MTH404: Analysis II

Homework: These will be periodically updated.

- (1) Let (X, d) be a metric space and $D \subseteq X$. Show that the following are equivalent.
 - (a) D is nowhere dense in X.
 - (b) cl(D) (closure of D) is nowhere dense in X.
 - (c) $X \setminus D$ contains an open dense subset of X.
- (2) Let A be the set of all $x \in [0, 1]$ whose decimal expansion contains only two digits: 0, 1. Show that A is uncountable and nowhere dense in \mathbb{R} .
- (3) Let $f : \mathbb{R} \to \mathbb{R}$. Define

$$osc(f, x) = \lim_{h \to 0} \sup\{|f(a) - f(b)| : a, b \in (x - h, x + h)\}$$

- (a) Show that f is continuous at x iff osc(f, x) = 0.
- (b) Show that $\{x \in \mathbb{R} : osc(f, x) < a\}$ is open in \mathbb{R} for each a > 0.
- (4) Call $X \subseteq \mathbb{R}$ a *G*-delta subset of \mathbb{R} iff X is the intersection of a countable family of open sets in \mathbb{R} . Show that for any $f : \mathbb{R} \to \mathbb{R}$, the set $\{x \in \mathbb{R} : f \text{ is continuous at } x\}$ is a *G*-delta subset of \mathbb{R} .
- (5) Let $Y \subseteq \mathbb{R}$ be countable. Construct a function $f : \mathbb{R} \to \mathbb{R}$ such that $Y = \{x \in \mathbb{R} : f \text{ is discontinuous at } x\}.$
- (6) Show that there is no $f : \mathbb{R} \to \mathbb{R}$ such that $\{x \in \mathbb{R} : f \text{ is continuous at } x\} = \mathbb{Q}$.
- (7) Show that the ternary Cantor set is Lebesgue null.
- (8) Let \mathcal{A} be a family of subsets of X such that $\emptyset, X \in \mathcal{A}$. Let $f : \mathcal{A} \to [0, \infty]$ be such that $f(\emptyset) = 0$. Define $m : \mathcal{P}(X) \to [0, \infty]$ by

$$m(X) = \inf \left\{ \sum_{n \ge 1} f(A_n) : \langle A_n : n \ge 1 \rangle \text{ is a sequence of members of } \mathcal{A} \\ \text{such that } X \subseteq \bigcup_{n \ge 1} A_n \right\}$$

Show that m is an outer measure on X.

- (9) Let \mathcal{F} be a σ -algebra on X. Show that \mathcal{F} is either finite or uncountable.
- (10) Suppose X is a nonempty set and \mathcal{A} is a collection of subsets of X. Let \mathcal{E} be the family of all σ -algebras \mathcal{F} on X such that $\mathcal{A} \subseteq \mathcal{F}$. Show that $\bigcap \mathcal{E}$ is the smallest σ -algebra on X that contains every set in \mathcal{A} .

- (11) Let $E \subseteq \mathbb{R}^n$ be bounded and Lebesgue measurable. Show the following.
 - (a) $\mu(E) = \inf \{ \mu(U) : E \subseteq U \text{ and } U \text{ is open} \}.$
 - (b) $\mu(E) = \sup\{\mu(K) : K \subseteq E \text{ and } K \text{ is compact}\}.$
 - (c) There exists a G_{δ} -set $G \subseteq \mathbb{R}^n$ such that $E \subseteq G$ and $\mu(G \setminus E) = 0$.
 - (d) There exists an F_{σ} -set $F \subseteq \mathbb{R}^n$ such that $F \subseteq E$ and $\mu(E \setminus F) = 0$.
- (12) Show that $\operatorname{Baire}(\mathbb{R}^n)$ is a σ -algebra on \mathbb{R}^n .
- (13) Let 0 < a < 1. Show that there does not exist a Lebesgue measurable $E \subseteq \mathbb{R}$ such that for every open interval J,

$$a\mu(J) \le \mu(A \cap J) \le (1-a)\mu(J)$$

- (14) Suppose $P \subseteq \mathbb{R}^n$ is perfect. Show that $|P| = \mathfrak{c}$.
- (15) Show that there exists $E \subseteq \mathbb{R}$ such that for every interval J, both $J \cap E$ and $J \cap (\mathbb{R} \setminus E)$ have positive measure.
- (16) Suppose $E \subseteq \mathbb{R}^n$ is Lebesgue measurable and $B \subseteq \mathbb{R}^n$ is a Bernstein set. Assume $\mu_n(E) > 0$. Show that $B \cap E$ is Lebesgue non-measurable. Conclude that for every $E \subseteq \mathbb{R}^n$, either $\mu_n(E) = 0$ or E has a Lebesgue non-measurable subset.
- (17) Let $U \subseteq \mathbb{R}$ be open. Show that the characteristic function of U is a Baire class one function.
- (18) Let (X, \mathcal{E}) and (Y, \mathcal{F}) be measurable spaces and $f : X \to Y$. Suppose $\mathcal{A} \subseteq \mathcal{F}$ and the σ -algebra generated by \mathcal{A} is \mathcal{F} . Then f is $(\mathcal{E}, \mathcal{F})$ -measurable iff for every $A \in \mathcal{A}$, $f^{-1}[A] \in \mathcal{E}$.
- (19) Show that for every Lebesgue measurable function $f : \mathbb{R}^n \to \mathbb{R}$, there exists a Borel function $g : \mathbb{R}^n \to \mathbb{R}$ such that f and g are almost everywhere equal.
- (20) Suppose $f, g : \mathbb{R}^n \to \mathbb{R}$ are Lebesgue measurable functions, $h : \mathbb{R} \to \mathbb{R}$ is a Borel function and $a, b \in \mathbb{R}$. Then |f|, af + bg, fg and $h \circ f$ are also Lebesgue measurable. Furthermore, if $0 \notin \operatorname{range}(f)$, then 1/f is also Lebesgue measurable.
- (21) Suppose $E \subseteq \mathbb{R}^n$, and $f_k : E \to \mathbb{R}$ is Lebesgue measurable for every $k \ge 1$. Assume that for every $x \in E$, $g(x) = \limsup_k f_k(x)$ and $h(x) = \liminf_k f_k(x)$ are finite. Show that $g, h : E \to \mathbb{R}$ are Lebesgue measurable.
- (22) Suppose $f : [a, b] \to \mathbb{R}$ is Lebesgue measurable. Then for every $\varepsilon > 0$, there exists a continuous $g : [a, b] \to \mathbb{R}$ such that $\mu(\{x \in \mathbb{R}^n : f(x) \neq g(x)\}) < \varepsilon$.

- (23) Suppose (X, \mathcal{F}, m) is a measure space and $f : X \to [0, \infty)$ is an \mathcal{F} -measurable function.
 - (a) Show that for every a > 0, $m(\{x \in X : f(x) > a\}) \le \frac{1}{a} \int f \, dm$. (b) Show that $\int f \, dm = 0$ iff $m(\{x \in X : f(x) > 0\}) = 0$.
- (24) Let (X, \mathcal{F}, m) be a finite measure space. Assume (X, \mathcal{F}, m) is **complete** which means the following: For every $E \in \mathcal{F}$, if m(E) = 0, then every subset of E is in \mathcal{F} . Suppose $f : X \to \mathbb{R}$ is a bounded function. Define

$$\overline{\int} f \, dm = \sup \left\{ \int h \, dm : h \le f \text{ and } h : X \to \mathbb{R} \text{ is simple} \right\}$$
$$\underline{\int} f \, dm = \inf \left\{ \int h \, dm : f \le h \text{ and } h : X \to \mathbb{R} \text{ is simple} \right\}$$

Show that $\int f \, dm = \int f \, dm$ iff f is \mathcal{F} -measurable.

(25) Suppose (X, \mathcal{F}, m) is a measure space and $f_n : X \to \mathbb{R}$ is an \mathcal{F} -measurable function for every $n \ge 1$. Assume there exists an *m*-integrable function $g : X \to [0, \infty)$ such that $f_n \le g$ for every $n \ge 1$. Define $f : X \to \mathbb{R}$ by $f(x) = \limsup_n f_n(x)$. Show that

$$\int f \, dm \ge \limsup_n \int f_n \, dm$$

Also give an example to show that the above inequality can be strict.

- (27) Let (X, \mathcal{F}, m) be a finite measure space and suppose $f : X \to \mathbb{R}$ is an *m*-integrable function. Show that $m(\{x \in X : f(x) \neq 0\}) = 0$ iff for every $E \in \mathcal{F}, \int_E f \, dm = 0$.
- (28) Let Y be a nonempty set. Let \mathcal{R} be a family of subsets of Y such that
 - (a) $\emptyset \in \mathcal{R}$.
 - (b) If $A, B \in \mathcal{R}$, then $A \cap B \in \mathcal{R}$.
 - (c) If $A \in \mathcal{R}$, then $Y \setminus A$ is a disjoint union of finitely many members of \mathcal{R} .

Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R} . Show that \mathcal{A} is an algebra on Y.

(29) Let (X_1, \mathcal{A}_1) and (X_2, \mathcal{A}_2) be measurable spaces and let \mathcal{R} be the family of all measurable rectangles in $Y = X_1 \times X_2$. Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R} . Then \mathcal{A} is an algebra on Y.

- (30) Let (X, \mathcal{F}, m) be any measure space. Put $\mathcal{N} = \{Y \subseteq X : (\exists A \in \mathcal{F})(m(A) = 0 \text{ and } Y \subseteq A)\}$ and define $\mathcal{E} = \{E\Delta Y : E \in \mathcal{F}, Y \in \mathcal{N}\}$ and $m' : \mathcal{E} \to [0, \infty]$ by $m'(E\Delta Y) = m(E)$ for every $E \in \mathcal{F}$ and $Y \in \mathcal{N}$. Then (X, \mathcal{E}, m') is a complete measure space and $m' \upharpoonright \mathcal{F} = m$.
- (31) Show that $\mu_2 = \mu_1 \otimes \mu_1$. Here, μ_n denotes Lebesgue measure in \mathbb{R}^n .
- (32) Let $E \subseteq \mathbb{R}^2$ be Lebesgue measurable. Show that the following are equivalent.
 - (a) $\mu_2(E) = 0$
 - (b) For almost every $x \in \mathbb{R}$, $\mu(E_x) = 0$.
 - (c) For almost every $y \in \mathbb{R}$, $\mu(E^y) = 0$.
- (33) Let $E \subseteq \mathbb{R}^n$ be Lebesgue measurable. Show that for almost every $x \in E$,

$$\lim_{r \downarrow 0} \frac{\mu(E \cap B(x, r))}{\mu(B(x, r))} = 1$$

- (34) Assume $E \subseteq \mathbb{R}^2$ is unbounded and $\mu(E) > 0$. Show that for every a > 0 there exist x, y, z in E such that the area of the triangle with vertices x, y, z is a.
- (35) Let $(\mathbb{R}^n, \mathcal{M}, \mu)$ be the Lebesgue measure space. Let ν be another measure on $(\mathbb{R}^n, \mathcal{M})$ such that for every $x \in \mathbb{R}^n$ and r > 0, $\nu(B(x, r)) = \mu(B(x, r))$. Show that $\mu = \nu$.
- (36) Let (X, \mathcal{F}) be a measurable space and suppose $m_1, m_2 : \mathcal{F} \to [0, 1]$ are two probability measures. Assume $m_1 \ll m_2$ and $m_2 \ll m_1$. Let $f_1 = \frac{dm_1}{dm_2}$ and $f_2 = \frac{dm_2}{dm_1}$. Show that for m_1 -almost every $x \in X$, $f_1(x)f_2(x) = 1$.
- (37) Let (X, \mathcal{F}, m) be a **finite** measure space. Show that for every $1 \le p \le q < \infty$, $L^q(m) \subseteq L^p(m)$.
- (38) Let μ be Lebesgue measure on \mathbb{R} and $1 \leq p < q < \infty$. Show that $L^p(\mu) \nsubseteq L^q(\mu)$ and $L^q(\mu) \nsubseteq L^p(\mu)$.
- (39) Let $f : [a, b] \to \mathbb{R}$ be Lebesgue integrable. Define $h : [a, b] \to \mathbb{R}$ by $h(x) = \int_a^x f \, d\mu$. Show that for almost every $x \in [a, b], h'(x) = f(x)$.