MTH404: Analysis II

LECTURE NOTES

σ-ideals

Definition (Ideals)

Let X be a nonempty set. We say that \mathcal{I} is an ideal on X iff \mathcal{I} is a family of subsets of X satisfying the following.
(i) $\emptyset \in \mathcal{I}$ and $X \notin \mathcal{I}$.
(ii) If $A \subseteq B \subseteq X$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
(iii) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$. So \mathcal{I} is closed under finite unions.

Definition (Sigma-ideals)
\mathcal{I} is a σ-ideal on X iff \mathcal{I} is an ideal on X and for every countable $\mathcal{A} \subseteq \mathcal{I}$, $\bigcup \mathcal{A} \in \mathcal{I}$.

Example: Let X be an uncountable set and \mathcal{I} be the family of all countable subsets of X. Then \mathcal{I} is a σ-ideal on X.

Meager sets

Let (X, d) be a metric space and $D \subseteq X$.
(a) D is dense in X iff for every nonempty open $U \subseteq X, D \cap U \neq \emptyset$.
(b) D is nowhere dense in X iff for every nonempty open $U \subseteq X$, there exists a nonempty open $V \subseteq X$ such that $V \subseteq U$ and $V \cap D=\emptyset$.
(c) D is open dense in X iff it is both open and dense in X.
(d) D is meager in X iff there exists a countable family $\left\{D_{n}: n \geq 1\right\}$ such that each D_{n} is nowhere dense in X and $D \subseteq \bigcup\left\{D_{n}: n \geq 1\right\}$.
(e) For historical reasons, some people also write " D is of the first category in X " instead of " D is meager in X " and " D is of the second category in X " instead of " D is non-meager in X ".

Exercise: Let (X, d) be a metric space and $D \subseteq X$. Show that the following are equivalent.
(1) D is nowhere dense in X.
(2) $\mathrm{cl}(D)$ (closure of D) is nowhere dense in X.
(3) $X \backslash D$ contains an open dense subset of X.

Baire Category Theorem

Recall that a metric space (X, d) is complete iff every Cauchy sequence in X converges to some point in X.

Theorem (Baire Category Theorem)

Suppose (X, d) is a complete metric space and $\left\{D_{n}: n \geq 1\right\}$ is a countable family of nowhere dense subsets of X. Then $X \backslash \bigcup\left\{D_{n}: n \geq 1\right\}$ is dense in X.
Proof: Put $D=\bigcup\left\{D_{n}: n \geq 1\right\}$. Let U be a nonempty open subset of X. We must show that $U \backslash D \neq \emptyset$. Indutively, choose a sequence $\left\langle B_{n}: n \geq 1\right\rangle$ of open balls in X as follows. B_{1} is an open ball of radius ≤ 1 such that $c l\left(B_{1}\right) \subseteq U$ and $B_{1} \cap D_{1}=\emptyset$. This can be done because D_{1} is nowhere dense in X. Having chosen B_{n}, let B_{n+1} be an open ball of radius $\leq 2^{-n}$ such that $c l\left(B_{n+1}\right) \subseteq B_{n}$ and $B_{n+1} \cap D_{n+1}=\emptyset$. Once again, we are using the fact that D_{n+1} is nowhere dense in X. Note that $B_{n+1} \subseteq B_{n} \subseteq U$ for every $n \geq 1$. Let a_{n} be the center of B_{n}. Since the radii of B_{n} converge to 0 , it follows that $\left\langle a_{n}: n \geq 1\right\rangle$ is a Cauchy sequence in X. Since X is complete, this sequence converges to say $a \in X$. It is easy to see that $a \in U \backslash D$. It follows that $X \backslash D$ is dense in X.

Meager ideal

Corollary

Let (X, d) be a complete metric space and \mathcal{M} be the family of all meager subsets of X. Then \mathcal{M} is a σ-ideal on X.
Proof: The only nontrivial thing to check is $X \notin \mathcal{M}$. But this follows from the Baire Category theorem.

Lemma

Let \mathcal{M} be the meager ideal on \mathbb{R}^{n}. Let \mathcal{I} be the σ-ideal of all countable subsets of \mathbb{R}^{n}. Then \mathcal{I} is a proper subideal of \mathcal{M}.
Proof: Note that $\{x\}$ is nowhere dense in \mathbb{R}^{n} for every $x \in \mathbb{R}^{n}$. So $\mathcal{I} \subseteq \mathcal{M}$. Next suppose $n=1$. Let A be the set of all $x \in[0,1]$ whose decimal expansion contains only two digits: 0,1 . Then it is easy to see that A is uncountable and nowhere dense in \mathbb{R}. So $A \in \mathcal{M} \backslash \mathcal{I}$.
Finally suppose $n \geq 2$. Let A be a line in \mathbb{R}^{n}. Then A is uncountable and nowhere dense in \mathbb{R}^{n}. So $A \in \mathcal{M} \backslash \mathcal{I}$. It follows that \mathcal{I} is a proper subideal of \mathcal{M}.

Null subsets of \mathbb{R}

Definition (Null sets)

Let $X \subseteq \mathbb{R}$. We say that X is Lebesgue null (or just null) iff for every $\varepsilon>0$, there exists a countable family $\left\{J_{k}: k \geq 1\right\}$ of open intervals in \mathbb{R} such that
(a) $X \subseteq \bigcup\left\{J_{k}: k \geq 1\right\}$ and
(b) $\sum_{k \geq 1}$ length $\left(J_{k}\right)<\varepsilon$.

Lemma

Suppose $X_{n} \subseteq \mathbb{R}$ is null for each $n \geq 1$. Then $\bigcup\left\{X_{n}: n \geq 1\right\}$ is also null.
Proof: Put $X=\bigcup\left\{X_{n}: n \geq 1\right\}$. Let $\varepsilon>0$. Since each X_{n} is null, we can find a countable family $\left\{J_{n, k}: k \geq 1\right\}$ of open intervals such that $X_{n} \subseteq \bigcup\left\{J_{n, k}: k \geq 1\right\}$ and $\sum_{k \geq 1}$ length $\left(J_{n, k}\right)<\varepsilon / 2^{n}$.
Since the union of a countable family of countable sets is countable, the family $\mathcal{F}=\left\{J_{n, k}: n, k \geq 1\right\}$ is countable. Let $\left\{I_{k}: k \geq 1\right\}$ enumerate all members of \mathcal{F}. Then $X \subseteq \bigcup\left\{I_{k}: k \geq 1\right\}$ and $\sum_{k \geq 1}$ length $\left(I_{k}\right)<\sum_{n \geq 1} \varepsilon / 2^{n}=\varepsilon$. It follows that X is null.

Null ideal on \mathbb{R}

Lemma
(i) Every countable $X \subseteq \mathbb{R}$ is null.
(ii) For every $a<b$, the interval (a, b) is not null.
(iii) The ternary Cantor set is an uncountable null set.

Proof: See Homework.
Corollary
Let \mathcal{N} be the family of Lebesgue null subsets of \mathbb{R}. Then \mathcal{N} is a σ-ideal on \mathbb{R} that properly extends the σ-ideal of countable subsets of \mathbb{R}.
Proof: Follows from the previous two lemmas.

Null vs Meager

The following theorem says that the null and the meager ideals on \mathbb{R} are orthogonal in the following sense.

Theorem
There is a partition $A \sqcup B=\mathbb{R}$ such that A is null and B is meager. Proof: Let $\left\{a_{k}: k \geq 1\right\}$ be an enumeration of all rationals. For each $n \geq 1$, let

$$
U_{n}=\bigcup_{k \geq 1}\left(a_{k}-2^{-(n+k)}, a_{k}+2^{-(n+k)}\right)
$$

Define $A=\bigcap\left\{U_{n}: n \geq 1\right\}$ and $B=\mathbb{R} \backslash A$. The reader should check that A, B are as required.

What is a measure?

Our starting point is the following question. Are there any interesting generalizations of the notions of length/area/volume to arbitrary subsets of $\mathbb{R} / \mathbb{R}^{2} / \mathbb{R}^{3}$?

To simplify matters, let us try to extend the notion of "length" to arbitrary subsets of \mathbb{R}. So we are looking for a function $m: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ that satisfies some desirable properties. Here's a list of such properties.
(1) $m((a, b))=b-a$ for every $a<b$ in \mathbb{R}.
(2) (Isometric invariant) If A is congruent to B, then $m(A)=m(B)$.
(3) (Countably additive) For every countable family $\left\{A_{n}: n \geq 1\right\}$ of pairwise disjoint subsets of $\mathbb{R}, m\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n \geq 1} m\left(A_{n}\right)$.
Unfortunately, there is no such generalization.

Theorem (Vitali, 1905)

There is no $m: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ that satisfies (1) - (3) above.

Vitali's obstruction

First note that any m satisfying (3) is also monotone is the following sense: If $A \subseteq B \subseteq \mathbb{R}$, then $m(A) \leq m(B)$.

Towards a contradiction, suppose there is such an m. Define a binary relation E on \mathbb{R} by $a E b$ iff $a-b \in \mathbb{Q}$. It is easy to check that E is an equivalence relation on \mathbb{R}. For each $a \in \mathbb{R}$, let $[a]_{E}$ denote the E-equivalence class of a. Then $[a]_{E}=\mathbb{Q}+a$ and $\mathcal{F}=\left\{[a]_{E}: a \in \mathbb{R}\right\}$ is a partition of \mathbb{R}. Since each $[a]_{E}=a+\mathbb{Q}$ is dense in \mathbb{R}, the sets $[a]_{E} \cap[0,1]$ are all nonempty. Therefore, using the axiom of choice, we can find $V \subseteq[0,1]$ such that V intersects each member of \mathcal{F} at exactly one point. Observe that if $a \neq b$ are rationals, then $V+a$ and $V+b$ are disjoint.
We first claim that $m(V)>0$. Suppose not. Then by properties (2) and (3), $\infty=m(\mathbb{R})=\sum_{r \in \mathbb{Q}} m(V+r)=0$ which is a contradiction. So $m(V)>0$.
Define $W=\bigcup\{V+r: r \in \mathbb{Q} \cap[0,1]\}$. Since $V \subseteq[0,1]$, we get $W \subseteq[0,2]$. Now $m(W)=m(\bigcup\{V+r: r \in \mathbb{Q} \cap[0,1]\})=\sum_{r \in \mathbb{Q} \cap[0,1]} m(V+r)=\infty$. But $W \subseteq[0,2]$. So $2=m([0,2]) \geq m(W)=\infty$ which is a contradiction. It follows that no such m exists.

Banach Measure Problem

Banach measure problem asks the following. Is there a function $m: \mathcal{P}([0,1]) \rightarrow[0,1]$ that satisfies the following?
(1) For every $0 \leq a<b \leq 1, m((a, b))=b-a$.
(2) (Countably additive) For every countable family $\left\{A_{n}: n \geq 1\right\}$ of pairwise disjoint subsets of $[0,1]$,

$$
m\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n \geq 1} m\left(A_{n}\right)
$$

Banach and Kuratowski (1920) showed that under the continuum hypothesis (CH), there is no such m. Godel (1938) showed that CH cannot be disproved in ZFC. Solovay (1971) showed that it is consistent with ZFC that there is such an m. So Banach's measure problem is undecidable in ZFC.

Lebesgue outer measure on \mathbb{R}

Definition (Lebesgue outer measure on \mathbb{R})

Define $\mu^{\star}: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ as follows.

$$
\begin{aligned}
\mu^{\star}(X)= & \inf \left\{\sum_{n \geq 1} \text { length }\left(J_{n}\right):\left\langle J_{n}: n \geq 1\right\rangle\right. \text { is a sequence of open } \\
& \text { intervals such that } \left.X \subseteq \bigcup_{n \geq 1} J_{n}\right\}
\end{aligned}
$$

Lemma

(1) $X \subseteq \mathbb{R}$ is Lebesgue null iff $\mu^{\star}(X)=0$.
(2) (Translation invariant) For every $X \subseteq \mathbb{R}$ and $t \in \mathbb{R}, \mu^{\star}(X+t)=\mu^{\star}(X)$.
(3) (Monotone) If $X \subseteq Y \subseteq \mathbb{R}$, then $\mu^{\star}(X) \leq \mu^{\star}(Y)$.
(4) (Countably subadditive) If $X_{n} \subseteq \mathbb{R}$ for each $n \geq 1$ and $X=\bigcup_{n \geq 1} X_{n}$, then

$$
\mu^{\star}(X) \leq \sum_{n \geq 1} \mu^{\star}\left(X_{n}\right)
$$

Lebesgue outer measure on \mathbb{R}

Proof: Facts (1), (2) and (3) are immediate from the definition of μ^{\star}. Let us check (4). Suppose $X_{n} \subseteq \mathbb{R}$ for each $n \geq 1$ and $X=\bigcup_{n \geq 1} X_{n}$. We can assume that $\mu^{\star}\left(X_{n}\right)<\infty$ for every $n \geq 1$, otherwise the inequality is trivial. Let $\varepsilon>0$ be arbitrary. For each $n \geq 1$, choose a sequence $\left\langle J_{n, k}: k \geq 1\right\rangle$ of open intervals such that $X_{n} \subseteq \bigcup_{k \geq 1} J_{n, k}$ and

$$
\sum_{k \geq 1} \operatorname{length}\left(J_{n, k}\right)<\mu^{\star}\left(X_{n}\right)+\varepsilon / 2^{n}
$$

Let $\left\langle I_{k}: k \geq 1\right\rangle$ enumerate all intervals in the countable family $\left\{J_{n, k}: k, n \geq 1\right\}$. Then

$$
\sum_{k \geq 1} \operatorname{length}\left(I_{k}\right) \leq \sum_{n \geq 1} \sum_{k \geq 1} \operatorname{length}\left(J_{n, k}\right)<\sum_{n \geq 1}\left(\mu^{\star}\left(X_{n}\right)+\varepsilon / 2^{n}\right)=\varepsilon+\sum_{n \geq 1} \mu^{\star}\left(X_{n}\right)
$$

Since $X \subseteq \bigcup_{k \geq 1} I_{k}$, it follows that $\mu^{\star}(X) \leq \varepsilon+\sum_{n \geq 1} \mu^{\star}\left(X_{n}\right)$. As this inequality holds for all $\varepsilon>0$, we must have

$$
\mu^{\star}(X) \leq \sum_{n \geq 1} \mu^{\star}\left(X_{n}\right)
$$

Lebesgue outer measure on \mathbb{R}

Lemma

For every closed interval $J \subseteq \mathbb{R}, \mu^{\star}(J)=\operatorname{length}(J)$.
Proof: Let $J=[a, b]$ where $-\infty<a<b<\infty$. For each $\varepsilon>0$, the open intervals $(a, b),(a-\varepsilon, a+\varepsilon)$ and $(b-\varepsilon, b+\varepsilon)$ cover $[a, b]$ and the sum of their lengths is $(b-a)+2 \varepsilon$. So $\mu^{\star}(J) \leq b-a$. For the other inequality, suppose $\left\langle J_{n}: n \geq 1\right\rangle$ is a sequence of open intervals that cover $[a, b]$. Since $[a, b]$ is compact, finitely many of J_{n} 's already cover $[a, b]$. Fix $k \geq 1$ such that $[a, b] \subseteq \bigcup_{n \leq k} J_{n}$. Now use induction on k to show that

$$
\sum_{n \leq k} \text { length }\left(J_{n}\right) \geq b-a
$$

Hence $\sum_{n \geq 1}$ length $\left(J_{n}\right) \geq b-a$. It follows that $\mu^{\star}(J) \geq b-a$ and we are done.

Corollary

For every open interval $J \subseteq \mathbb{R}, \mu^{\star}(J)=$ length (J).
Proof: Exercise.

Lebesgue outer measure on \mathbb{R}^{n}

Definition (Open boxes, Volumes)

A subset $B \subseteq \mathbb{R}^{n}$ is an open n-box iff there are bounded open intervals $J_{1}, J_{2}, \ldots, J_{n}$ in \mathbb{R} such that $B=J_{1} \times J_{2} \times \cdots \times J_{n}$. We define the n-volume of B by

$$
\operatorname{vol}_{n}(B)=\prod_{1 \leq k \leq n} \text { length }\left(J_{k}\right)
$$

Definition (Lebesgue outer measure on \mathbb{R}^{n})

Define $\mu_{n}^{\star}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty]$ as follows.

$$
\begin{aligned}
\mu_{n}^{\star}(X)= & \inf \left\{\sum_{n \geq 1} \operatorname{vol}_{n}\left(B_{n}\right):\left\langle B_{n}: n \geq 1\right\rangle\right. \text { is a sequence of } \\
& \left.n \text {-boxes such that } X \subseteq \bigcup_{n \geq 1} B_{n}\right\}
\end{aligned}
$$

Lebesgue outer measure on \mathbb{R}^{n}

The following lemma can be proved exactly like the one for 1-dimensional Lebesgue outer measure.

Lemma

(1) (Translation invariant) For every $X \subseteq \mathbb{R}^{n}$ and $t \in \mathbb{R}^{n}, \mu_{n}^{\star}(X+t)=\mu_{n}^{\star}(X)$.
(3) (Monotone) If $X \subseteq Y \subseteq \mathbb{R}^{n}$, then $\mu_{n}^{\star}(X) \leq \mu_{n}^{\star}(Y)$.
(4) (Countably subadditive) If $X_{m} \subseteq \mathbb{R}^{n}$ for each $m \geq 1$ and $X=\bigcup_{m \geq 1} X_{m}$, then

$$
\mu_{n}^{\star}(X) \leq \sum_{m \geq 1} \mu_{n}^{\star}\left(X_{m}\right)
$$

We will sometimes write μ^{\star} instead of μ_{n}^{\star} if the dimension n is clear from the context.
μ^{\star} is a highly non-additive function: A result of Lusin says that for every $X \subseteq \mathbb{R}^{n}$, there exists a partition $X=A \sqcup B$ such that $\mu^{\star}(A)=\mu^{\star}(B)=\mu^{\star}(X)$. But Caratheodory showed that there is a reasonably "large family" \mathcal{M} of subsets of \mathbb{R}^{n} such that $\mu^{\star} \upharpoonright \mathcal{M}$ is countably additive. His arguments for proving this work in a much more general setting that will now be described.

Abstract outer measures and measurable sets

Definition (Outer measure)

Let X be a nonempty set. An outer measure on X is a function $m: \mathcal{P}(X) \rightarrow[0, \infty]$ satisfying the following.
(1) $m(\emptyset)=0$.
(2) (Monotone) If $A \subseteq B \subseteq X$, then $m(A) \leq m(B)$.
(3) (Countably subadditive) If $A_{n} \subseteq X$ for every $n \geq 1$ and $A=\bigcup_{n \geq 1} A_{n}$, then $m(A) \leq \sum_{n \geq 1} m\left(A_{n}\right)$

Definition (Caratheodory's criterion)

Suppose m is an outer measure on X. We say that $E \subseteq X$ is m-measurable iff for every $A \subseteq X, m(A)=m(A \cap E)+m(A \backslash E)$.

Remark: Note that $m(A) \leq m(A \cap E)+m(A \backslash E)$ follows from the fact that m is countably subadditive. Therefore, to show that $E \subseteq X$ is m-measurable it suffices to show that $m(A) \geq m(A \cap E)+m(A \backslash E)$ for every $A \subseteq X$.

Caratheodory's theorem

Theorem (Caratheodory)

Suppose m is an outer measure on X. Let $\mathcal{M}=\{E \subseteq X: E$ is m-mesurable $\}$.
(1) $\emptyset \in \mathcal{M}$ and $X \in \mathcal{M}$. If $m(E)=0$, then $E \in \mathcal{M}$.
(2) If $E \in \mathcal{M}$, then $X \backslash E \in \mathcal{M}$.
(3) If $E_{1}, E_{2} \in \mathcal{M}$, then $E_{1} \cup E_{2} \in \mathcal{M}$.
(4) If $E_{1}, E_{2} \in \mathcal{M}$ are disjoint, then $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$.
(5) If $E_{n} \in \mathcal{M}$ for every $n \geq 1$, then $\bigcup_{n \geq 1} E_{n} \in \mathcal{M}$.
(6) If $\left\langle E_{n}: n \geq 1\right\rangle$ is a sequence of pairwise disjoint sets in \mathcal{M} and $E=\bigcup_{n \geq 1} E_{n}$, then $m(E)=\sum_{n \geq 1} m\left(E_{n}\right)$.

Proof: (1) and (2) are obvious from the definition of m-measurable.
(3) Assume $E_{1}, E_{2} \in \mathcal{M}$. For $W \subseteq X$, we will write W^{c} (complement of W) for $X \backslash W$. Let $A \subseteq X$ be arbitrary. As $E_{1}, E_{2} \in \mathcal{M}$, we have $m(A)=m\left(A \cap E_{1}\right)+m\left(A \cap E_{1}^{c}\right)=$
$=m\left(A \cap E_{1} \cap E_{2}\right)+m\left(A \cap E_{1} \cap E_{2}^{c}\right)+m\left(A \cap E_{1}^{c} \cap E_{2}\right)+m\left(A \cap E_{1}^{c} \cap E_{2}^{c}\right)$.

Caratheodory's theorem

Since $E_{1} \cup E_{2}=\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{2}^{c}\right) \cup\left(E_{1}^{c} \cap E_{2}\right)$, after intersecting both sides with A and applying countable subadditivity of m, we get $m\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \leq m\left(A \cap\left(E_{1} \cap E_{2}\right)\right)+m\left(A \cap\left(E_{1} \cap E_{2}^{c}\right)\right)+m\left(A \cap\left(E_{1}^{c} \cap E_{2}\right)\right)$. Adding $m\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right)$ on both sides and using the fact that $\left(E_{1} \cup E_{2}\right)^{c}=E_{1}^{c} \cap E_{2}^{c}$, we get $m\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \leq m(A)$. As $A \subseteq X$ was arbitrary, it follows that $E_{1} \cup E_{2} \in \mathcal{M}$.
(4) Since $E_{1} \cap E_{2}=\emptyset$, we get $\left(E_{1} \cup E_{2}\right) \cap E_{1}^{c}=E_{2}$. Using the fact that E_{1} is m-measurable, we get
$m\left(E_{1} \cup E_{2}\right)=m\left(\left(E_{1} \cup E_{2}\right) \cap E_{1}\right)+m\left(\left(E_{1} \cup E_{2}\right) \cap E_{1}^{c}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$.
(5) Suppose $E_{n} \in \mathcal{M}$ for every $n \geq 1$. Define $F_{1}=E_{1}$ and for $n \geq 2$, $F_{n}=E_{n} \cap\left(E_{1} \cup \cdots \cup E_{n-1}\right)^{c}$. Then F_{n} 's are pairwise disjoint members of \mathcal{M} (by clauses (2)-(3) above) and $\bigcup_{n \geq 1} E_{n}=\bigcup_{n \geq 1} F_{n}$. It follows that to prove (5), it suffices to show that \mathcal{M} is closed under countable unions of pairwise disjoint sets.

Caratheodory's theorem

So assume that E_{n} 's are pairwise disjoint members of \mathcal{M}. Put $E=\bigcup_{n \geq 1} E_{n}$, $G_{0}=\emptyset$ and $G_{k}=E_{1} \cup \cdots \cup E_{k}$ for each $k \geq 1$. Since $E_{k} \in \mathcal{M}$, for any $A \subseteq X$, we have $m\left(A \cap G_{k}\right)=m\left(\left(A \cap G_{k}\right) \cap E_{k}\right)+m\left(\left(A \cap G_{k}\right) \cap E_{k}^{c}\right)=$ $=m\left(A \cap E_{k}\right)+m\left(A \cap G_{k-1}\right)$ for every $k \geq 1$. It follows that $m\left(A \cap G_{k}\right)=\sum_{n \leq k} m\left(A \cap E_{n}\right)$. Hence

$$
m(A)=m\left(A \cap G_{k}\right)+m\left(A \cap G_{k}^{c}\right) \geq \sum_{n \leq k} m\left(A \cap E_{n}\right)+m\left(A \cap E^{c}\right)
$$

Letting $k \rightarrow \infty$, we get $m(A) \geq \sum_{n \geq 1} m\left(A \cap E_{n}\right)+m\left(A \cap E^{c}\right)$. Using countable subadditivity of m, we have

$$
m(A) \geq \sum_{n \geq 1} m\left(A \cap E_{n}\right)+m\left(A \cap E^{c}\right) \geq m(A \cap E)+m\left(A \cap E^{c}\right)
$$

So $m(A) \geq m(A \cap E)+m\left(A \cap E^{c}\right)$ which implies that $E \in \mathcal{M}$ and that all inequalities above are equalities. Plugging $A=E$ gives $\sum_{n \geq 1} m\left(E_{n}\right)=m(E)$. This proves both (5) and (6).

Sigma-algebras and measurable spaces

The family \mathcal{M} of m-measurable sets in Caratheodory's theorem is an example of a σ-algebra.
Definition (Sigma-algebra)
Let X be a nonempty set. A σ-algebra on X is a family \mathcal{F} of subsets of X that satisfies the following.
(1) $\emptyset \in \mathcal{F}$ and $X \in \mathcal{F}$.
(2) (Closed under complements) If $E \in \mathcal{F}$, then $X \backslash E \in \mathcal{F}$.
(3) (Closed under countable unions) If $E_{n} \in \mathcal{F}$ for every $n \geq 1$, then $\bigcup_{n \geq 1} E_{n} \in \mathcal{F}$.

Definition (Measurable space)

A measurable space is a pair (X, \mathcal{F}) where X is a nonempty set and \mathcal{F} is a σ-algebra on X.

Measures and measure spaces

Suppose \mathcal{F} is a σ-algebra on a nonempty set X and $m: \mathcal{F} \rightarrow[0, \infty]$. We say that m is a measure iff the following hold.
(1) $m(\emptyset)=0$.
(2) (Countably additive) For every sequence $\left\langle E_{n}: n \geq 1\right\rangle$ of pairwise disjoint sets in \mathcal{F},

$$
m\left(\bigcup_{n \geq 1} E_{n}\right)=\sum_{n \geq 1} m\left(E_{n}\right)
$$

If $m(X)<\infty$, we say that m is a finite measure. If $m(X)=1$, we say that m is a probability measure.

Definition (Measure space)

A measure space is a triplet (X, \mathcal{F}, ν) where (X, \mathcal{F}) is a measurable space and $\nu: \mathcal{F} \rightarrow[0, \infty]$ is a measure.
Example: Let $m: \mathcal{P}(X) \rightarrow[0, \infty]$ be an outer measure on X. Let \mathcal{M} be the family of all m-measurable sets and $\nu=m \upharpoonright \mathcal{M}$. Then (X, \mathcal{M}, ν) is a measure space.

Lebesgue measure on \mathbb{R}^{n}

Definition (Lebesgue measure)

Recall that μ_{n}^{\star} is an outer measure on \mathbb{R}^{n}. We say that $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable iff E is μ_{n}^{\star}-measurable (Caratheodory criterion). Let \mathcal{M}_{n} denote that family of all Lebesgue measurable subsets of \mathbb{R}^{n}. By Caratheodory's theorem, \mathcal{M}_{n} is a σ-algebra on \mathbb{R}^{n} and $\mu_{n}^{\star} \upharpoonright \mathcal{M}_{n}$ is a measure. We denote the restricted map $\mu_{n}^{\star} \upharpoonright \mathcal{M}_{n}$ by μ_{n} and call it Lebesgue measure. So a set is Lebesgue measurable iff it belongs to $\operatorname{dom}\left(\mu_{n}\right)=\mathcal{M}_{n}$. The triplet $\left(\mathbb{R}^{n}, \operatorname{dom}\left(\mu_{n}\right), \mu_{n}\right)$ is called Lebesgue measure space.

Intervals are Lebesgue measurable

Lemma

Every open interval $J \subseteq \mathbb{R}$ is Lebesgue measurable.
Proof: Let $J=(a, b)$. We need to show that for every $A \subseteq \mathbb{R}$,
$\mu^{\star}(A) \geq \mu^{\star}(A \cap J)+\mu^{\star}(A \backslash J)$. If $\mu^{\star}(A \cap J)+\mu^{\star}(A \backslash J)=\infty$, this is clear as μ^{\star} is monotone. So assume both $\mu^{\star}(A \cap J)$ and $\mu^{\star}(A \backslash J)$ are finite. If $\mu^{\star}(A)=\infty$, we are done. So assume $\mu^{\star}(A)$ is also finite. Let $\varepsilon>0$ be arbitrary. Choose a sequence of open intervals $\left\langle J_{n}: n \geq 1\right\rangle$ whose union contains A such that $\sum_{n \geq 1}$ length $\left(J_{n}\right)<\mu^{\star}(A)+\varepsilon$. Let $I_{n}=J_{n} \cap(a, b)$, $K_{1, n}=J_{n} \cap(-\infty, a)$ and $K_{2, n}=(b, \infty)$. Then $A \cap J \subseteq \bigcup_{n>1} I_{n}$ and $A \backslash J \subseteq \bigcup_{n \geq 1}\left(K_{1, n} \cup K_{2, n}\right) \cup\{a, b\}$. Therefore, $\mu^{\star}(A \cap J) \stackrel{n \geq 1}{\leq} \sum_{n \geq 1}$ length $\left(I_{n}\right)$ and $\mu^{\star}(A \backslash J) \leq \sum_{n>1}\left(\right.$ length $\left(K_{1, n}\right)+$ length $\left.\left(K_{2, n}\right)\right)$. Now adding these two inequalities and using length $\left(J_{n}\right)=$ length $\left(I_{n}\right)+$ length $\left(K_{1, n}\right)+$ length $\left(K_{2, n}\right)$, we get

$$
\mu^{\star}(A \cap J)+\mu^{\star}(A \backslash J) \leq \sum_{n \geq 1} \text { length }\left(J_{n}\right)<\mu^{\star}(A)+\varepsilon
$$

Letting $\varepsilon \rightarrow 0$, we get $\mu^{\star}(A) \geq \mu^{\star}(A \cap J)+\mu^{\star}(A \backslash J)$. It follows that J is Lebesgue measurable.

Open sets are Lebesgue measurable

The following can be proved just like the previous Lemma. We omit the tedious details.

Lemma
Every open n-box $B \subseteq \mathbb{R}^{n}$ is Lebesgue measurable.
Let $U \subseteq \mathbb{R}^{n}$ be open. Let \mathcal{F} be the family of all open n-boxes $B=J_{1} \times \cdots \times J_{n}$ where $B \subseteq U$ and J_{1}, \ldots, J_{n} are open intervals with rationals end points. Then each member of \mathcal{F} is Lebesgue measurable and since \mathcal{F} is countable, $\bigcup \mathcal{F}=U$ is also Lebesgue measurable. So we have the following.

Corollary

Every open $U \subseteq \mathbb{R}^{n}$ is Lebesgue measurable.

σ-algebra generated by a family of sets

Suppose X is a nonempty set and \mathcal{A} is a collection of subsets of X. The σ-algebra generated by \mathcal{A} is defined to be the smallest (under inclusion) σ-algebra \mathcal{F} on X such that $\mathcal{A} \subseteq \mathcal{F}$.

Exercise: Suppose X is a nonempty set and \mathcal{A} is a collection of subsets of X. Show that the σ-algebra generated by \mathcal{A} is the intersection of all σ-algebras on X that contain \mathcal{A}.

Borel subsets of \mathbb{R}^{n}

The Borel σ-algebra on \mathbb{R}^{n} is the σ-algebra generated by the family of all open subsets of \mathbb{R}^{n}. We denote it by $\operatorname{Borel}\left(\mathbb{R}^{n}\right)$. If the dimension n is clear from the context, we drop \mathbb{R}^{n} and just write Borel.

For each $k \geq 1$, define $\Sigma_{k}^{0}\left(\mathbb{R}^{n}\right)$ and $\Pi_{k}^{0}\left(\mathbb{R}^{n}\right)$ as follows.
(a) $\Sigma_{1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all open subsets of \mathbb{R}^{n} and $\Pi_{1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all closed subsets of \mathbb{R}^{n}.
(b) $\Sigma_{k+1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all countable unions of members of $\Pi_{k}^{0}\left(\mathbb{R}^{n}\right)$ and $\Pi_{k+1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all countable intersections of members of $\Sigma_{k}^{0}\left(\mathbb{R}^{n}\right)$.
We sometimes drop \mathbb{R}^{n} and just write Σ_{n}^{0} and Π_{n}^{0}. Members of $\Sigma_{2}^{0}\left(\right.$ resp. $\left.\Pi_{2}^{0}\right)$ are also called F_{σ}-sets (resp. G_{δ}-sets). Members of Σ_{3}^{0} (resp. Π_{3}^{0}) are also called $G_{\delta \sigma}$-sets (resp. $F_{\sigma \delta}$-sets) and so on. It can be shown that Σ_{k}^{0} (resp. Π_{k}^{0}) is a proper subset of $\sum_{k+1}^{0}\left(\right.$ resp. $\left.\Pi_{k+1}^{0}\right)$ and their union does not exhaust Borel

$$
\bigcup_{k \geq 1} \Sigma_{k}^{0} \cup \Pi_{k}^{0} \subsetneq \text { Borel }
$$

Borel hierarchy

This section assumes some background in ordinals and cardinals. Recall that ω_{1} is the least uncountable cardinal. Using transfinite recursion, define for each $1 \leq \alpha<\omega_{1}$, the families $\Sigma_{\alpha}^{0}\left(\mathbb{R}^{n}\right)$ and $\Pi_{\alpha}^{0}\left(\mathbb{R}^{n}\right)$ as follows.
(a) $\Sigma_{1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all open subsets of \mathbb{R}^{n} and $\Pi_{1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all closed subsets of \mathbb{R}^{n}.
(b) $\Sigma_{\alpha+1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all countable unions of members of $\Pi_{\alpha}^{0}\left(\mathbb{R}^{n}\right)$ and $\Pi_{\alpha+1}^{0}\left(\mathbb{R}^{n}\right)$ is the family of all countable intersections of members of $\Sigma_{\alpha}^{0}\left(\mathbb{R}^{n}\right)$.
(c) If α is a limit ordinal, then $\Sigma_{\alpha}^{0}\left(\mathbb{R}^{n}\right)=\bigcup\left\{\Sigma_{\beta}^{0}\left(\mathbb{R}^{n}\right): 1 \leq \beta<\alpha\right\}$ and $\Pi_{\alpha}^{0}\left(\mathbb{R}^{n}\right)=\bigcup\left\{\Pi_{\beta}^{0}\left(\mathbb{R}^{n}\right): 1 \leq \beta<\alpha\right\}$.
Since every countable subset of ω_{1} is bounded below ω_{1}, it follows that Borel $=\bigcup\left\{\Sigma_{\alpha}^{0} \cup \Pi_{\alpha}^{0}: 1 \leq \alpha<\omega_{1}\right\}$. Let $\mathfrak{c}=|\mathbb{R}|$ be the cardinality of \mathbb{R}. Using the fact that $\left|\mathfrak{c}^{\omega}\right|=\mathfrak{c}$, it is easy to check that $\left|\Sigma_{\alpha}^{0}\right|=\left|\Pi_{\alpha}^{0}\right|=\mathfrak{c}$ for each $1 \leq \alpha<\omega_{1}$. Hence \mid Borel $\left|=\left|\mathfrak{c} \times \omega_{1}\right|=\mathfrak{c}\right.$.

Borel vs Lebesgue measurable

Since each open subset of \mathbb{R}^{n} is Lebesgue measurable and the family $\operatorname{dom}\left(\mu_{n}\right)$ of Lebesgue measurable sets is a σ-algebra, it follows that every Borel set is Lebesgue measurable.
Lemma
$\operatorname{Borel}\left(\mathbb{R}^{n}\right) \subsetneq \operatorname{dom}\left(\mu_{n}\right)$.
Proof: We only need to show that this inclusion is proper. Fix $A \subseteq \mathbb{R}^{n}$ such that $|A|=\mathfrak{c}$ and $\mu_{n}(A)=0$. Such A exists because when $n=1$, we can take A to be the ternary Cantor set and when $n \geq 2$, we can take A to be a line in \mathbb{R}^{n}. Note that for every $B \subseteq A, \mu_{n}(B)=0$. So every subset of A is Lebesgue measurable. It follows that the cardinality of the set of all Lebesgue measurable subsets of \mathbb{R}^{n} is 2^{c}. Since $\left|\operatorname{Borel}\left(\mathbb{R}^{n}\right)\right|=\mathfrak{c}<2^{c}$, it follows that $\operatorname{Borel}(\mathbb{R})^{n} \subsetneq \operatorname{dom}\left(\mu_{n}\right)$.

Regularity of Lebesgue measure

$E \subseteq \mathbb{R}^{n}$ is bounded iff for some $0<M<\infty, E \subseteq[-M, M]^{n}$. This implies that $\mu^{\star}(E) \leq(2 M)^{n}$ is finite.

Theorem

Let $E \subseteq \mathbb{R}^{n}$ be bounded and Lebesgue measurable. Then for every $\varepsilon>0$, there exists a compact set K and an open set U such that $K \subseteq E \subseteq U$ and $\mu(U \backslash K)<\varepsilon$.
Proof: Fix $0<M<\infty$ such that $E \subseteq[-M, M]^{n}$. Let $\mu^{\star}(E)=a<\infty$. Choose a sequence $\left\langle B_{k}: k \geq 1\right\rangle$ on open n-boxes such that $E \subseteq \bigcup_{k \geq 1} B_{k}$ and $\sum_{k>1} \mu\left(B_{k}\right)<a+\varepsilon / 2$. Let $U=\bigcup_{n \geq 1} B_{k}$. Then U is open, $E \subseteq U$ and $\mu(U)<a+\varepsilon / 2$. Hence $\mu(U \backslash E)=\bar{\mu}(U)-\mu(E)<\varepsilon / 2$. Repeating this argument with $F=[-M, M]^{n} \backslash E$, we can find an open set V such that $F \subseteq V$ and $\mu(V \backslash F)<\varepsilon / 2$. Put $K=[-M, M]^{n} \backslash V$ and note that K is compact being both bounded and closed. Next as $F \subseteq V$, we get $K \subseteq E$. Also $E \backslash K=V \backslash F$. So $\mu(E \backslash K)=\mu(V \backslash F)<\varepsilon / 2$. Finally, $\mu(U \backslash K)=\mu(U \backslash E)+\mu(E \backslash K)<\varepsilon / 2+\varepsilon / 2=\varepsilon$.

Regularity of Lebesgue measure

The following is an immediate corollary. The proof is left to the reader.

Corollary

Let $E \subseteq \mathbb{R}^{n}$ be bounded and Lebesgue measurable.
(1) $\mu(E)=\sup \{\mu(K): K \subseteq E$ and K is compact $\}$.
(2) $\mu(E)=\inf \{\mu(U): E \subseteq U$ and U is open $\}$.
(3) There exists a G_{δ}-set $G \subseteq \mathbb{R}^{n}$ such that $E \subseteq G$ and $\mu(G \backslash E)=0$.
(4) There exists an F_{σ}-set $F \subseteq \mathbb{R}^{n}$ such that $F \subseteq E$ and $\mu(E \backslash F)=0$.

It also follows that $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable iff there exist $B \subseteq \mathbb{R}^{n}$ Borel and $X \subseteq \mathbb{R}^{n}$ such that $\mu(X)=0$ and $E=B \Delta X$. Here, $B \Delta X=(B \backslash X) \cup(X \backslash B)$ is the symmetric difference of B and X.

Baire property

Define
$\operatorname{Baire}\left(\mathbb{R}^{n}\right)=\left\{U \Delta X: X, U \subseteq \mathbb{R}^{n}\right.$ where U is open and X is meager $\}$
Members of Baire $\left(\mathbb{R}^{n}\right)$ are called sets with property of Baire.
Exercise: Show that $\operatorname{Baire}\left(\mathbb{R}^{n}\right)$ is a σ-algebra on \mathbb{R}^{n}.

Inner Lebesgue measure

Definition (Inner measure)

Let $X \subseteq \mathbb{R}^{n}$. The inner Lebesgue measure of X is defined by

$$
\mu_{\star}(X)=\sup \{\mu(K): K \subseteq X \text { and } K \text { is compact }\}
$$

Lemma

Suppose $X \subseteq \mathbb{R}^{n}$ is bounded. Then X is Lebesgue measurable iff $\mu_{\star}(X)=\mu^{\star}(X)$.
Proof: The left to right implication follows from Clause (2) of the Corollary on the previous slide. For the other direction, suppose $X \subseteq \mathbb{R}^{n}$ is bounded and $\mu_{\star}(X)=\mu^{\star}(X)=a<\infty$. For each $m \geq 1$, choose K_{m}, U_{m} such that K_{m} is compact, U_{m} is open, $K_{m} \subseteq X \subseteq U_{m}$ and $a-1 / m<\mu\left(K_{m}\right) \leq \mu\left(U_{m}\right)<a+1 / m$. Put $F=\bigcup_{m \geq 1} K_{m}$ and $G=\bigcap_{m \geq 1} U_{m}$. Then F, G are Borel, $F \subseteq X \subseteq G$ and $\mu(X \backslash F) \leq \mu(G \backslash F)=0$. So $X \backslash F$ is Lebesgue measurable. Hence $X=F \cup(X \backslash F)$ is also Lebesgue measurable.

Lebesgue density theorem in \mathbb{R}

Suppose $E \subseteq \mathbb{R}$ is Lebesgue measurable and $x \in \mathbb{R}$. The upper and lower Lebesgue densities of E at x are defined as follows

$$
\begin{aligned}
& d_{\text {up }}(E, x)=\limsup _{\varepsilon \rightarrow 0} \frac{\mu(E \cap(x-\varepsilon, x+\varepsilon))}{2 \varepsilon} \\
& d_{\text {low }}(E, x)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu(E \cap(x-\varepsilon, x+\varepsilon))}{2 \varepsilon}
\end{aligned}
$$

Note that $0 \leq d_{\text {low }}(E, x) \leq d_{\text {up }}(E, x) \leq 1$. If $d_{\text {up }}(E, x)=d_{\text {low }}(E, x)=d$, then we write $d(E, x)=d$ and say that the Lebesgue density of E at x is d.

Theorem (Lebesgue density theorem)

Suppose $E \subseteq \mathbb{R}$ is Lebesgue measurable. Then $\{x \in E: d(E, x) \neq 1\}$ is Lebesgue null.

An application of Lebesgue density theorem

Lemma

There is no Lebesgue measurable $E \subseteq \mathbb{R}$ such that for every open interval J, we have $\mu(E \cap J)=\mu(J) / 2$.
Proof: Suppose not and fix an E such that for every open interval J, we have $\mu(E \cap J)=\mu(J) / 2$. Clearly, $\mu(E)>0$. By Lebesgue density theorem, there exists $x \in E$ such that $d(E, x)=1$. Choose $\varepsilon>0$ such that

$$
\frac{\mu(E \cap(x-\varepsilon, x+\varepsilon))}{2 \varepsilon}>0.9
$$

Put $J=(x-\varepsilon, x+\varepsilon)$ and note that $\mu(J) / 2=\mu(E \cap J)>0.9 \mu(J)$. A contradiction.

Proof of Lebesgue density theorem

Recall that every open $U \subseteq \mathbb{R}$ can be written as a countable union of pairwise disjoint open intervals. These open intervals are called the components of U.

Lemma

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Let $U \subseteq(a, b)$ be open. Let $U_{f}=\{x \in U:(\exists y>x)(f(x)>f(y)$ and $(x, y) \subseteq U)\}$. Then U_{f} is open and for every component $(c, d) \subseteq U_{f}$, we have $f(c) \geq f(d)$.
Proof of Lemma: See video/notes.
Proof of Lebesgue density theorem: See video/notes.

Steinhaus theorem

Theorem (Steinhaus)

Let $E \subseteq \mathbb{R}$ be measurable and $\mu(E)>0$. Then
$E-E=\{x-y: x, y \in E\}$ contains an open interval around 0 .
Proof: By Lebesgue density theorem, there exists $x \in E$ such that $d(E, x)=1$. Fix an interval (a, b) centered at x such that $\mu(E \cap(a, b))>0.9(b-a)$. Let $\delta=0.1(b-a)$. We claim that $(-\delta, \delta) \subseteq E-E$. Suppose $0 \leq \varepsilon<\delta$. Note that

$$
\mu((E+\varepsilon) \cap(a, b)) \geq \mu(E \cap(a, b))-\varepsilon \geq 0.8(b-a)
$$

It follows that $E \cap(E+\varepsilon) \neq \emptyset$. Choose $x \in E \cap(E+\varepsilon)$. Since $x \in E+\varepsilon$, we can choose $y \in E$ such that $x=y+\varepsilon$. So $x-y=\varepsilon$ and $x, y \in E$. Hence both $\varepsilon,-\varepsilon$ are in $E-E$. It follows that $(-\delta, \delta) \subseteq E-E$.

Erdős similarity problem

Let $A \subseteq \mathbb{R}$. A similar copy of A is a set of the form $s A+t=\{s a+t: a \in A\}$ where $s \neq 0$ (scaling factor) and $t \in \mathbb{R}$ (translation). The following fact can be proved using the Lebesgue density theorem.

Fact

Let $A \subseteq \mathbb{R}$ be finite. Then for every $E \subseteq \mathbb{R}$ with $\mu(E)>0, E$ contains a similar copy of A.

Question (Erdős)

Let A be any infinite subset of \mathbb{R}. Must there exist $E \subseteq \mathbb{R}$ such that $\mu(E)>0$ and E does not contain any similar copy of A ? What if $A=\left\{2^{-n}: n \geq 1\right\}$?

Uniqueness of Lebesgue measure

Theorem
Let \mathcal{M} be the family of all Lebesgue measurable subsets of \mathbb{R}. Let $\nu: \mathcal{M} \rightarrow[0, \infty]$ be a measure such that for every open interval J, we have $\nu(J)=\mu(J)$. Then for every $E \in \mathcal{M}$, we have $\mu(E)=\nu(E)$.
Proof: Since every open $U \subseteq \mathbb{R}$ is a a countable union of pairwise disjoint open intervals, it follows that $\nu(U)=\mu(U)$. Next suppose $K \subseteq \mathbb{R}$ is compact. Choose $N>0$ such that $K \subseteq(-N, N)$ and let $V=(-N, N) \backslash K$. Since V is open, $\mu(V)=\nu(V)$. Now observe that $\mu(K)=\mu((-N, N))-\mu(V)=\nu((-N, N))-\nu(V)=\nu(K)$. So μ and ν agree on every compact set. Let E be a bounded measurable set. Then $\mu(E)=$ $\inf \{\mu(U): E \subseteq U$ and U is open $\}=\inf \{\nu(U): E \subseteq U$ and U is open $\} \geq \nu(E)$ where the last inequality follows from the monotonicity of ν. Similarly, $\mu(E)=\sup \{\mu(K): K \subseteq E$ and K is compact $\} \leq \nu(E)$. Hence $\mu(E)=\nu(E)$ for every bounded $E \in \mathcal{M}$. The general case follows by using countable additivity of μ, ν and the fact that $E=\bigsqcup_{n \in \mathbb{Z}}[n, n+1) \cap E$.

Perfect sets

We say that $P \subseteq \mathbb{R}^{n}$ is a perfect set iff P is a nonempty closed set and P has no isolated points.

Lemma (Perfect kernel)

Suppose C is an uncountable closed subset of \mathbb{R}^{n}. Then there exists $P \subseteq C$ such that P is perfect and $C \backslash P$ is countable.
Proof: Let U be the union of all open n-boxes of the form $B=J_{1} \times \cdots \times J_{n}$ where J_{1}, \ldots, J_{n} are open intervals with rational end-points such that $B \cap C$ is countable. The reader should check that $P=C \backslash U$ is as required.

The set P in the above lemma is called the perfect kernel of C.
Lemma
Suppose $P \subseteq \mathbb{R}^{n}$ is perfect. Then $|P|=|\mathbb{R}|=c$. Hence every uncountable closed set in \mathbb{R}^{n} has cardinality c .
Proof: Homework.

Fat Cantor sets in \mathbb{R}

Definition

$C \subseteq \mathbb{R}$ is a fat Cantor set iff C is compact nowhere dense set and $\mu(C)>0$.

Lemma
Suppose $E \subseteq \mathbb{R}$ is Lebesgue measurable and $\mu(E)>0$. Then E contains a fat Cantor set.
Proof: By thinning out E, we can clearly assume that E is bounded and $\mathbb{Q} \cap E=\emptyset$. Since $\mu(E)=\sup \{\mu(K): K \subseteq E$ and K is compact $\}>0$, we can choose $K \subseteq E$ compact such that $\mu(K)>0$. Since K is closed and $K \cap \mathbb{Q}=\emptyset, K$ must be nowhere dense in \mathbb{R}. Hence K is a fat Cantor set contained in E.

Fat Cantor sets

Theorem
There exists $E \subseteq \mathbb{R}$ such that for every interval J, both $J \cap E$ and $J \cap(\mathbb{R} \backslash E)$ have positive measure.
Proof: Homework.

Vitali sets revisited

Let E be the equivalence relation on \mathbb{R} defined by $x E y$ iff $x-y \in \mathbb{Q}$. We say that $V \subseteq \mathbb{R}$ is a Vitali set iff V meets every E-equivalence class at exactly one point.
Theorem
Let V be a Vitali set. Then $\mu_{\star}(V)=0$ and $\mu^{\star}(V)>0$. So every Vitali set is Lebesgue non-measurable.
Proof: Let $K \subseteq V$ be compact. Observe that $K-K \subseteq V-V$ and $(V-V) \cap \mathbb{Q}=\{0\}$. So by Steinhaus theorem, $\mu(K)=0$. Hence $\mu_{\star}(V)=0$.
Next, towards a contradiction, assume $\mu^{\star}(V)=0$. Observe that $\mathbb{R}=\bigcup\{V+r: r \in \mathbb{Q}\}$. Since μ^{\star} is translation invariant, $\mu^{\star}(V+r)=\mu^{\star}(V)=0$. By countable subadditivity of μ^{\star}, it follows that $\mu(\mathbb{R}) \leq \sum_{r \in \mathbb{Q}} \mu^{\star}(V+r)=0$ which is a contradiction. So $\mu^{\star}(V)>0$.

Bernstein sets

$B \subseteq \mathbb{R}^{n}$ is called a Bernstein set iff for every perfect set $P \subseteq \mathbb{R}^{n}$, both $B \cap P$ and $\left(\mathbb{R}^{n} \backslash B\right) \cap P$ are nonempty.

Theorem
There exists a Bernstein set $B \subseteq \mathbb{R}^{n}$.
Proof: See video/notes.
Exercise: Suppose $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable and $B \subseteq \mathbb{R}^{n}$ is a Bernstein set. Assume $\mu_{n}(E)>0$. Show that $B \cap E$ is Lebesgue non-measurable. Conclude that for every $E \subseteq \mathbb{R}^{n}$, either $\mu_{n}(E)=0$ or E has a Lebesgue non-measurable subset.

Baire class one functions

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Baire class one function iff there exists a sequence $\left\langle f_{k}: k \geq 1\right\rangle$ of continuous functions from \mathbb{R}^{n} to \mathbb{R} such that for every $x \in \mathbb{R}^{n}$,

$$
\lim _{k} f_{k}(x)=f(x)
$$

Example: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an everywhere differentiable function. Then for every $x \in \mathbb{R}, g^{\prime}(x)=\lim _{n} n(g(x+1 / n)-g(x))$. So g^{\prime} is a Baire class one function.

Exercise: Let $U \subseteq \mathbb{R}$ be open. Show that the characteristic function of U, denoted 1_{U} is a Baire class one function.

Points of continuity of Baire class one functions

Theorem (Baire)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Baire class one function. Then the set of points of discontinuity of f is meager.
Proof: Fix a sequence $\left\langle f_{n}: n \geq 1\right\rangle$ of continuous functions that pointwise converges to f. Let $\varepsilon>0$ be arbitrary. It suffices to show that $W_{\varepsilon}=\{x \in \mathbb{R}: \operatorname{osc}(f, x)<\varepsilon\}$ is a dense subset of \mathbb{R}. Let I be a closed interval. We'll show that $I \cap W_{\varepsilon} \neq \emptyset$. For $i, j \geq 1$, define $C_{i, j}=\left\{x \in \mathbb{R}:\left|f_{i}(x)-f_{j}(x)\right| \leq \varepsilon / 3\right\}$. Since $\left|f_{i}-f_{j}\right|$ is continuous, each $C_{i, j}$ is a closed set. Let $A_{n}=\bigcap\left\{C_{i, j}: i, j \geq n\right\}$. Then A_{n} 's form an increasing sequence of closed sets. Since for every $x \in \mathbb{R}, \lim _{n} f_{n}(x)=f(x)$, it follows that $\bigcup_{n \geq 1} A_{n}=\mathbb{R}$. By Baire category theorem, we can fix an $n \geq 1$ such that $A_{n} \cap I$ is not nowhere dense in I. Since $A_{n} \cap I$ is closed, there exists an open interval $J \subseteq A_{n} \cap I$. Let x be the center of J. Choose $\delta>0$ such that $(x-\delta, x+\delta) \subseteq J$ and for every $y, z \in(x-\delta, x+\delta)$, we have $\left|f_{n}(y)-f_{n}(z)\right|<\varepsilon / 4$. Now for any $k>n$, we have $\left|f_{k}(y)-f_{k}(z)\right| \leq\left|f_{k}(y)-f_{n}(y)\right|+\left|f_{n}(y)-f_{n}(z)\right|+\left|f_{n}(z)-f_{k}(z)\right|<\varepsilon / 3+\varepsilon / 4+\varepsilon / 3$. Letting $k \rightarrow \infty$, we get $|f(y)-f(z)|<\varepsilon$. It follows that $x \in W_{\varepsilon} \cap I$.

Pointwise limits

Lemma

The set of Baire class one functions is not closed under pointwise limits.
Proof: Let $1_{\mathbb{Q}}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of the set of rationals \mathbb{Q}. Since $1_{\mathbb{Q}}$ is an everywhere discontinuous function, the previous theorem implies that $1_{\mathbb{Q}}$ is not a Baire class one function. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be an enumeration of \mathbb{Q}. Define f_{n} to be the characteristic function of $\left\{a_{1}, \ldots, a_{n}\right\}$. Then $\left\langle f_{n}: n \geq 1\right\rangle$ is a sequence of Baire class one functions that pointwise converges to $1_{\mathbb{Q}}$.

The Baire hierarchy

Using transfinite recursion, for each $\alpha<\omega_{1}$, define the set FBaire $_{\alpha}\left(\mathbb{R}^{n}\right)$ of Baire class α functions as follows.
(1) FBaire $_{0}\left(\mathbb{R}^{n}\right)$ consists of all continuous functions from \mathbb{R}^{n} to \mathbb{R}.
(2) FBaire $_{\alpha+1}\left(\mathbb{R}^{n}\right)$ is the set of all functions that are pointwise limits of a sequence of functions in FBaire $_{\alpha}\left(\mathbb{R}^{n}\right)$.
(3) If α is a limit ordinal, then $\operatorname{FBaire}_{\alpha}\left(\mathbb{R}^{n}\right)=\bigcup_{\beta<\alpha}$ FBaire $_{\beta}\left(\mathbb{R}^{n}\right)$.

Define FBaire $\left(\mathbb{R}^{n}\right)=\bigcup_{\alpha<\omega_{1}}$ FBaire $_{\alpha}\left(\mathbb{R}^{n}\right)$. Lebesgue showed that this is a proper hierarchy in the sense that $\mathbf{F B a i r e}_{\alpha}\left(\mathbb{R}^{n}\right) \subsetneq \mathbf{F B a i r e}_{\alpha+1}\left(\mathbb{R}^{n}\right)$.
The following should be clear.
Fact
FBaire $\left(\mathbb{R}^{n}\right)$ is the smallest family of functions from \mathbb{R}^{n} to \mathbb{R} that contains all continuous functions and is closed under pointwise limits.

Borel functions

If $f: X \rightarrow Y$ and $A \subseteq Y$, the preimage of A under f is defined by

$$
f^{-1}[A]=\{x \in X: f(x) \in A\}
$$

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Borel function iff for every Borel $B \subseteq \mathbb{R}, f^{-1}[B]$ is a Borel subset of \mathbb{R}^{n}.

Lemma
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Borel function iff for every open interval $J \subseteq \mathbb{R}$, $f^{-1}[J]$ is Borel.
Proof: Let $\mathcal{F}=\left\{A \subseteq \mathbb{R}: f^{-1}[A]\right.$ is Borel $\}$. Check that \mathcal{F} is a σ-algebra on \mathbb{R} that contains every open interval.

Borel equals Baire

Lemma

$\operatorname{FBorel}\left(\mathbb{R}^{n}\right)$ is closed under pointwise limits. Hence, $\operatorname{FBaire}\left(\mathbb{R}^{n}\right) \subseteq \operatorname{FBorel}\left(\mathbb{R}^{n}\right)$.
Proof: Suppose $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Borel for every $k \geq 1$, and $\lim _{k} f_{k}(x)=f(x)$. To see that f is Borel, it is enough to show that $f^{-1}[(a, b)]$ is Borel for every $a<b$ in \mathbb{R}. Now $a<f(x)<b$ iff $a<\lim _{k} f_{k}(x)<b$ iff there exists $M \geq 1$ such that for all sufficiently large $k, a+1 / M<f_{k}(x)<b-1 / M$. It follows that

$$
f^{-1}[(a, b)]=\bigcup_{M \geq 1} \bigcup_{N \geq 1} \bigcap_{k \geq N} f_{k}^{-1}[(a+1 / M, b-1 / M)]
$$

is Borel. Since every continuous function is Borel, it follows that FBaire $\left(\mathbb{R}^{n}\right) \subseteq \operatorname{FBorel}\left(\mathbb{R}^{n}\right)$.
Fact (Lebesgue, Hausdorff)
$\operatorname{FBorel}\left(\mathbb{R}^{n}\right)=\operatorname{FBaire}\left(\mathbb{R}^{n}\right)$. Hence FBorel $\left(\mathbb{R}^{n}\right)$ is the smallest class of real valued functions on \mathbb{R}^{n} that contains all continuous functions and is closed under pointwise limits.

Lebesgue measurable functions

Suppose (X, \mathcal{E}) and (Y, \mathcal{F}) are measurable spaces and $f: X \rightarrow Y$. We say that f is $(\mathcal{E}, \mathcal{F})$-measurable iff for every $B \in \mathcal{F}$, $f^{-1}[B] \in \mathcal{E}$.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say that f is Lebesgue measurable iff it is (\mathcal{M}, $\operatorname{Borel}\left(\mathbb{R}^{m}\right)$)-measurable where \mathcal{M} is the σ-algebra of all Lebesgue measurable subsets of \mathbb{R}^{n}.
Lemma
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then f is Lebesgue measurable iff for every open interval $J, f^{-1}[J]$ is Lebesgue measurable in \mathbb{R}^{n}.
Proof: Let $\mathcal{F}=\left\{A \subseteq \mathbb{R}: f^{-1}[A]\right.$ is Leb. measurable $\}$. Check that \mathcal{F} is a σ-algebra on \mathbb{R} that contains every open interval.

Lebesgue vs Borel

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is Borel, then it is Lebesgue measurable. The converse is false.
Proof: The first part easily follows from the fact that every Borel set is Lebesgue measurable. Next, let $X \subseteq \mathbb{R}^{n}$ be a non-Borel set such that $\mu(X)=0$. Then the characteristic function of X is Lebesgue measurable but not Borel.

Definition

Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We say that f and g are almost everywhere equal iff $\mu\left(\left\{x \in \mathbb{R}^{n}: f(x) \neq g(x)\right\}\right)=0$.
Exercise: For every Lebesgue measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there exists a Borel function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that f and g are almost everywhere equal.

Measurable functions

Let \mathcal{F} be the smallest family of functions from \mathbb{R}^{n} to \mathbb{R} satisfying the following.
(a) \mathcal{F} contains all continuous functions from \mathbb{R}^{n} to \mathbb{R}.
(b) \mathcal{F} is closed under pointwise limits.
(c) If $f \in \mathcal{F}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and f and g are almost everywhere equal, then $g \in \mathcal{F}$.
Then \mathcal{F} is the family of all Lebesgue measurable functions from \mathbb{R}^{n} to \mathbb{R}.

Closure properties

Lemma

Suppose $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are Lebesgue measurable functions, $h: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function and $a, b \in \mathbb{R}$. Then $|f|$, $a f+b g$, fg and $h \circ f$ are also Lebesgue measurable. Furthermore, if $0 \notin \operatorname{range}(f)$, then $1 / f$ is also Lebesgue measurable.
Proof: Homework.

Restrictions

Suppose $E \subseteq \mathbb{R}^{n}$ and $f: E \rightarrow \mathbb{R}$. We say that f is Lebesgue measurable iff E is Lebesgue measurable and there exists a Lebesgue measurable $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f=g \upharpoonright E$.

Let (X, d) be a metric space, $f: X \rightarrow \mathbb{R}$ and $K \subseteq X$. Recall that $f \upharpoonright K$ is continuous iff either one of the following holds.
(i) For every sequence $\left\langle x_{n}: n \geq 1\right\rangle$ of points in K if $\lim _{n} x_{n}=x$ and $x \in K$, then $\lim _{n} f\left(x_{n}\right)=f(x)$.
(ii) For every open interval J with rational end-points, there exists an open $U \subseteq X$ such that $f^{-1}[J]=U \cap K$ (so $f^{-1}[J]$ is relatively open in K).

Continuity

Theorem (Lusin)

Suppose $E \subseteq \mathbb{R}^{n}$ is bounded and $f: E \rightarrow \mathbb{R}$ is Lebesgue measurable. Then for every $\varepsilon>0$, there exists a compact $K \subseteq E$ such that $\mu(E \backslash K)<\varepsilon$ and $f \upharpoonright K$ is continuous.
Proof: Let $\left\langle J_{n}: n \geq 1\right\rangle$ list all open intervals with rational end-points. Then $E_{n}=f^{-1}\left[J_{n}\right]$ is a bounded Lebesgue measurable. Choose K_{n}, U_{n} such that $K_{n} \subseteq E_{n} \subseteq U_{n}, K_{n}$ is compact, U_{n} is open and $\mu\left(U_{n} \backslash K_{n}\right)<\varepsilon / 2^{n+1}$. Put $A=\bigcup_{n \geq 1}\left(U_{n} \backslash K_{n}\right)$. Then $\mu(A) \leq \varepsilon / 2$. Let $g=f \upharpoonright(E \backslash A)$. Then $g^{-1}\left[J_{n}\right]=U_{n} \cap(E \backslash A)$ is relatively open in $E \backslash A$ for every $n \geq 1$. So g is continuous. Choose a compact $K \subseteq(E \backslash A)$ such that $\mu((E \backslash A) \backslash K)<\varepsilon / 2$. Then $\mu(E \backslash K)<\varepsilon$ and $f \upharpoonright K$ is continuous.

Exercise: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Lebesgue measurable. Then for every $\varepsilon>0$, there exists a continuous $g:[a, b] \rightarrow \mathbb{R}$ such that $\mu\left(\left\{x \in \mathbb{R}^{n}: f(x) \neq g(x)\right\}\right)<\varepsilon$.

Almost uniform convergence

Theorem (Egoroff)

Suppose $E \subseteq \mathbb{R}^{n}$ is bounded and for every $n \geq 1, f_{n}: E \rightarrow \mathbb{R}$ is Lebesgue measurable. Assume that f_{n} 's pointwise converge to $f: E \rightarrow \mathbb{R}$. Then for each $\varepsilon>0$, there exists a compact $K \subseteq E$ such that $\mu(E \backslash K)<\varepsilon$ and $f_{n} \upharpoonright K$ uniformly converges to $f \upharpoonright K$.
Proof: For each $k, m \geq 1$, define

$$
E_{k, m}=\left\{x \in E:(\forall j \geq k)\left(\left|f_{j}(x)-f(x)\right|<1 / m\right)\right\}
$$

Since $\left|f_{j}-f\right|$ is Lebesgue measurable, it follows that each $E_{k, m}$ is Lebesgue measurable. Note that $E_{k, m}$'s are increasing with k and since f_{k} 's pointwise converge to f, we have $\bigcup_{k \geq 1} E_{k, m}=E$. Fix $k(m) \geq 1$ such that $\mu\left(E \backslash E_{k(m), m}\right)<\varepsilon / 2^{m+1}$. Put $F=\bigcap_{m \geq 1} E_{k(m), m}$. Then $\mu(E \backslash F)<\varepsilon / 2$ and it is easily checked that $f_{n} \upharpoonright F$ uniformly converges to $f \upharpoonright F$. Choose a compact $K \subseteq F$ such that $\mu(F \backslash K)<\varepsilon / 2$. Then $\mu(E \backslash K)<\varepsilon$ and $f_{n} \upharpoonright K$ uniformly converges to $f \upharpoonright K$.

Measurable functions on (X, \mathcal{F})

Let (X, \mathcal{F}) be a measurable space and $f: X \rightarrow \mathbb{R}$. We say that f is \mathcal{F}-measurable iff for every Borel $B \subseteq \mathbb{R}, f^{-1}[B] \in \mathcal{F}$.
The following can be proved exactly like Homework problems 20-21.
(1) Suppose $f, g: X \rightarrow \mathbb{R}$ are \mathcal{F}-measurable functions, $h: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function and $a, b \in \mathbb{R}$. Then $|f|, a f+b g, f g$ and $h \circ f$ are also \mathcal{F}-measurable. Furthermore, if $0 \notin \operatorname{range}(f)$, then $1 / f$ is also \mathcal{F} - measurable.
(2) Suppose $f_{k}: X \rightarrow \mathbb{R}$ are \mathcal{F}-measurable for every $k \geq 1$. Assume that for every $x \in X, g(x)=\lim \sup _{k} f_{k}(x)$ and $h(x)=\lim \inf _{k} f_{k}(x)$ are finite. Show that $g, h: X \rightarrow \mathbb{R}$ are \mathcal{F}-measurable.

Simple functions

Definition (Simple functions)

Suppose (X, \mathcal{F}) is a measurable space and $h: X \rightarrow \mathbb{R}$ is \mathcal{F}-measurable. We say that h is simple iff range (h) is finite.
Suppose $h: X \rightarrow \mathbb{R}$ is a simple function and range $(h)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Define $X_{k}=h^{-1}\left[\left\{a_{k}\right\}\right]$. Then $\left\{X_{k}: k \leq n\right\}$ is a partition of X into sets in \mathcal{F} and

$$
h=\sum_{k \leq n} a_{k} 1_{X_{k}}
$$

where $1_{X_{k}}: X \rightarrow \mathbb{R}$ is the characteristic function of X_{k}. It is easy to see that the family of simple functions is closed under linear combinations and products.

Approximations via simple functions

Theorem

Suppose (X, \mathcal{F}) is a measurable space and $f: X \rightarrow[0, \infty)$ is \mathcal{F}-measurable.
Then there exists a sequence $\left\langle h_{n}: n \geq 1\right\rangle$ of simple functions such that $h_{n} \leq h_{n+1}$ and for every $x \in X, \lim h_{n}(x)=f(x)$. Furthermore, if f is bounded, then h_{n} 's uniformly converge to f^{n}.
Proof: For each $n \geq 1$ and $0 \leq k<4^{n}$, define $B_{n}=f^{-1}\left[\left[2^{n}, \infty\right)\right]$,

$$
A(k, n)=f^{-1}\left[\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right]
$$

and

$$
h_{n}=2^{n} 1_{B_{n}}+\sum_{0 \leq k<4^{n}}\left(\frac{k}{2^{n}}\right) 1_{A(k, n)}
$$

It is easy to check that $h_{n} \leq h_{n+1}$ and $0 \leq f(x)-h_{n}(x) \leq 2^{-n}$ for every $x \in f^{-1}\left[\left[0,2^{n}\right)\right]$. It follows that h_{n} 's pointwise converge to f. Furthermore, if range $(h) \subseteq[0, N)$, then $f^{-1}\left[\left[0,2^{n}\right)\right]=X$ for all $n \geq N$ and therefore the convergence is uniform.

Integrating non-negative simple functions

Let (X, \mathcal{F}, m) be a measure space. Let $h=\sum_{k \leq n} a_{k} 1_{x_{k}}$ be a non-negative simple function on X (So each $a_{k} \geq 0$). We define the Lebesgue integral of h as follows

$$
\int h d m=\sum_{k \leq n} a_{k} m\left(X_{k}\right)
$$

where, by definition, $0 \cdot \infty=0$. For $A \in \mathcal{F}$, define the Lebesgue integral of h on A by

$$
\int_{A} h d m=\int 1_{A} h d m
$$

Integrating non-negative simple functions

Lemma
Let (X, \mathcal{F}, m) be a measure space. Suppose h_{1}, h_{2} are non-negative simple functions on X.
(a) For every $a \geq 0, \int\left(a h_{1}+h_{2}\right) d m=a \int h_{1} d m+\int h_{2} d m$
(b) If $h_{1} \leq h_{2}$, then $\int h_{1} d m \leq \int h_{2} d m$

Proof: Exercise.

Integrating non-negative simple functions

Lemma

Let (X, \mathcal{F}, m) be a measure space and let h be a non-negative simple function on X. Define $\nu: \mathcal{F} \rightarrow \mathbb{R}$ by $\nu(E)=\int_{E} h d m$. Then ν is a measure.
Proof: Let $h=\sum_{k \leq n} a_{k} 1_{x_{k}}$ where $\left\{X_{k}: k \leq n\right\}$ is a partition of X into sets in \mathcal{F} and each $a_{k} \geq 0$. It is clear that $\nu(E) \geq 0$ for every $E \in \mathcal{F}$ and $\nu(\emptyset)=0$. So it suffices to show that ν is countably additive. Fix a countable family $\left\{E_{j}: j \geq 1\right\}$ of pairwise disjoint sets in \mathcal{F} and let $E=\bigcup_{j \geq 1} E_{j}$. For each $k \leq n$, consider $\int_{E} a_{k} 1_{x_{k}} d m=\int a_{k} 1_{E} 1_{X_{k}} d m=\int a_{k} 1_{E \cap X_{k}} d m=a_{k} \mu\left(E \cap X_{k}\right)$. As μ is countably additive, $a_{k} \mu\left(E \cap X_{k}\right)=a_{k} \sum_{j \geq 1} \mu\left(E_{j} \cap X_{k}\right)=\sum_{j \geq 1} \int_{E_{j}} a_{k} 1_{X_{k}} d m$.
Hence for every $k \leq n$,

$$
\int_{E} a_{k} 1_{X_{k}} d m=\sum_{j \geq 1} \int_{E_{j}} a_{k} 1_{X_{k}} d m
$$

Summing over $k \leq n$ and using part (a) of the previous lemma, we get

$$
\nu(E)=\int_{E} h d m=\sum_{j \geq 1} \int_{E_{j}} h d m=\sum_{j \geq 1} \nu\left(E_{j}\right)
$$

Lebesgue integral of non-negative functions

Let (X, \mathcal{F}, m) be a measure space and suppose $f: X \rightarrow[0, \infty)$ is \mathcal{F}-measurable.
(1) The Lebesgue integral of f is defined by

$$
\int f d m=\sup \left\{\int h d m: h \text { is simple and } 0 \leq h \leq f\right\}
$$

(2) For $A \in \mathcal{F}$, the Lebesgue integral of f on A is defined by

$$
\int_{A} f d m=\int 1_{A} f d m
$$

If $f: X \rightarrow[0, \infty)$ is simple, then part (b) of the previous lemma implies that this definition agrees with the old definition.

Exercise: Suppose $f, g: X \rightarrow[0, \infty)$ are \mathcal{F}-measurable. Show that $f \leq g$ implies $\int f d m \leq \int g d m$ and for every constant $c \geq 0, \int c f d m=c \int f d m$.

Monotone convergence theorem

Theorem

Let (X, \mathcal{F}, m) be a measure space and suppose for each $n \geq 1, f_{n}: X \rightarrow[0, \infty)$ is \mathcal{F}-measurable. Assume $f_{n} \leq f_{n+1}$ for every $n \geq 1$ and for every $x \in X$, $\lim _{n} f_{n}(x)=\sup _{n} f_{n}(x)<\infty$. Define $f: X \rightarrow[0, \infty)$ by $f(x)=\lim _{n} f_{n}(x)$. Then f is \mathcal{F}-measurable and

$$
\int f d m=\lim _{n} \int f_{n} d m
$$

Proof: As $f \geq f_{n}$, we get $\int f d m \geq \int f_{n} d m$. Taking limits as $n \rightarrow \infty$, we get $\int f d m \geq \lim _{n} \int f_{n} d m$. For the other inequality, it suffices to show that for every $0<\varepsilon<1$ and a simple function $h: X \rightarrow[0, \infty)$ such that $0 \leq h \leq f$, we have $\lim _{n} \int f_{n} d m \geq(1-\varepsilon) \int h d m$. Put $E_{n}=\left\{x \in X: f_{n}(x) \geq(1-\varepsilon) h(x)\right\}$. Then E_{n} 's are increasing with n and $\bigcup_{n} E_{n}=X$. Since the map $E \mapsto \int_{E} h d m$ is a measure on (X, \mathcal{F}) (by Slide 63), it follows that $\lim _{n} \int_{E_{n}} h d m=\int h d m$.
Furthermore, $\int f_{n} d m \geq \int_{E_{n}} f_{n} d m \geq(1-\varepsilon) \int_{E_{n}} h d m$. It follows that

$$
\lim _{n} \int f_{n} d m \geq \lim _{n} \int_{E_{n}} f_{n} d m \geq(1-\varepsilon) \lim _{n} \int_{E_{n}} h d m=(1-\varepsilon) \int h d m
$$

Linearity for non-negative functions

Theorem

Let (X, \mathcal{F}, m) be a measure space and suppose for each $n \geq 1, f_{n}: X \rightarrow[0, \infty)$ is \mathcal{F}-measurable. Let $a \geq 0$.
(1) $\int a f_{1}+f_{2} d m=a \int f_{1} d m+\int f_{2} d m$
(2) Assume $\sum_{n \geq 1} f_{n}(x)<\infty$ for every $x \in X$. Then $\int \sum_{n \geq 1} f_{n} d m=\sum_{n \geq 1} \int f_{n} d m$

Proof: (1) Using the theorem on Slide 60 , we can fix simple functions h_{k}, g_{k} for $k \geq 1$ such that $0 \leq h_{k} \leq h_{k+1}, 0 \leq g_{k} \leq g_{k+1}, h_{k}$'s pointwise converge to f_{1} and g_{k} 's pointwise converge to f_{2}. It follows that $a h_{k}+g_{k}$ pointwise converges to $a f_{1}+f_{2}$. By the monotone convergence theorem, $\int\left(a f_{1}+f_{2}\right) d m=$ $\lim _{k} \int\left(a h_{k}+g_{k}\right) d m=\lim _{k}\left(a \int h_{k} d m+\int g_{k} d m\right)=a \int f_{1} d m+\int f_{2} d m$.
(2) Put $g_{n}=\sum_{k \leq n} f_{k}$ and $f=\sum_{k \geq 1} f_{k}$. Then g_{n} 's are monotonically increasing and they pointwise converge to f. So by the monotone convergence theorem, $\lim _{n} \int g_{n} d m=\int f d m$. By part (1), $\int g_{n} d m=\sum_{k \leq n} \int f_{k} d m$. Hence $\sum_{k \geq 1} \int f_{k} d m=\int f d m$.

Integrable functions

Let (X, \mathcal{F}) be a measurable space and suppose $f: X \rightarrow \mathbb{R}$ is \mathcal{F}-measurable. Define $f^{+}: X \rightarrow[0, \infty)$ and $f^{-}: X \rightarrow[0, \infty)$ as follows: $f^{+}(x)=\max (0, f(x))$ and $f^{-}(x)=\max (0,-f(x))$. Note that f^{+}and f^{-}are both \mathcal{F}-measurable and $f=f^{+}-f^{-}$.
Suppose (X, \mathcal{F}, m) is a measure space and $f: X \rightarrow \mathbb{R}$ is \mathcal{F}-measurable. If at least one of $\int f^{+} d m, \int f^{-} d m$ is finite, then we define

$$
\int f d m=\int f^{+} d m-\int f^{-} d m
$$

Suppose (X, \mathcal{F}, m) is a measure space and $f: X \rightarrow \mathbb{R}$ is \mathcal{F}-measurable. We say that f is integrable iff $\int|f| d m<\infty$ iff both $\int f^{+} d m, \int f^{-} d m$ are finite.
The set of all integrable functions $f: X \rightarrow \mathbb{R}$ is denoted by $L^{1}(m)$. The following should be clear.

Exercise: Let (X, \mathcal{F}, m) be a measure space and suppose $f, g \in L^{1}(m)$. Then $a f+g \in L^{1}(m)$ and $\int(a f+g) d m=a \int f d m+\int g d m$.

Fatou's lemma

Theorem

Let (X, \mathcal{F}, m) be a measure space. Suppose $f_{n}: X \rightarrow[0, \infty)$ is \mathcal{F}-measurable for every $n \geq 1$. Define $f: X \rightarrow[0, \infty)$ by $f(x)=\liminf _{n} f_{n}(x)$. Then f is \mathcal{F}-measurable and

$$
\int f d m \leq \liminf _{n} \int f_{n} d m
$$

Proof: That f is \mathcal{F}-measurable is clear (see Slide 58). Put $g_{n}=\inf _{k \geq n} f_{k}$. Then $g_{n} \leq g_{n+1}$ and g_{n} 's pointwise converge to f. By the monotone convergence theorem,

$$
\int f d m=\lim _{n} \int g_{n} d m
$$

Also for every $n, g_{n} \leq f_{n}$. Therefore, $\int g_{n} d m \leq \int f_{n} d m$. Taking liminf ${ }_{n}$ on both sides, we get

$$
\int f d m=\lim _{n} \int g_{n} d m=\liminf _{n} \int g_{n} d m \leq \liminf _{n} \int f_{n} d m
$$

Interchanging limits and Lebesgue integral

Suppose $f, f_{n}: \mathbb{R} \rightarrow[0, \infty)$ are Lebesgue integrable functions for every $n \geq 1$ and f_{n} 's pointwise converge to f. Must the following hold?

$$
\lim _{n} \int f_{n} d \mu=\int \lim _{n} f_{n} d \mu
$$

(1) Define $f_{n}: \mathbb{R} \rightarrow[0, \infty)$ as follows: $f_{n}(x)=n$ if $x \in(0,1 / n)$ and 0 otherwise. Then f_{n} 's pointwise converge to 0 everywhere on \mathbb{R} but $\int f_{n} d \mu=1$ does not converge to $\int 0 d \mu=0$.
(2) Define $f_{n}: \mathbb{R} \rightarrow[0, \infty)$ as follows: $f_{n}(x)=1$ if $x \in[n, n+1]$ and 0 otherwise. Then f_{n} 's pointwise converge to 0 everywhere on \mathbb{R} but $\int f_{n} d \mu=1$ does not converge to $\int 0 d \mu=0$.
Note that in both examples, there is no function $g \in L^{1}(\mu)$ such that $f_{n} \leq g$ for every $n \geq 1$.

Dominated convergence theorem

Theorem
Let (X, \mathcal{F}, m) be a measure space. Let $f_{n}: X \rightarrow \mathbb{R}$ be \mathcal{F}-measurable for every $n \geq 1$. Assume f_{n} 's pointwise converge to $f: X \rightarrow \mathbb{R}$. Suppose there exists $g \in L^{1}(m)$ such that $\left|f_{n}\right| \leq g$ for every $n \geq 1$. Then $f \in L^{1}(m)$ and $\int f d m=\lim _{n} \int f_{n} d m$.
Proof: f is clearly \mathcal{F}-measurable. As $\left|f_{n}\right| \leq g$ for every $n \geq 1$, taking limits as $n \rightarrow \infty$, we get $|f| \leq g$. So $\int|f| d m \leq \int g d m<\infty$ and hence $f \in L^{1}(m)$.

Next observe that $g-f_{n} \geq 0$ and $g+f_{n} \geq 0$ for every $n \geq 1$ and $g+f_{n}$ and $g-f_{n}$ pointwise converge to $g+f$ and $g-f$ respectively. So we can apply Fatou's lemma to the sequences $g+f_{n}$ and $g-f_{n}$ to get the following.

Dominated convergence theorem

$$
\begin{aligned}
& \int g d m+\int f d m \leq \liminf _{n} \int\left(g+f_{n}\right) d m=\int g d m+\liminf _{n} \int f_{n} d m \\
& \int g d m-\int f d m \leq \liminf _{n} \int\left(g-f_{n}\right) d m=\int g d m-\limsup _{n} \int f_{n} d m
\end{aligned}
$$

where we used $\liminf _{n} \inf -a_{n}=-\underset{n}{\lim \sup } a_{n}$. Since $\int g d m<\infty$, we can cancel it to get

$$
\underset{n}{\limsup } \int f_{n} d m \geq \liminf _{n} \int f_{n} d m \geq \int f d m \geq \limsup _{n} \int f_{n} d m
$$

But this means that all inequalities are equalities here and the result follows.

Dominated convergence theorem

Corollary

Let (X, \mathcal{F}, m) be a finite measure space. Let $0<M<\infty$ and suppose $f_{n}: X \rightarrow[-M, M]$ is \mathcal{F}-measurable for every $n \geq 1$. Assume f_{n} 's pointwise converge to $f: X \rightarrow[-M, M]$. Then $f \in L^{1}(m)$ and $\int f d m=\lim _{n} \int f_{n} d m$.
Proof Apply the dominated convergence theorem with $g=M$.

Riemann Integral

An interval partition of $[a, b]$ is a finite $P \subseteq[a, b]$ with $a, b \in P$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function and

$$
P=\left\{a=a_{0}<a_{1}<\cdots<a_{n}=b\right\}
$$

is an interval partition of $[a, b]$. For each $0 \leq k<n$, let $m_{k}=\inf \left\{f(x): x \in\left[a_{k}, a_{k+1}\right]\right\}$ and $M_{k}=\sup \left\{f(x): x \in\left[a_{k}, a_{k+1}\right]\right\}$. Define $L(P, f)=\sum_{0 \leq k<n} m_{k}\left(a_{k+1}-a_{k}\right)$ and $U(P, f)=\sum_{0 \leq k<n} M_{k}\left(a_{k+1}-a_{k}\right)$.

The lower Riemann integral of f is defined by

$$
\int_{a}^{b} f(x) d x=\sup \{L(P, f): P \text { is an interval partition of }[a, b]\}
$$

The upper Riemann integral of f is defined by

$$
\int_{a}^{b} f(x) d x=\inf \{U(P, f): P \text { is an interval partition of }[a, b]\}
$$

Riemann Integrability

We say that $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable iff $\int_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x$ is finite and this common value is denoted by $\int_{a}^{b} f(x) d x$.
Definition
Let $f:[a, b] \rightarrow \mathbb{R}$. For $A \subseteq[a, b]$, define the oscillation of f on A by

$$
\operatorname{osc}(f, A)=\sup \{|f(x)-f(y)|: x, y \in A\}
$$

Exercise: Show that $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable iff for every $\varepsilon>0$, there exist $a=a_{0}<a_{1}<\cdots<a_{n}=b$ such that

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right)<\varepsilon
$$

Oscillations

Lemma

Let $f:[c, d] \rightarrow[-M, M]$ where $0<M<\infty$. Let $\varepsilon>0$. Assume that for every $x \in(c, d), \operatorname{osc}(f, x)<\varepsilon$. Then there exist $c=c_{0}<c_{1}<\cdots<c_{n}=d$ such that

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[c_{k}, c_{k+1}\right]\right)\left(c_{k+1}-c_{k}\right)<2 \varepsilon(d-c)
$$

Proof: For each $x \in(c, d)$ choose an open interval $J_{x} \subseteq(c, d)$ centered at x such that $\operatorname{osc}\left(f, c l\left(J_{x}\right)\right)<\varepsilon$. Let $I_{1}=\left(c-\frac{\varepsilon(d-c)}{4 M}, c+\frac{\varepsilon(d-c)}{4 M}\right)$ and $I_{2}=\left(d-\frac{\varepsilon(d-c)}{4 M}, d+\frac{\varepsilon(d-c)}{4 M}\right)$. Then $\mathcal{U}=\left\{J_{x}: x \in(c, d)\right\} \cup\left\{I_{1}, I_{2}\right\}$ is an open cover of $[c, d]$. As $[c, d]$ is compact, \mathcal{U} has a finite subcover \mathcal{F}. Let $c_{1}<c_{2}<\cdots<c_{n-1}$ list the set of end points of the intervals in $\mathcal{F} \backslash\left\{I_{1}, I_{2}\right\}$. As $I_{1}, l_{2} \in \mathcal{F}$, we must have $c_{1} \leq c+\frac{\varepsilon(d-c)}{4 M}$ and $c_{n-1} \geq d-\frac{\varepsilon(d-c)}{4 m}$.
Furthermore, for every $1 \leq k<n_{1},\left[c_{k}, c_{k+1}\right] \subseteq J_{x}$ for some $J_{x} \in \mathcal{F}$. Therefore, $\operatorname{osc}\left(f,\left[c_{k}, c_{k+1}\right]\right)<\varepsilon$. It is now easy to check that

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[c_{k}, c_{k+1}\right]\right)\left(c_{k+1}-c_{k}\right)<2 \varepsilon(d-c)
$$

Riemann Integrability

Theorem

Let $f:[a, b] \rightarrow[-M, M]$ where $0<M<\infty$. Then f is Riemann integrable iff the set of points of discontinuity of f has measure zero.
Proof: Let $D=\{x \in[a, b]: f$ is discontinuous at $x\}$. First assume that D has measure zero. Fix $\varepsilon>0$. Let $D_{\varepsilon}=\{x \in(a, b): \operatorname{osc}(f, x) \geq \varepsilon\} \cup\{a, b\}$. Then D_{ε} is a closed set of measure zero. Let $\left\langle I_{k}: k \geq 1\right\rangle$ be a sequence of open intervals such that $D_{\varepsilon} \subseteq \bigcup_{k \geq 1} I_{k}$ and $\sum_{k \geq 1}\left|I_{k}\right|<\varepsilon$. Since D_{ε} is compact, we can fix $N \geq 1$ such that $\left\{I_{k}: k \leq N\right\}$ already covers D_{ε}. Let $U_{\varepsilon}=[a, b] \backslash \bigcup_{k \leq N} c l\left(I_{k}\right)$. Then U_{ε} is a finite union of open intervals. For each such open interval (c, d), by the previous lemma, we can fix a finite $W(c, d)=\left\{c=c_{0}<c_{1}<\cdots<c_{m}=d\right\}$ such that

$$
\sum_{k=0}^{m-1} \operatorname{osc}\left(f,\left[c_{k}, c_{k+1}\right]\right)\left(c_{k+1}-c_{k}\right)<2 \varepsilon(d-c)
$$

Let $a=a_{0}<a_{1}<\cdots<a_{n}=b$ list all members of these $W(c, d)$'s together with the end points of $\left\{I_{k}: k \leq N\right\}$.

Riemann Integrability

Note that for each $0 \leq k<n$,
(i) Either $\operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right)<2 \varepsilon\left(a_{k+1}-a_{k}\right)$, or
(ii) $\left[a_{k}, a_{k+1}\right] \subseteq I_{j}$ for some $1 \leq j \leq N$. And therefore, $\operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right)<2 M\left|I_{j}\right|$.
It follows that

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right) \leq 2 \varepsilon \mu\left(U_{\varepsilon}\right)+\sum_{j \leq N} 2 M\left(\left|I_{j}\right|\right)<2 \varepsilon(M+b-a)
$$

which goes to zero as $\varepsilon \rightarrow 0$. So f is Riemann integrable.
Next suppose D is not Lebesgue null. We will show that f is not Riemann integrable. For each $\delta>0$, let $D_{\delta}=\{x \in(a, b): \operatorname{osc}(f, x) \geq \delta\}$. Since $D \subseteq \bigcup_{\delta \in \mathbb{Q}^{+}} D_{\delta}$, we can fix $\delta>0$ such that $\mu\left(D_{\delta}\right)>0$. Let $\varepsilon=\delta \mu\left(D_{\delta}\right) / 2$. It suffices to show that for every $a=a_{0}<a_{1}<\cdots<a_{n}=b$,

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right) \geq \varepsilon
$$

Riemann Integrability

Note that if $\left(a_{k}, a_{k+1}\right) \cap D_{\delta} \neq \emptyset$, then $\operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right) \geq \delta / 2$. Let $T=\left\{k<n:\left(a_{k}, a_{k+1}\right) \cap D_{\delta} \neq \emptyset\right\}$. Then $D_{\delta} \subseteq \bigcup_{k \in T}\left[a_{k}, a_{k+1}\right]$. So $\sum_{k \in T}\left(a_{k+1}-a_{k}\right) \geq \mu\left(D_{\delta}\right)$. It follows that

$$
\sum_{k=0}^{n-1} \operatorname{osc}\left(f,\left[a_{k}, a_{k+1}\right]\right)\left(a_{k+1}-a_{k}\right) \geq \sum_{k \in T} \frac{\delta}{2}\left(a_{k+1}-a_{k}\right) \geq \frac{\delta \mu\left(D_{\delta}\right)}{2}=\varepsilon
$$

Riemann vs Lebesgue Integral

Corollary

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded Riemann integrable function. Then f is Lebesgue integrable and

$$
\int_{[a, b]} f d \mu=\int_{a}^{b} f(x) d x
$$

Proof: Let C be the set of points of continuity of f. Then C is Borel and $f \upharpoonright C$ is continuous. So $f \upharpoonright C$ is Lebesgue measurable. As $[a, b] \backslash C$ has measure zero, f is also Lebesgue measurable. Fix $M>0$ such that $|f| \leq M$. As $\int_{[a, b]}|f| d \mu \leq M(b-a)<\infty$, it follows that f is also Lebesgue integrable. If P is an interval partition of $[a, b]$, then then $L(P, f) \leq \int_{[a, b]} f d \mu$. Taking supremum over all P 's we get $\int_{a}^{b} f(x) d x \leq \int_{[a, b]} f d \mu$. A similar argument shows that $\int_{[a, b]} f d \mu \leq \bar{\int}_{a}^{b} f(x) d x$. Since $\int_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x$, it follows that $\int_{[a, b]} f d \mu=\int_{a}^{b} f(x) d x$.

Algebras

Definition (Algebra)

Let X be a nonempty set. An algebra on X is a family \mathcal{F} of subsets of X that satisfies the following.
(1) $\emptyset \in \mathcal{F}$ and $X \in \mathcal{F}$.
(2) (Closed under complements) If $E \in \mathcal{F}$, then $X \backslash E \in \mathcal{F}$.
(3) (Closed under finite unions) If $E_{1}, E_{2} \in \mathcal{F}$, then $E_{1} \cup E_{2} \in \mathcal{F}$.

Lemma

Let Y be a nonempty set. Let \mathcal{R} be a a family of subsets of Y such that
(a) $\emptyset \in \mathcal{R}$.
(b) If $A, B \in \mathcal{R}$, then $A \cap B \in \mathcal{R}$.
(c) If $A \in \mathcal{R}$, then $Y \backslash A$ is a disjoint union of finitely many members of \mathcal{R}.

Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R}. Then \mathcal{A} is an algebra on Y.
Proof: Homework

Premeasures on algebras

Let \mathcal{A} be an algebra on a nonempty set X. We say that $m: \mathcal{A} \rightarrow[0, \infty]$ is a premeasure on \mathcal{A} iff m satisfies the following.
(i) $m(\emptyset)=0$.
(ii) If $\left\{E_{n}: n \geq 1\right\}$ is a countable family of pairwise disjoint sets in \mathcal{A} and

$$
E=\bigcup_{n \geq 1} E_{n} \in \mathcal{A} \text {, then } m(E)=\sum_{n \geq 1} m\left(E_{n}\right) .
$$

Note that if $A_{1}, A_{2} \in \mathcal{A}$ are disjoint, then $m\left(A_{1} \cup A_{2}\right)=m\left(A_{1}\right)+m\left(A_{2}\right)$ and if $A \subseteq B$ are in \mathcal{A}, then $m(A) \leq m(B)$.
Theorem (Extending premeasures)
Let \mathcal{A} be an algebra on a nonempty set X and $m: \mathcal{A} \rightarrow[0, \infty]$ be a premeasure on \mathcal{A}. Let \mathcal{F} be the σ-algebra generated by \mathcal{A}. Then there exists a measure ν on \mathcal{F} such that $\nu \upharpoonright \mathcal{A}=m$. Also, if $m(X)<\infty$, then ν is unique.
Proof: Define $\nu^{\star}: \mathcal{P}(X) \rightarrow[0, \infty]$ by

$$
\nu^{\star}(E)=\inf \left\{\sum_{n \geq 1} m\left(A_{n}\right): A_{n} \in \mathcal{A} \text { for every } n \geq 1 \text { and } E \subseteq \bigcup_{n \geq 1} A_{n}\right\}
$$

Extending premeasures to measures

By HW problem $8, \nu^{*}$ is an outer measure on X. First, we claim that $\nu^{\star} \upharpoonright \mathcal{A}=m$. Suppose $E, A_{n} \in \mathcal{A}$ for every $n \geq 1$ and $E \subseteq \bigcup_{n \geq 1} A_{n}$. Define $B_{n}=E \cap\left(A_{n} \backslash \bigcup_{k<n-1} A_{k}\right)$. Then each $B_{n} \in \mathcal{A}$ and E is a disjoint union of B_{n} 's. So $\sum_{n \geq 1} m\left(\bar{A}_{n}\right) \geq \sum_{n \geq 1} m\left(B_{n}\right)=m(E)$. Hence $\nu^{\star}(E) \geq m(E)$. The other inequality is trivial because $E \in \mathcal{A}$. So $\nu^{\star}(E)=m(E)$ for every $E \in \mathcal{A}$.

Next, we claim that every set in \mathcal{A} is ν^{\star}-measurable. Suppose $E \in \mathcal{A}$ and $A \subseteq X$. We need to check $\nu^{\star}(E) \geq \nu^{\star}(A \cap E)+\nu^{\star}\left(A \cap E^{c}\right)$ where $E^{c}=X \backslash E$ is the complement of E in X. Let $\varepsilon>0$ be arbitrary. Choose $F_{n} \in \mathcal{A}$ such that $A \subseteq \bigcup_{n \geq 1} F_{n}$ and $\nu^{\star}(A)+\varepsilon \geq \sum_{n \geq 1} m\left(F_{n}\right)$. Now

$$
\sum_{n \geq 1} m\left(F_{n}\right)=\sum_{n \geq 1} m\left(F_{n} \cap E\right)+\sum_{n \geq 1} m\left(F_{n} \cap E^{c}\right) \geq \nu^{\star}(A \cap E)+\nu^{\star}\left(A \cap E^{c}\right)
$$

Hence $\nu^{\star}(A)+\varepsilon \geq \nu^{\star}(A \cap E)+\nu^{\star}\left(A \cap E^{c}\right)$. Letting $\varepsilon \rightarrow 0$, we get $\nu^{\star}(E) \geq \nu^{\star}(A \cap E)+\nu^{\star}\left(A \cap E^{c}\right)$. So every set in \mathcal{A} is ν^{\star}-measurable.

Extending premeasures to measures

Let ν_{1} be the restriction of ν^{\star} to ν^{\star}-measurable sets. By Caratheodory's theorem, ν_{1} is a measure. As each set in \mathcal{A} is ν^{\star}-measurable, $\mathcal{A} \subseteq \operatorname{dom}\left(\nu_{1}\right)$. Finally, since $\nu^{\star} \upharpoonright \mathcal{A}=m$, we also have $\nu_{1} \upharpoonright \mathcal{A}=m$. Put $\nu=\nu_{1} \upharpoonright \mathcal{F}$. This completes the proof of existence of ν.

For uniqueness, assume $m(X)<\infty$ and let $\nu^{\prime}: \mathcal{F} \rightarrow[0, \infty]$ be another measure on \mathcal{F} such that $\nu^{\prime} \upharpoonright \mathcal{A}=m$. Let $E \in \mathcal{F}$ and $\varepsilon>0$. Choose $\left\langle A_{n}: n \geq 1\right\rangle$ such that each $A_{n} \in \mathcal{A}, E \subseteq \bigcup_{n \geq 1} A_{n}$ and $\nu(E)+\varepsilon \geq \sum_{n \geq 1} m\left(A_{n}\right)=\sum_{n \geq 1} \nu^{\prime}\left(A_{n}\right) \geq \nu^{\prime}(E)$. Letting $\varepsilon \rightarrow 0$, we get $\nu(E) \geq \nu^{\prime}(E)$. So $\nu \geq \nu^{\prime}$. For the reverse inequality, put $A=\bigcup_{n \geq 1} A_{n}$ and observe that

$$
\nu(A)=\lim _{n \rightarrow \infty} \nu\left(\bigcup_{k \leq n} A_{k}\right)=\lim _{n \rightarrow \infty} \nu^{\prime}\left(\bigcup_{k \leq n} A_{k}\right)=\nu^{\prime}(A)
$$

Since ν is finite, $\nu(A \backslash E)=\nu(A)-\nu(E) \leq \sum_{n \geq 1} \nu\left(A_{n}\right)-\nu(E) \leq \varepsilon$. As $E \subseteq A$, $\nu(E) \leq \nu(A)=\nu^{\prime}(A)=\nu^{\prime}(E)+\nu^{\prime}(A \backslash E) \leq \nu^{\prime}(E)+\nu(A \backslash E) \leq \nu^{\prime}(E)+\varepsilon$. Letting $\varepsilon \rightarrow 0$, we get $\nu(E) \leq \nu^{\prime}(E)$. So $\nu=\nu^{\prime}$.

σ-finite measures

(1) Suppose \mathcal{A} is an algebra on X and $m: \mathcal{A} \rightarrow[0, \infty]$ is a premeasure. We say that m is σ-finite iff there exists a countable family $\left\{E_{n}: n \geq 1\right\} \subseteq \mathcal{A}$ such that $\bigcup_{n \geq 1} E_{n}=X$ and $m\left(E_{n}\right)<\infty$ for every $n \geq 1$.
(2) A measure space (X, \mathcal{F}, m) is σ-finite iff there exists a countable family $\left\{E_{n}: n \geq 1\right\} \subseteq \mathcal{F}$ such that $\bigcup_{n \geq 1} E_{n}=X$ and $m\left(E_{n}\right)<\infty$ for every $n \geq 1$.

Exercise: Let \mathcal{A} be an algebra on a nonempty set X and $m: \mathcal{A} \rightarrow[0, \infty]$ be a σ-finite premeasure on \mathcal{A}. Let \mathcal{F} be the σ-algebra generated by \mathcal{A}. Show that there exists a unique measure ν on \mathcal{F} such that $\nu \upharpoonright \mathcal{A}=m$.

Product of σ-algebras

Let $\left(X_{1}, \mathcal{A}_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}\right)$ be measurable spaces. Let $Y=X_{1} \times X_{2}$. We say that $S \subseteq Y$ is an $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$-measurable rectangle iff $S=E_{1} \times E_{2}$ for some $E_{1} \in \mathcal{A}_{1}$ and $E_{2} \in \mathcal{A}_{2}$. The product algebra $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the σ-algebra on Y generated by the family of all measurable rectangles. Define the product measurable space by

$$
\left(X_{1}, \mathcal{A}_{1}\right) \otimes\left(X_{2}, \mathcal{A}_{2}\right)=\left(X_{1} \times X_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)
$$

Lemma

Let $\left(X_{1}, \mathcal{A}_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}\right)$ be measurable spaces and let \mathcal{R} be the family of all measurable rectangles in $Y=X_{1} \times X_{2}$. Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R}. Then \mathcal{A} is an algebra on Y.
Proof: Just check that conditions (a)-(c) in the the lemma on Slide 80 hold for the family \mathcal{R}.

Product of power-set algebra

Question
Is $(\mathbb{R}, \mathcal{P}(\mathbb{R})) \otimes(\mathbb{R}, \mathcal{P}(\mathbb{R}))=\left(\mathbb{R}^{2}, \mathcal{P}\left(\mathbb{R}^{2}\right)\right)$? In other words, does every subset of plane belong to the σ-algebra generated by all rectangles?
B. V. Rao (On discrete Borel spaces and projective sets, Bull Amer. Math. Soc. 75 (1969), 614-617)) showed that the answer is "Yes" under the continuum hypothesis and K. Kunen (PhD
Thesis, Stanford, 1968) showed that the answer is consistently "No". So this question is undecidable in ZFC.

Product measures: Existence and Uniqueness

Theorem

Let $\left(X_{1}, \mathcal{A}_{1}, m_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, m_{2}\right)$ be σ-finite measure spaces. Let $Y=X_{1} \times X_{2}$ and $\mathcal{F}=\mathcal{A}_{1} \otimes \mathcal{A}_{2}$. Then there is a unique measure $m: \mathcal{F} \rightarrow[0, \infty]$ such that for every $E_{1} \in \mathcal{A}_{1}$ and $E_{2} \in \mathcal{A}_{2}, m\left(E_{1} \times E_{2}\right)=m_{1}\left(E_{1}\right) m_{2}\left(E_{2}\right)$.
Proof: Let \mathcal{R} be the family of all measurable rectangles in $Y=X_{1} \times X_{2}$. Start by defining $m\left(E_{1} \times E_{2}\right)=m_{1}\left(E_{1}\right) m_{2}\left(E_{2}\right)$ for every $E_{1} \in \mathcal{A}_{1}$ and $E_{2} \in \mathcal{A}_{2}$. Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R}. Then \mathcal{A} is an algebra on Y. Suppose $S \in \mathcal{A}$, and
$S=\bigsqcup_{1 \leq i \leq n}\left(A_{i} \times B_{i}\right)=\bigsqcup_{1 \leq j \leq p}\left(C_{j} \times D_{j}\right)$ where $A_{i}, C_{j} \in \mathcal{A}_{1}$ and $B_{i}, D_{j} \in \mathcal{A}_{2}$. Then
it is easy to check that

$$
\sum_{1 \leq i \leq n} m\left(A_{i} \times B_{i}\right)=\sum_{1 \leq j \leq p} m\left(C_{j} \times D_{j}\right)
$$

So we can extend m to \mathcal{A} by defining $m(S)=\sum_{1 \leq i \leq n} m\left(A_{i} \times B_{i}\right)$ for every $S=\bigsqcup_{1 \leq i \leq n}\left(A_{i} \times B_{i}\right) \in \mathcal{A}$. By the theorem on Slide 81 (Extending premeasures to measures), it suffices to show that m is a premeasure on \mathcal{A}.

Product measure: Existence and Uniqueness

Suppose $S=A \times B \in \mathcal{R}, S_{n}=A_{n} \times B_{n} \in \mathcal{R}$ for $n \geq 1$ and S is a disjoint union of S_{n} 's. We will show that $m(S)=\sum_{n \geq 1} m\left(S_{n}\right)$. Define $f_{n}: X_{1} \rightarrow[0, \infty]$ by $f_{n}(x)=m_{2}\left(B_{n}\right)$ if $x \in A_{n}$ and $f_{n}(x)=0$ if $x \notin A_{n}$. Then f_{n} 's are \mathcal{A}_{1}-measurable and it is easy to see that $\sum_{n \geq 1} f_{n}(x)=m_{2}(B)$ if $x \in A$ and 0 if $x \notin A$. So by the monotone convergence theorem,

$$
\sum_{n \geq 1} \int_{A} f_{n} d m_{1}=\int_{A} \sum_{n \geq 1} f_{n} d m_{1}=\int_{A} m_{2}(B) d m_{1}=m_{1}(A) m_{2}(B)=m(S)
$$

Since $\int_{A} f_{n} d m_{1}=\int_{A} 1_{A_{n}} m_{2}\left(B_{n}\right) d m_{1}=m_{1}\left(A_{n}\right) m_{2}\left(B_{n}\right)=m\left(S_{n}\right)$, it follows that $m(S)=\sum_{n \geq 1} m\left(S_{n}\right)$.
For the general case, let $S=\bigsqcup_{1 \leq j \leq N} T_{j}$ where each $T_{j} \in \mathcal{R}$. Suppose $S=\bigsqcup_{n \geq 1} E_{n}$ where each $E_{n}=\bigsqcup_{1 \leq k \leq K_{n}} E_{n, k}$ and $E_{n, k} \in \mathcal{R}$. Note that each T_{j} is a disjoint union of $\left\{E_{n, k} \cap T_{j}: n<\omega, k \leq K_{n}\right\}$. Now use the previous case.

Definition of product measure

A measure space (X, \mathcal{F}, m) is complete iff for every $E \in \mathcal{F}$ and $A \subseteq E$, if $m(E)=0$, then $A \in \mathcal{F}$.

Exercise: (Completion of a measure) Let (X, \mathcal{F}, m) be any measure space.
Put $\mathcal{N}=\{Y \subseteq X:(\exists A \in \mathcal{F})(m(A)=0$ and $Y \subseteq A)\}$ and define $\mathcal{E}=\{E \Delta Y: E \in \mathcal{F}, Y \in \mathcal{N}\}$ and $m^{\prime}: \mathcal{E} \rightarrow[0, \infty]$ by $m^{\prime}(E \Delta Y)=m(E)$ for every $E \in \mathcal{F}$ and $Y \in \mathcal{N}$. Then $\left(X, \mathcal{E}, m^{\prime}\right)$ is a complete measure space and $m^{\prime} \upharpoonright \mathcal{F}=m$. We say that $\left(X, \mathcal{E}, m^{\prime}\right)$ is a completion of (X, \mathcal{F}, m).

Let $\left(X_{1}, \mathcal{A}_{1}, m_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, m_{2}\right)$ be σ-finite measure spaces. By the previous theorem, there exists a unique measure $m: \mathcal{A}_{1} \otimes \mathcal{A}_{2} \rightarrow[0, \infty]$ satisfying $m(A \times B)=m_{1}(A) m_{2}(B)$ for every $A \in \mathcal{A}_{1}$ and $B \in \mathcal{A}_{2}$. We define the product measure $m_{1} \otimes m_{2}$ to be the completion of m.

Product of several measures

Let $\left(X_{i}, \mathcal{A}_{i}\right)$ be measurable spaces for $1 \leq i \leq n$. Put

$$
Y=\prod_{1 \leq i \leq n} X_{i}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right):(\forall i \leq n)\left(x_{i} \in X_{i}\right)\right\}
$$

We say that $S \subseteq Y$ is an $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots, \mathcal{A}_{n}\right)$-measurable box iff $S=\prod_{1 \leq i \leq n} E_{i}$ for some $E_{i} \in \mathcal{A}_{i}$. The product algebra $\bigotimes \mathcal{A}_{i}$ is the σ-algebra on Y generated by the family of all $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots, \mathcal{A}_{n}\right)$-measurable boxes.
Theorem
Let $\left(X_{i}, \mathcal{A}_{i}, m_{i}\right)$ be σ-finite measure spaces for $1 \leq i \leq n$. Let $Y=\prod_{1 \leq i \leq n} X_{i}$ and $\mathcal{F}=\bigotimes_{1 \leq i \leq n} \mathcal{A}_{i}$. Then there is a unique measure $m: \mathcal{F} \rightarrow[0, \infty]$ such that whenever $\bar{E}_{i} \in \mathcal{A}_{i}$ for $1 \leq i \leq n$,

$$
m\left(\prod_{1 \leq i \leq n} E_{i}\right)=\prod_{1 \leq i \leq n} m_{i}\left(E_{i}\right)
$$

Measurability in product spaces

Let $E \subseteq X_{1} \times X_{2}, F: X_{1} \times X_{2} \rightarrow \mathbb{R}, x \in X_{1}$ and $y \in X_{2}$. The vertical section of E at x is $E_{x}=\left\{y \in X_{2}:(x, y) \in E\right\}$ and the horizontal section of E at y is $E^{y}=\left\{x \in X_{1}:(x, y) \in E\right\}$. Define $F_{x}: X_{2} \rightarrow \mathbb{R}$ and $F^{y}: X_{1} \rightarrow \mathbb{R}$ by $F_{x}(y)=F^{y}(x)=F(x, y)$.

Lemma

Let $\left(X_{1}, \mathcal{A}_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}\right)$ be measurable spaces and let (Y, \mathcal{F}) be their product. So $Y=X_{1} \times X_{2}$ and $\mathcal{F}=\mathcal{A}_{1} \otimes \mathcal{A}_{2}$.
(1) Let $E \in \mathcal{F}$. Then for every $x \in X_{1}, E_{x} \in \mathcal{A}_{2}$ and for every $y \in X_{2}$, $E^{y} \in \mathcal{A}_{1}$.
(2) Let $F: X_{1} \times X_{2} \rightarrow \mathbb{R}$ be \mathcal{F}-measurable. Then for every $x \in X_{1}, F_{X}$ is \mathcal{A}_{2}-measurable and for every $y \in X_{2}, F^{y}$ is \mathcal{A}_{1}-measurable.

Proof: (1) Let \mathcal{E} be the family of all $E \subseteq X \times Y$ such that for every $x \in X_{1}$, $E_{x} \in \mathcal{A}_{2}$ and for every $y \in X_{2}, E^{y} \in \mathcal{A}_{1}$. Check that \mathcal{E} is a σ-algebra that contains all $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$-measurable rectangles. For (2), use (1) and $f_{x}^{-1}[B]=\left(f^{-1}[B]\right)_{x},\left(f^{y}\right)^{-1}[B]=\left(f^{-1}[B]\right)^{y}$.

Monotone class lemma

Suppose X is a non-empty set. \mathcal{M} is a monotone class on X iff \mathcal{M} is a family of subsets of X satisfying the following.
(a) If $A_{n} \in \mathcal{M}$ and $A_{n} \subseteq A_{n+1}$ for every $n \geq 1$, then $\bigcup_{n \geq 1} A_{n} \in \mathcal{M}$.
(a) If $A_{n} \in \mathcal{M}$ and $A_{n+1} \subseteq A_{n}$ for every $n \geq 1$, then $\bigcap_{n \geq 1} A_{n} \in \mathcal{M}$.

Note that the intersection of any family of monotone classes on X is also a monotone class on X. It follows that for every family \mathcal{A} of subsets of X, there is a smallest monotone class \mathcal{M} on X such that $\mathcal{A} \subseteq \mathcal{M}$. We say that \mathcal{M} is the monotone class generated by \mathcal{A}.
Lemma (Monotone class lemma)
Let \mathcal{A} be an algebra on X. Then the monotone class generated by \mathcal{A} coincides with the σ-algebra generated by \mathcal{A}.
Proof: See notes.

Fubini's theorem for sets

Lemma

Let $\left(X_{1}, \mathcal{A}_{1}, m_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, m_{2}\right)$ be σ-finite measure spaces and let $E \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$. Then
(a) the map $x \mapsto m_{2}\left(E_{x}\right)$ is \mathcal{A}_{1}-measurable,
(b) the map $y \mapsto m_{1}\left(E^{y}\right)$ is \mathcal{A}_{2}-measurable and
(c) $\left(m_{1} \otimes m_{2}\right)(E)=\int m_{2}\left(E_{x}\right) d m_{1}(x)=\int m_{1}\left(E^{y}\right) d m_{2}(y)$.

Proof: See notes.

Tonelli's theorem: Non-negative functions

Theorem

Let $\left(X_{1}, \mathcal{A}_{1}, m_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, m_{2}\right)$ be σ-finite measure spaces and $m=m_{1} \otimes m_{2}$. Put $\operatorname{dom}(m)=\mathcal{A}$ and suppose $F: X_{1} \times X_{2} \rightarrow[0, \infty)$ is an \mathcal{A}-measurable function. Then the following hold.
(a) $F_{x}: X_{2} \rightarrow[0, \infty)$ is \mathcal{A}_{2}-measurable for m_{1}-almost every $x \in X_{1}$ and $g(x)=\int F_{x} d m_{2}$ is \mathcal{A}_{1}-measurable.
(b) $F^{y}: X_{1} \rightarrow[0, \infty)$ is \mathcal{A}_{1}-measurable for m_{2}-almost every $y \in X_{2}$ and $h(y)=\int F^{y} d m_{1}$ is \mathcal{A}_{2}-measurable.
(c) $\int F d m=\int g(x) d m_{1}(x)=\int h(y) d m_{2}(y)$.

Proof: See notes.

Fubini's theorem: Integrable functions

Theorem

Let $\left(X_{1}, \mathcal{A}_{1}, m_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, m_{2}\right)$ be σ-finite measure spaces and $m=m_{1} \otimes m_{2}$. Suppose $F: X_{1} \times X_{2} \rightarrow \mathbb{R}$ is an m-integrable function. Then the following hold.
(a) $F_{x}: X_{2} \rightarrow \mathbb{R}$ is m_{2}-integrable for m_{1}-almost every $x \in X_{1}$ and

$$
g(x)=\int F_{x} d m_{2} \text { is } m_{1} \text {-integrable. }
$$

(b) $F^{y}: X_{1} \rightarrow \mathbb{R}$ is m_{1}-integrable for m_{2}-almost every $y \in X_{2}$ and $h(y)=\int F^{y} d m_{1}$ is m_{2}-integrable.
(c) $\int F d m=\int g(x) d m_{1}(x)=\int h(y) d m_{2}(y)$.

Proof: See notes.

1 Radon-Nikodym Theorem

Lemma 1.1. Let (X, \mathcal{F}) be a measurable space. Suppose $m, \nu: \mathcal{F} \rightarrow[0, \infty)$ are finite measures and $\nu \ll m$. Assume $\nu(X)>0$ and put $K=m(X) / \nu(X)$. Then there exists $A \in \mathcal{F}$ such that $\nu(A)>0$ and $K(\nu \upharpoonright A) \geq m \upharpoonright A$. Recall that $(\nu \upharpoonright A)(E)=\nu(A \cap E)$.

Proof. Suppose not. Then for every $A \in \mathcal{F}$ with $\nu(A)>0$, there exists $B \subseteq A$ such that $\nu(B)>0$ and $K \nu(B)<m(B)$. Let \mathcal{A} be a maximal disjoint family of those $B \in \mathcal{F}$ for which $\nu(B)>0$ and $K \nu(B)<m(B)$. Then \mathcal{A} is countable (as ν is finite) and $\nu(X \backslash \bigcup \mathcal{A})=0$ (as \mathcal{A} is maximal). It follows that

$$
\nu(X)=\sum_{B \in \mathcal{A}} \nu(B)<\sum_{B \in \mathcal{A}} \frac{m(B)}{K} \leq \frac{m(X)}{K}
$$

which contradicts the fact that $K=m(X) / \nu(X)$.

Theorem 1.2. Let (X, \mathcal{F}, m) be a σ-finite measure space. Let $\nu: \mathcal{F} \rightarrow[0, \infty]$ be a σ-finite measure such that $\nu \ll m$. Then there exists an \mathcal{F}-measurable $h: X \rightarrow[0, \infty)$ such that for every $E \in \mathcal{F}$,

$$
\nu(E)=\int_{E} h d m
$$

Furthermore, if $g: X \rightarrow[0, \infty)$ is another such function then h and g agree m-almost everywhere.

Proof. We will first prove the theorem assuming that m, ν are both finite. We can also assume that $\nu(X)>0$ otherwise $h=0$ is as required. Define

$$
\mathcal{E}=\left\{h: X \rightarrow[0, \infty): h \text { is } \mathcal{F} \text { measurable and for every } E \in \mathcal{F}, \int_{E} h d m \leq \nu(E)\right\}
$$

1. If $h_{1}, h_{2} \in \mathcal{E}$, then $\max \left(f_{1}, f_{2}\right) \in \mathcal{E}$.
2. Let $s=\sup \left\{\int h d m: h \in \mathcal{E}\right\}$. Then there exists a sequence $\left\langle h_{n}: n \geq 1\right\rangle$ of functions in \mathcal{E} such that $h_{n} \leq h_{n+1}$, and $\int h_{n} d m$ converges to s. Let $h=\lim h_{n}$. Then it is easy to check that $h \in \mathcal{E}$ and by monotone convergence theorem, $\int h d m=s$.
3. We claim that $s=\nu(X)$. Suppose not and we'll get a contradiction. Define $\nu^{\prime}: \mathcal{F} \rightarrow[0, \infty)$ by $\nu^{\prime}(E)=\nu(E)-\int_{E} h d m$ and observe that ν^{\prime} is a measure, $\nu^{\prime} \ll m$ and $\nu^{\prime}(X)>0$.
Put $K=m(X) / \nu^{\prime}(X)$. By Lemma 1.1, we can find $A \in \mathcal{F}$ such that $\nu^{\prime}(A)>0$ and $K\left(\nu^{\prime} \upharpoonright A\right) \geq m \upharpoonright A$. Let $g=h+(1 / K) 1_{A}$. Then g is \mathcal{F}-measurable and for
every $E \in \mathcal{F}, \int_{E} g d m=\int_{E \cap A} h d m+(1 / K) m(E \cap A)+\int_{E \cap A^{c}} h d m \leq \int_{E \cap A} h d m+$ $\nu^{\prime}(E \cap A)+\int_{E \cap A^{c}} h d m=\int_{E \cap A} h d m+\left(\nu(E \cap A)-\int_{E \cap A} h d m\right)+\int_{E \cap A^{c}}^{E \cap A} h d m=$ $\nu(E \cap A)+\int_{E \cap A^{c}} h d m \leq \nu(E \cap A)+\nu\left(E \cap A^{c}\right)=\nu(E)$.
Hence $\int_{E} g d m \leq \nu(E)$. So $g \in \mathcal{E}$. Note that $m(A)>0$ because $\nu^{\prime}(A)>0$ and $\nu^{\prime} \ll m$. But now $\int g d m=\int h d m+m(A) / K=s+m(A) / K>s$ which is impossible.
4. We claim that for every $E \in \mathcal{F}, \int_{E} h d m=\nu(E)$. Suppose not and fix $E \in \mathcal{F}$ such that $\int_{E} h d m<\nu(E)$. Then $s=\int h d m=\int_{E} h d m+\int_{X \backslash E} h d m<\nu(E)+\nu(X \backslash$ $E)=\nu(X)=s:$ A contradiction.
5. To see that h is unique, let $g: X \rightarrow[0, \infty)$ be an \mathcal{F}-measurable function such that for every $E \in \mathcal{F}, \int_{E} g d m=\int_{E} h d m=\nu(E)$. Let $W_{n}=\{y \in X: h(y) \geq g(y)+$ $\left.2^{-n}\right\}$. Then $\int_{W_{n}} h d m-\int_{W_{n}} g d m \geq 2^{-n} m\left(W_{n}\right)$. So $m\left(W_{n}\right)=0$ for every $n \geq 1$. Hence $m(\{y \in X: h(y)>g(y)\})=0$. Similarly, $m(\{y \in X: h(y)<g(y)\})=0$ and therefore h and g agree m-almost everywhere.

This completes the proof of the theorem when m, ν are both finite. To deal with the σ-finite case, first decompose $X=\bigsqcup_{n \geq 1} E_{n}$ such that both $m \upharpoonright E_{n}$ and $\nu \upharpoonright E_{n}$ are finite measures. Apply the finite case of the theorem to the measures $m \upharpoonright E_{n}$ and $\nu \upharpoonright E_{n}$ to get $h_{n}: X \rightarrow[0, \infty)$ as in the conclusion of the theorem. Finally, put $h=\sum_{n \geq 1} h_{n}$ and check that it works for ν, m.

The function h in Theorem 1.2 called the Radon-Nikodym derivative of ν w.r.t. m and is denoted as follow

$$
\frac{d \nu}{d m}=h
$$

AC, BV etc.

April 20, 2022

1 Fundamental theorem of calculus for absolutely continuous functions

Definition 1.1. Let $J \subseteq \mathbb{R}$ be an interval and $f: J \rightarrow \mathbb{R}$. We say that f is absolutely continuous on J iff for every $\varepsilon>0$, there exists $\delta>0$ such that for every finite sequence $\left\langle\left(a_{i}, b_{i}\right): 1 \leq i \leq n\right\rangle$ of pairwise disjoint subintervals of J,

$$
\sum_{i \leq n}\left(b_{i}-a_{i}\right)<\delta \Longrightarrow \sum_{i \leq n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\varepsilon
$$

We'll denote the set of all absolutely continuous functions $f: J \rightarrow \mathbb{R}$ by $A C(J)$. The following lemma says that $A C(J)$ is a vector space over \mathbb{R}. The easy proof is left to the reader.

Lemma 1.2. For every $f, g \in A C(J)$ and $a \in \mathbb{R}, f+g \in A C(J)$ and af $\in A C(J)$.
Denote the set of all Lebesgue integrable functions $f:[a, b] \rightarrow \mathbb{R}$ by $L^{1}([a, b])$. For $f \in L^{1}([a, b])$, define $h_{f}:[a, b] \rightarrow \mathbb{R}$ by

$$
h_{f}(x)=\int_{a}^{x} f d \mu
$$

Lemma 1.3. $h_{f}:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous.
Proof. Note that $h_{f}=h_{f^{+}}-h_{f^{-}}$. Since the difference of two absolutely continuous functions is absolutely continuous, it suffices to show that h_{f} is absolutely continuous for every $f \in L^{1}([a, b])$ with $f:[a, b] \rightarrow[0, \infty)$.

Let \mathcal{M} be the set of all Lebesgue measurable subsets of $[a, b]$. Define $m: \mathcal{M} \rightarrow[0, \infty)$ by $m(E)=\int_{E} f d \mu$. Then m is a measure and $m \ll \mu$. Since μ, m are finite measures, by a previous lemma, it follows that for every $\varepsilon>0$, there exists $\delta>0$ such that for every $E \in \mathcal{M}$,

$$
\mu(E)<\delta \Longrightarrow m(E)<\varepsilon
$$

Let $\varepsilon>0$. Choose $\delta>0$ such that for every $E \in \mathcal{M}, \mu(E)<\delta \Longrightarrow m(E)<\varepsilon$. Suppose $\left\langle\left(a_{i}, b_{i}\right): 1 \leq i \leq n\right\rangle$ is a finite sequence of pairwise disjoint subintervals of $[a, b]$
such that $\sum_{i \leq n}\left(b_{i}-a_{i}\right)<\delta$. Put $E=\bigcup_{i \leq n}\left(a_{i}, b_{i}\right)$. Then $\mu(E)<\delta$. Hence $m(E)<\delta$. But

$$
m(E)=\sum_{i \leq n} m\left(\left(a_{i}, b_{i}\right)\right)=\sum_{i \leq n} \int_{\left(a_{i}, b_{i}\right)} f d \mu=\sum_{i \leq n}\left|h_{f}\left(b_{i}\right)-h_{f}\left(a_{i}\right)\right|
$$

It follows that h_{f} is absolutely continuous on $[a, b]$.
Theorem 1.4. Let $h:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous and montonically increasing. Then the following hold.
(1) For every $E \subseteq \mathbb{R}$, if $\mu(E)=0$, then $\mu(h[E])=0$.
(2) h is almost everywhere differentiable on $[a, b]$. Let $f:[a, b] \rightarrow \mathbb{R}$ be defined by $f(x)=h^{\prime}(x)$ if $h^{\prime}(x)$ exists and $f(x)=0$ otherwise. Then $f \in L^{1}([a, b])$ and for every $x \in[a, b]$,

$$
h(x)=h(a)+\int_{a}^{x} f d \mu
$$

Proof. (1) Suppose $E \subseteq[a, b]$ is null. We can assume $E \subseteq(a, b)$ since this removes at most two points from $f[E]$. Let $\varepsilon>0$ be arbitrary. We will show that $\mu(f[E]) \leq \varepsilon$. Since h is absolutely continuous, there exists $\delta>0$ witnessing the absolute continuity of f for this ε. Choose an open $U \subseteq(a, b)$ such that $E \subseteq U$ and $\mu(U)<\delta$. Let $\left\{\left(a_{i}, b_{i}\right): i \geq 1\right\}$ list all components of U. Then $\mu(U)=\sum_{i \geq 1}\left(b_{i}-a_{i}\right)<\delta$. Now for every $n \geq 1,\left\langle\left(a_{i}, b_{i}\right)\right.$: $i \leq n\rangle$ is a finite sequence of pairwise disjoint subintervals of $[a, b]$ with $\sum_{i \leq n}\left(b_{i}-a_{i}\right)<\delta$. Hence $\sum_{i \leq n}\left|h\left(b_{i}\right)-h\left(a_{i}\right)\right|<\varepsilon$. Taking supremum over all n, we get $\sum_{i \geq 1}\left|\bar{h}\left(b_{i}\right)-h\left(a_{i}\right)\right| \leq$ ε. Since h is monotonically increasing, $h[U]=\bigcup_{i \geq 1} h\left[\left(a_{i}, b_{i}\right)\right]=\bigcup_{i \geq 1}\left(h\left(a_{i}\right), h\left(b_{i}\right)\right)$. Hence $\mu(h[E]) \leq \mu(h[U])=\sum_{i \geq 1} \mu\left(\left(h\left(a_{i}\right), h\left(b_{i}\right)\right)\right)=\sum_{i \geq 1}\left|h\left(b_{i}\right)-h\left(a_{i}\right)\right| \leq \varepsilon$.
(2) Define $g:[a, b] \rightarrow \mathbb{R}$ by $g(x)=x+h(x)$. Then g is absolutely continuous on $[a, b]$ and strictly increasing.

Let \mathcal{M} be the set of all Lebesgue measurable subsets of $[a, b]$. We claim that for every $E \in \mathcal{M}, g[E] \in \mathcal{M}$. Let $E \in \mathcal{M}$. Choose a sequence of compact subsets $K_{n} \subseteq E$ such that $\mu\left(E \backslash K_{n}\right)<1 / n$. Put $K=\bigcup_{n \geq 1} K_{n}$. Then $\mu(E \backslash K)=0$. Note that $g[K]=\bigcup_{n \geq 1} g\left[K_{n}\right]$ is F_{σ} as each $g\left[K_{n}\right]$ is compact. Also by (1), $g[E \backslash K]$ is null. So $g[E]=g[K] \cup g[E \backslash K]$ is the union of an F_{σ}-set and a null set. Hence $g[E] \in \mathcal{M}$.

Define $m: \mathcal{M} \rightarrow[0, \infty)$ by $m(E)=\mu(g[E])$. Since g is one-one, m is a measure on \mathcal{M}. Also $m \ll \mu$ since $g[E]$ is null for every null $E \in \mathcal{M}$. Let $f_{1}=\frac{d m}{d \mu}$ be the Radon-Nikodym derivative of m w.r.t. μ. Then for every $x \in[a, b], m([a, x])=\int_{a}^{x} f_{1} d \mu$. Also, $m([a, x])=\mu(g[[a, x]])=\mu([g(a), g(x)])=g(x)-g(a)=h(x)-h(a)+(x-a)$. It follows that for every $x \in[a, x]$,

$$
h(x)=h(a)-\int_{a}^{x}\left(f_{1}-1\right) d \mu
$$

Put $f=f_{1}-1$. Then $f \in L^{1}([a, b])$ as $f_{1} \in L^{1}([a, b])$. Finally, by Homework problem 39, it follows that $h(x)=h(a)+\int_{a}^{x} f d \mu$ is differentiable for almost every $x \in[a, b]$ and its derivative is equal to $f(x)$.

We would next like to extend Theorem 1.4 to all AC functions. This will be done by showing that every $A C$ function is the difference of two increasing $A C$ functions.

Definition 1.5. Let $f:[a, b] \rightarrow \mathbb{R}$ and $[c, d] \subseteq[a, b]$. The total variation of f on $[c, d]$ is defined by

$$
\operatorname{Var}_{f}(c, d)=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right|: c=x_{0}<x_{1}<\cdots<x_{n}=d\right\}
$$

We say that f is of bounded variation on $[a, b]$ iff $\operatorname{Var}_{f}(a, b)<\infty$. Let $B V([a, b])$ denote the set of all functions $f:[a, b] \rightarrow \mathbb{R}$ of bounded variation on $[a, b]$.

Note that every monotonically increasing/decreasing function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$ and $B V([a, b])$ is a vector space over \mathbb{R}.

Lemma 1.6. Let $f:[a, b] \rightarrow \mathbb{R}$. Define $V_{f}:[a, b] \rightarrow[0, \infty]$ by $V_{f}(x)=\operatorname{Var}_{f}(a, x)$. The following hold.
(a) If $f \in B V([a, b])$, then $V_{f}:[a, b] \rightarrow[0, \infty)$ and both V_{f} and $V_{f}-f$ are monotonically increasing functions. So every function in $B V([a, b])$ is the difference of two monotonically increasing functions.
(b) If $f \in A C([0,1])$, then $f \in B V([a, b])$ and both V_{f} and $V_{f}-f$ are absolutely continuous monotonically increasing functions. So every function in $A C([a, b])$ is the difference of two monotonically increasing absolutely continuous functions.

Proof. Will be covered in lecture.
It is clear that $B V([a, b])$ is not a subset of $A C([a, b])$ since every increasing function $f:[a, b] \rightarrow \mathbb{R}$ is in $B V([a, b])$ and an increasing function can have jump discontinuities. Let $C([a, b])$ denote the set of all continuous functions from $[a, b]$ to \mathbb{R}. Is $C([a, b]) \cap$ $B V([a, b]) \subseteq A C([a, b])$? The answer is no: See https://en.wikipedia.org/wiki/ Cantor_function

Theorem 1.7 (Fundamental theorem of calculus for Lebesgue integrals). Let $h:[a, b] \rightarrow$ \mathbb{R}. Then the following are equivalent.
(1) $h \in A C([a, b])$.
(2) h is almost everywhere differentiable on $[a, b], h^{\prime} \in L^{1}([a, b])$ and for every $x \in$ $[a, b]$,

$$
h(x)=h(a)+\int_{a}^{x} h^{\prime} d \mu
$$

Proof. (2) \Longrightarrow (1): Follows from Lemma 1.3 .
$(1) \Longrightarrow(2)$: By Lemma 1.6(b), there are monotonically increasing AC functions $h_{1}, h_{2}:[a, b] \rightarrow \mathbb{R}$ such that $h=h_{1}-h_{2}$. Applying Theorem 1.4 to h_{1} and h_{2} gives (2).

