak , ak+1) ∩ Dδ 6= ∅, then osc(f , [ak , ak+1]) ≥ δ/2. Let
T = {k < n : (ak , ak+1) ∩ Dδ 6= ∅}. Then Dδ ⊆

⋃
k∈T [ak , ak+1]. So∑

k∈T (ak+1 − ak) ≥ µ(Dδ). It follows that

n−1∑
k=0

osc(f , [ak , ak+1])(ak+1 − ak) ≥
∑
k∈T

δ

2
(ak+1 − ak) ≥ δµ(Dδ)

2
= ε



Riemann vs Lebesgue Integral

Corollary
Let f : [a, b]→ R be a bounded Riemann integrable function. Then f is
Lebesgue integrable and ∫

[a,b]

f dµ =

∫ b

a

f (x) dx

Proof: Let C be the set of points of continuity of f . Then C is Borel and
f � C is continuous. So f � C is Lebesgue measurable. As [a, b] \ C has
measure zero, f is also Lebesgue measurable. Fix M > 0 such that |f | ≤ M.
As
∫
[a,b]
|f | dµ ≤ M(b − a) <∞, it follows that f is also Lebesgue integrable.

If P is an interval partition of [a, b], then then L(P, f ) ≤
∫
[a,b]

f dµ. Taking

supremum over all P’s we get
∫ b

a
f (x) dx ≤

∫
[a,b]

f dµ. A similar argument

shows that
∫
[a,b]

f dµ ≤
∫ b

a
f (x) dx . Since

∫ b

a
f (x) dx =

∫ b

a
f (x) dx , it follows

that
∫
[a,b]

f dµ =
∫ b

a
f (x) dx .



Algebras

Definition (Algebra)
Let X be a nonempty set. An algebra on X is a family F of subsets of X that
satisfies the following.

(1) ∅ ∈ F and X ∈ F .

(2) (Closed under complements) If E ∈ F , then X \ E ∈ F .

(3) (Closed under finite unions) If E1,E2 ∈ F , then E1 ∪ E2 ∈ F .

Lemma
Let Y be a nonempty set. Let R be a a family of subsets of Y such that

(a) ∅ ∈ R.

(b) If A,B ∈ R, then A ∩ B ∈ R.

(c) If A ∈ R, then Y \ A is a disjoint union of finitely many members of R.

Let A be the family of all sets which are disjoint unions of finitely many
members of R. Then A is an algebra on Y .

Proof: Homework



Premeasures on algebras

Let A be an algebra on a nonempty set X . We say that m : A → [0,∞] is a
premeasure on A iff m satisfies the following.

(i) m(∅) = 0.

(ii) If {En : n ≥ 1} is a countable family of pairwise disjoint sets in A and

E =
⋃
n≥1

En ∈ A, then m(E) =
∑
n≥1

m(En).

Note that if A1,A2 ∈ A are disjoint, then m(A1 ∪ A2) = m(A1) + m(A2) and if
A ⊆ B are in A, then m(A) ≤ m(B).

Theorem (Extending premeasures)
Let A be an algebra on a nonempty set X and m : A → [0,∞] be a
premeasure on A. Let F be the σ-algebra generated by A. Then there exists a
measure ν on F such that ν � A = m. Also, if m(X ) <∞, then ν is unique.

Proof: Define ν? : P(X )→ [0,∞] by

ν?(E) = inf

∑
n≥1

m(An) : An ∈ A for every n ≥ 1 and E ⊆
⋃
n≥1

An





Extending premeasures to measures

By HW problem 8, ν? is an outer measure on X . First, we claim that
ν? � A = m. Suppose E ,An ∈ A for every n ≥ 1 and E ⊆

⋃
n≥1 An. Define

Bn = E ∩ (An \
⋃

k≤n−1 Ak). Then each Bn ∈ A and E is a disjoint union of
Bn’s. So

∑
n≥1 m(An) ≥

∑
n≥1 m(Bn) = m(E). Hence ν?(E) ≥ m(E). The

other inequality is trivial because E ∈ A. So ν?(E) = m(E) for every E ∈ A.

Next, we claim that every set in A is ν?-measurable. Suppose E ∈ A and
A ⊆ X . We need to check ν?(E) ≥ ν?(A ∩ E) + ν?(A ∩ E c) where E c = X \ E
is the complement of E in X . Let ε > 0 be arbitrary. Choose Fn ∈ A such that
A ⊆

⋃
n≥1 Fn and ν?(A) + ε ≥

∑
n≥1 m(Fn). Now∑

n≥1

m(Fn) =
∑
n≥1

m(Fn ∩ E) +
∑
n≥1

m(Fn ∩ E c) ≥ ν?(A ∩ E) + ν?(A ∩ E c)

Hence ν?(A) + ε ≥ ν?(A ∩ E) + ν?(A ∩ E c). Letting ε→ 0, we get
ν?(E) ≥ ν?(A ∩ E) + ν?(A ∩ E c). So every set in A is ν?-measurable.



Extending premeasures to measures

Let ν1 be the restriction of ν? to ν?-measurable sets. By Caratheodory’s
theorem, ν1 is a measure. As each set in A is ν?-measurable, A ⊆ dom(ν1).
Finally, since ν? � A = m, we also have ν1 � A = m. Put ν = ν1 � F . This
completes the proof of existence of ν.

For uniqueness, assume m(X ) <∞ and let ν′ : F → [0,∞] be another
measure on F such that ν′ � A = m. Let E ∈ F and ε > 0. Choose
〈An : n ≥ 1〉 such that each An ∈ A, E ⊆

⋃
n≥1 An and

ν(E) + ε ≥
∑

n≥1 m(An) =
∑

n≥1 ν
′(An) ≥ ν′(E). Letting ε→ 0, we get

ν(E) ≥ ν′(E). So ν ≥ ν′. For the reverse inequality, put A =
⋃

n≥1 An and
observe that

ν(A) = lim
n→∞

ν

⋃
k≤n

Ak

 = lim
n→∞

ν′

⋃
k≤n

Ak

 = ν′(A)

Since ν is finite, ν(A\E) = ν(A)−ν(E) ≤
∑

n≥1 ν(An)−ν(E) ≤ ε. As E ⊆ A,

ν(E) ≤ ν(A) = ν′(A) = ν′(E) + ν′(A \ E) ≤ ν′(E) + ν(A \ E) ≤ ν′(E) + ε.
Letting ε→ 0, we get ν(E) ≤ ν′(E). So ν = ν′.



σ-finite measures

(1) Suppose A is an algebra on X and m : A → [0,∞] is a premeasure. We
say that m is σ-finite iff there exists a countable family {En : n ≥ 1} ⊆ A
such that

⋃
n≥1 En = X and m(En) <∞ for every n ≥ 1.

(2) A measure space (X ,F ,m) is σ-finite iff there exists a countable family
{En : n ≥ 1} ⊆ F such that

⋃
n≥1 En = X and m(En) <∞ for every

n ≥ 1.

Exercise: Let A be an algebra on a nonempty set X and m : A → [0,∞] be a
σ-finite premeasure on A. Let F be the σ-algebra generated by A. Show that
there exists a unique measure ν on F such that ν � A = m.



Product of σ-algebras

Let (X1,A1) and (X2,A2) be measurable spaces. Let Y = X1 × X2. We say
that S ⊆ Y is an (A1,A2)-measurable rectangle iff S = E1 × E2 for some
E1 ∈ A1 and E2 ∈ A2. The product algebra A1 ⊗A2 is the σ-algebra on Y
generated by the family of all measurable rectangles. Define the product
measurable space by

(X1,A1)⊗ (X2,A2) = (X1 × X2,A1 ⊗A2)

Lemma
Let (X1,A1) and (X2,A2) be measurable spaces and let R be the family of all
measurable rectangles in Y = X1 × X2. Let A be the family of all sets which
are disjoint unions of finitely many members of R. Then A is an algebra on Y .

Proof: Just check that conditions (a)-(c) in the the lemma on Slide 80 hold for
the family R.



Product of power-set algebra

Question
Is (R,P(R))⊗ (R,P(R)) = (R2,P(R2))? In other words, does
every subset of plane belong to the σ-algebra generated by all
rectangles?

B. V. Rao (On discrete Borel spaces and projective sets, Bull
Amer. Math. Soc. 75 (1969), 614–617)) showed that the answer
is “Yes” under the continuum hypothesis and K. Kunen (PhD
Thesis, Stanford, 1968) showed that the answer is consistently
“No”. So this question is undecidable in ZFC.



Product measures: Existence and Uniqueness

Theorem
Let (X1,A1,m1) and (X2,A2,m2) be σ-finite measure spaces. Let Y = X1 ×X2

and F = A1 ⊗A2. Then there is a unique measure m : F → [0,∞] such that
for every E1 ∈ A1 and E2 ∈ A2, m(E1 × E2) = m1(E1)m2(E2).

Proof: Let R be the family of all measurable rectangles in Y = X1 × X2. Start
by defining m(E1 × E2) = m1(E1)m2(E2) for every E1 ∈ A1 and E2 ∈ A2. Let
A be the family of all sets which are disjoint unions of finitely many members
of R. Then A is an algebra on Y . Suppose S ∈ A, and

S =
⊔

1≤i≤n

(Ai × Bi ) =
⊔

1≤j≤p

(Cj ×Dj) where Ai ,Cj ∈ A1 and Bi ,Dj ∈ A2. Then

it is easy to check that∑
1≤i≤n

m(Ai × Bi ) =
∑

1≤j≤p

m(Cj × Dj)

So we can extend m to A by defining m(S) =
∑

1≤i≤n m(Ai × Bi ) for every
S =

⊔
1≤i≤n(Ai × Bi ) ∈ A. By the theorem on Slide 81 (Extending

premeasures to measures), it suffices to show that m is a premeasure on A.



Product measure: Existence and Uniqueness

Suppose S = A× B ∈ R, Sn = An × Bn ∈ R for n ≥ 1 and S is a disjoint
union of Sn’s. We will show that m(S) =

∑
n≥1 m(Sn). Define fn : X1 → [0,∞]

by fn(x) = m2(Bn) if x ∈ An and fn(x) = 0 if x /∈ An. Then fn’s are
A1-measurable and it is easy to see that

∑
n≥1 fn(x) = m2(B) if x ∈ A and 0 if

x /∈ A. So by the monotone convergence theorem,∑
n≥1

∫
A

fn dm1 =

∫
A

∑
n≥1

fn dm1 =

∫
A

m2(B) dm1 = m1(A)m2(B) = m(S)

Since

∫
A

fn dm1 =

∫
A

1Anm2(Bn) dm1 = m1(An)m2(Bn) = m(Sn), it follows that

m(S) =
∑

n≥1 m(Sn).

For the general case, let S =
⊔

1≤j≤N Tj where each Tj ∈ R. Suppose
S =

⊔
n≥1 En where each En =

⊔
1≤k≤Kn

En,k and En,k ∈ R. Note that each Tj

is a disjoint union of {En,k ∩ Tj : n < ω, k ≤ Kn}. Now use the previous
case.



Definition of product measure

A measure space (X ,F ,m) is complete iff for every E ∈ F and A ⊆ E , if
m(E) = 0, then A ∈ F .

Exercise: (Completion of a measure) Let (X ,F ,m) be any measure space.
Put N = {Y ⊆ X : (∃A ∈ F)(m(A) = 0 and Y ⊆ A)} and define
E = {E∆Y : E ∈ F ,Y ∈ N} and m′ : E → [0,∞] by m′(E∆Y ) = m(E) for
every E ∈ F and Y ∈ N . Then (X , E ,m′) is a complete measure space and
m′ � F = m. We say that (X , E ,m′) is a completion of (X ,F ,m).

Let (X1,A1,m1) and (X2,A2,m2) be σ-finite measure spaces. By the
previous theorem, there exists a unique measure m : A1 ⊗A2 → [0,∞]
satisfying m(A× B) = m1(A)m2(B) for every A ∈ A1 and B ∈ A2. We define
the product measure m1 ⊗m2 to be the completion of m.



Product of several measures

Let (Xi ,Ai ) be measurable spaces for 1 ≤ i ≤ n. Put

Y =
∏

1≤i≤n

Xi = {(x1, x2, · · · , xn) : (∀i ≤ n)(xi ∈ Xi )}

We say that S ⊆ Y is an (A1,A2, · · · ,An)-measurable box iff S =
∏

1≤i≤n Ei

for some Ei ∈ Ai . The product algebra
⊗

1≤i≤n

Ai is the σ-algebra on Y

generated by the family of all (A1,A2, · · · ,An)-measurable boxes.

Theorem
Let (Xi ,Ai ,mi ) be σ-finite measure spaces for 1 ≤ i ≤ n. Let Y =

∏
1≤i≤n Xi

and F =
⊗

1≤i≤n

Ai . Then there is a unique measure m : F → [0,∞] such that

whenever Ei ∈ Ai for 1 ≤ i ≤ n,

m

 ∏
1≤i≤n

Ei

 =
∏

1≤i≤n

mi (Ei )



Measurability in product spaces

Let E ⊆ X1 × X2, F : X1 × X2 → R, x ∈ X1 and y ∈ X2. The vertical section
of E at x is Ex = {y ∈ X2 : (x , y) ∈ E} and the horizontal section of E at y
is E y = {x ∈ X1 : (x , y) ∈ E}. Define Fx : X2 → R and F y : X1 → R by
Fx(y) = F y (x) = F (x , y).

Lemma
Let (X1,A1) and (X2,A2) be measurable spaces and let (Y ,F) be their
product. So Y = X1 × X2 and F = A1 ⊗A2.

(1) Let E ∈ F . Then for every x ∈ X1, Ex ∈ A2 and for every y ∈ X2,
E y ∈ A1.

(2) Let F : X1 × X2 → R be F-measurable. Then for every x ∈ X1, Fx is
A2-measurable and for every y ∈ X2, F y is A1-measurable.

Proof: (1) Let E be the family of all E ⊆ X × Y such that for every x ∈ X1,
Ex ∈ A2 and for every y ∈ X2, E y ∈ A1. Check that E is a σ-algebra that
contains all (A1,A2)-measurable rectangles. For (2), use (1) and
f −1
x [B] = (f −1[B])x , (f y )−1[B] = (f −1[B])y .



Monotone class lemma

Suppose X is a non-empty set. M is a monotone class on X iff M is a family
of subsets of X satisfying the following.

(a) If An ∈M and An ⊆ An+1 for every n ≥ 1, then
⋃

n≥1 An ∈M.

(a) If An ∈M and An+1 ⊆ An for every n ≥ 1, then
⋂

n≥1 An ∈M.

Note that the intersection of any family of monotone classes on X is also a
monotone class on X . It follows that for every family A of subsets of X , there
is a smallest monotone class M on X such that A ⊆M. We say that M is
the monotone class generated by A.

Lemma (Monotone class lemma)
Let A be an algebra on X . Then the monotone class generated by A coincides
with the σ-algebra generated by A.

Proof: See notes.



Fubini’s theorem for sets

Lemma
Let (X1,A1,m1) and (X2,A2,m2) be σ-finite measure spaces and let
E ∈ A1 ⊗A2. Then

(a) the map x 7→ m2(Ex) is A1-measurable,

(b) the map y 7→ m1(E y ) is A2-measurable and

(c) (m1 ⊗m2)(E) =

∫
m2(Ex) dm1(x) =

∫
m1(E y ) dm2(y).

Proof: See notes.



Tonelli’s theorem: Non-negative functions

Theorem
Let (X1,A1,m1) and (X2,A2,m2) be σ-finite measure spaces and
m = m1 ⊗m2. Put dom(m) = A and suppose F : X1 × X2 → [0,∞) is an
A-measurable function. Then the following hold.

(a) Fx : X2 → [0,∞) is A2-measurable for m1-almost every x ∈ X1 and

g(x) =

∫
Fx dm2 is A1-measurable.

(b) F y : X1 → [0,∞) is A1-measurable for m2-almost every y ∈ X2 and

h(y) =

∫
F y dm1 is A2-measurable.

(c)

∫
F dm =

∫
g(x) dm1(x) =

∫
h(y) dm2(y).

Proof: See notes.



Fubini’s theorem: Integrable functions

Theorem
Let (X1,A1,m1) and (X2,A2,m2) be σ-finite measure spaces and
m = m1 ⊗m2. Suppose F : X1 × X2 → R is an m-integrable function. Then
the following hold.

(a) Fx : X2 → R is m2-integrable for m1-almost every x ∈ X1 and

g(x) =

∫
Fx dm2 is m1-integrable.

(b) F y : X1 → R is m1-integrable for m2-almost every y ∈ X2 and

h(y) =

∫
F y dm1 is m2-integrable.

(c)

∫
F dm =

∫
g(x) dm1(x) =

∫
h(y) dm2(y).

Proof: See notes.



1 Radon-Nikodym Theorem

Lemma 1.1. Let (X,F) be a measurable space. Suppose m, ν : F → [0,∞) are finite
measures and ν << m. Assume ν(X) > 0 and put K = m(X)/ν(X). Then there exists
A ∈ F such that ν(A) > 0 and K(ν � A) ≥ m � A. Recall that (ν � A)(E) = ν(A ∩ E).

Proof. Suppose not. Then for every A ∈ F with ν(A) > 0, there exists B ⊆ A such
that ν(B) > 0 and Kν(B) < m(B). Let A be a maximal disjoint family of those B ∈ F
for which ν(B) > 0 and Kν(B) < m(B). Then A is countable (as ν is finite) and
ν(X \

⋃
A) = 0 (as A is maximal). It follows that

ν(X) =
∑
B∈A

ν(B) <
∑
B∈A

m(B)

K
≤ m(X)

K

which contradicts the fact that K = m(X)/ν(X).

Theorem 1.2. Let (X,F ,m) be a σ-finite measure space. Let ν : F → [0,∞] be a
σ-finite measure such that ν << m. Then there exists an F-measurable h : X → [0,∞)
such that for every E ∈ F ,

ν(E) =

∫
E
h dm

Furthermore, if g : X → [0,∞) is another such function then h and g agree m-almost
everywhere.

Proof. We will first prove the theorem assuming that m, ν are both finite. We can also
assume that ν(X) > 0 otherwise h = 0 is as required. Define

E =

ß
h : X → [0,∞) : h is F measurable and for every E ∈ F ,

∫
E
h dm ≤ ν(E)

™
1. If h1, h2 ∈ E , then max(f1, f2) ∈ E .

2. Let s = sup

ß∫
h dm : h ∈ E

™
. Then there exists a sequence 〈hn : n ≥ 1〉 of func-

tions in E such that hn ≤ hn+1, and

∫
hn dm converges to s. Let h = limhn. Then

it is easy to check that h ∈ E and by monotone convergence theorem,

∫
h dm = s.

3. We claim that s = ν(X). Suppose not and we’ll get a contradiction. Define

ν ′ : F → [0,∞) by ν ′(E) = ν(E) −
∫
E
h dm and observe that ν ′ is a measure,

ν ′ << m and ν ′(X) > 0.

Put K = m(X)/ν ′(X). By Lemma 1.1, we can find A ∈ F such that ν ′(A) > 0
and K(ν ′ � A) ≥ m � A. Let g = h + (1/K)1A. Then g is F-measurable and for

1



every E ∈ F ,

∫
E
g dm =

∫
E∩A

h dm+(1/K)m(E∩A)+

∫
E∩Ac

h dm ≤
∫
E∩A

h dm+

ν ′(E ∩A) +

∫
E∩Ac

h dm =

∫
E∩A

h dm+

Å
ν(E ∩A)−

∫
E∩A

h dm

ã
+

∫
E∩Ac

h dm =

ν(E ∩A) +

∫
E∩Ac

h dm ≤ ν(E ∩A) + ν(E ∩Ac) = ν(E).

Hence

∫
E
g dm ≤ ν(E). So g ∈ E . Note that m(A) > 0 because ν ′(A) > 0 and

ν ′ << m. But now

∫
g dm =

∫
h dm + m(A)/K = s + m(A)/K > s which is

impossible.

4. We claim that for every E ∈ F ,

∫
E
h dm = ν(E). Suppose not and fix E ∈ F such

that

∫
E
h dm < ν(E). Then s =

∫
h dm =

∫
E
h dm+

∫
X\E

h dm < ν(E) + ν(X \

E) = ν(X) = s: A contradiction.

5. To see that h is unique, let g : X → [0,∞) be an F-measurable function such that

for every E ∈ F ,

∫
E
g dm =

∫
E
h dm = ν(E). Let Wn = {y ∈ X : h(y) ≥ g(y) +

2−n}. Then

∫
Wn

h dm −
∫
Wn

g dm ≥ 2−nm(Wn). So m(Wn) = 0 for every n ≥ 1.

Hence m({y ∈ X : h(y) > g(y)}) = 0. Similarly, m({y ∈ X : h(y) < g(y)}) = 0
and therefore h and g agree m-almost everywhere.

This completes the proof of the theorem when m, ν are both finite. To deal with the
σ-finite case, first decompose X =

⊔
n≥1En such that both m � En and ν � En are finite

measures. Apply the finite case of the theorem to the measures m � En and ν � En to
get hn : X → [0,∞) as in the conclusion of the theorem. Finally, put h =

∑
n≥1 hn and

check that it works for ν,m.

The function h in Theorem 1.2 called the Radon-Nikodym derivative of ν w.r.t.
m and is denoted as follow

dν

dm
= h

2



AC, BV etc.

April 20, 2022

1 Fundamental theorem of calculus for absolutely continuous
functions

Definition 1.1. Let J ⊆ R be an interval and f : J → R. We say that f is absolutely
continuous on J iff for every ε > 0, there exists δ > 0 such that for every finite sequence
〈(ai, bi) : 1 ≤ i ≤ n〉 of pairwise disjoint subintervals of J ,∑

i≤n
(bi − ai) < δ =⇒

∑
i≤n
|f(bi)− f(ai)| < ε

We’ll denote the set of all absolutely continuous functions f : J → R by AC(J). The
following lemma says that AC(J) is a vector space over R. The easy proof is left to the
reader.

Lemma 1.2. For every f, g ∈ AC(J) and a ∈ R, f + g ∈ AC(J) and af ∈ AC(J).

Denote the set of all Lebesgue integrable functions f : [a, b] → R by L1([a, b]). For
f ∈ L1([a, b]), define hf : [a, b]→ R by

hf (x) =

∫ x

a
f dµ

Lemma 1.3. hf : [a, b]→ R is absolutely continuous.

Proof. Note that hf = hf+ − hf− . Since the difference of two absolutely continuous
functions is absolutely continuous, it suffices to show that hf is absolutely continuous
for every f ∈ L1([a, b]) with f : [a, b]→ [0,∞).

LetM be the set of all Lebesgue measurable subsets of [a, b]. Define m :M→ [0,∞)
by m(E) =

∫
E f dµ. Then m is a measure and m << µ. Since µ,m are finite measures,

by a previous lemma, it follows that for every ε > 0, there exists δ > 0 such that for
every E ∈M,

µ(E) < δ =⇒ m(E) < ε

Let ε > 0. Choose δ > 0 such that for every E ∈ M, µ(E) < δ =⇒ m(E) < ε.
Suppose 〈(ai, bi) : 1 ≤ i ≤ n〉 is a finite sequence of pairwise disjoint subintervals of [a, b]

1



such that
∑

i≤n(bi − ai) < δ. Put E =
⋃
i≤n(ai, bi). Then µ(E) < δ. Hence m(E) < δ.

But

m(E) =
∑
i≤n

m((ai, bi)) =
∑
i≤n

∫
(ai,bi)

f dµ =
∑
i≤n
|hf (bi)− hf (ai)|

It follows that hf is absolutely continuous on [a, b].

Theorem 1.4. Let h : [a, b]→ R be absolutely continuous and montonically increasing.
Then the following hold.

(1) For every E ⊆ R, if µ(E) = 0, then µ(h[E]) = 0.

(2) h is almost everywhere differentiable on [a, b]. Let f : [a, b] → R be defined by
f(x) = h′(x) if h′(x) exists and f(x) = 0 otherwise. Then f ∈ L1([a, b]) and for
every x ∈ [a, b],

h(x) = h(a) +

∫ x

a
f dµ

Proof. (1) Suppose E ⊆ [a, b] is null. We can assume E ⊆ (a, b) since this removes at
most two points from f [E]. Let ε > 0 be arbitrary. We will show that µ(f [E]) ≤ ε. Since
h is absolutely continuous, there exists δ > 0 witnessing the absolute continuity of f for
this ε. Choose an open U ⊆ (a, b) such that E ⊆ U and µ(U) < δ. Let {(ai, bi) : i ≥ 1}
list all components of U . Then µ(U) =

∑
i≥1(bi−ai) < δ. Now for every n ≥ 1, 〈(ai, bi) :

i ≤ n〉 is a finite sequence of pairwise disjoint subintervals of [a, b] with
∑

i≤n(bi−ai) < δ.
Hence

∑
i≤n |h(bi)−h(ai)| < ε. Taking supremum over all n, we get

∑
i≥1 |h(bi)−h(ai)| ≤

ε. Since h is monotonically increasing, h[U ] =
⋃
i≥1 h[(ai, bi)] =

⋃
i≥1(h(ai), h(bi)).

Hence µ(h[E]) ≤ µ(h[U ]) =
∑

i≥1 µ((h(ai), h(bi))) =
∑

i≥1 |h(bi)− h(ai)| ≤ ε.

(2) Define g : [a, b]→ R by g(x) = x+h(x). Then g is absolutely continuous on [a, b]
and strictly increasing.

Let M be the set of all Lebesgue measurable subsets of [a, b]. We claim that for
every E ∈ M, g[E] ∈ M. Let E ∈ M. Choose a sequence of compact subsets Kn ⊆ E
such that µ(E \ Kn) < 1/n. Put K =

⋃
n≥1Kn. Then µ(E \ K) = 0. Note that

g[K] =
⋃
n≥1 g[Kn] is Fσ as each g[Kn] is compact. Also by (1), g[E \ K] is null. So

g[E] = g[K] ∪ g[E \K] is the union of an Fσ-set and a null set. Hence g[E] ∈M.
Define m : M → [0,∞) by m(E) = µ(g[E]). Since g is one-one, m is a measure

on M. Also m << µ since g[E] is null for every null E ∈ M. Let f1 = dm
dµ be the

Radon-Nikodym derivative of m w.r.t. µ. Then for every x ∈ [a, b], m([a, x]) =
∫ x
a f1 dµ.

Also, m([a, x]) = µ(g[[a, x]]) = µ([g(a), g(x)]) = g(x)− g(a) = h(x)− h(a) + (x− a). It
follows that for every x ∈ [a, x],

h(x) = h(a)−
∫ x

a
(f1 − 1) dµ

Put f = f1−1. Then f ∈ L1([a, b]) as f1 ∈ L1([a, b]). Finally, by Homework problem
39, it follows that h(x) = h(a) +

∫ x
a f dµ is differentiable for almost every x ∈ [a, b] and

its derivative is equal to f(x).
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We would next like to extend Theorem 1.4 to all AC functions. This will be done by
showing that every AC function is the difference of two increasing AC functions.

Definition 1.5. Let f : [a, b] → R and [c, d] ⊆ [a, b]. The total variation of f on [c, d]
is defined by

V arf (c, d) = sup{
n∑
i=1

|f(xi+1)− f(xi)| : c = x0 < x1 < · · · < xn = d}

We say that f is of bounded variation on [a, b] iff V arf (a, b) <∞. Let BV ([a, b]) denote
the set of all functions f : [a, b]→ R of bounded variation on [a, b].

Note that every monotonically increasing/decreasing function f : [a, b] → R is of
bounded variation on [a, b] and BV ([a, b]) is a vector space over R.

Lemma 1.6. Let f : [a, b]→ R. Define Vf : [a, b]→ [0,∞] by Vf (x) = V arf (a, x). The
following hold.

(a) If f ∈ BV ([a, b]), then Vf : [a, b]→ [0,∞) and both Vf and Vf−f are monotonically
increasing functions. So every function in BV ([a, b]) is the difference of two
monotonically increasing functions.

(b) If f ∈ AC([0, 1]), then f ∈ BV ([a, b]) and both Vf and Vf − f are absolutely
continuous monotonically increasing functions. So every function in AC([a, b]) is
the difference of two monotonically increasing absolutely continuous functions.

Proof. Will be covered in lecture.

It is clear that BV ([a, b]) is not a subset of AC([a, b]) since every increasing function
f : [a, b]→ R is in BV ([a, b]) and an increasing function can have jump discontinuities.
Let C([a, b]) denote the set of all continuous functions from [a, b] to R. Is C([a, b]) ∩
BV ([a, b]) ⊆ AC([a, b])? The answer is no: See https://en.wikipedia.org/wiki/

Cantor_function.

Theorem 1.7 (Fundamental theorem of calculus for Lebesgue integrals). Let h : [a, b]→
R. Then the following are equivalent.

(1) h ∈ AC([a, b]).

(2) h is almost everywhere differentiable on [a, b], h′ ∈ L1([a, b]) and for every x ∈
[a, b],

h(x) = h(a) +

∫ x

a
h′ dµ

Proof. (2) =⇒ (1): Follows from Lemma 1.3.
(1) =⇒ (2): By Lemma 1.6(b), there are monotonically increasing AC functions

h1, h2 : [a, b] → R such that h = h1 − h2. Applying Theorem 1.4 to h1 and h2 gives
(2).
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