Homework: These will be periodically updated.
(1) Let (X, d) be a metric space and $D \subseteq X$. Show that the following are equivalent.
(a) D is nowhere dense in X.
(b) $\operatorname{cl}(D)$ (closure of D) is nowhere dense in X.
(c) $X \backslash D$ contains an open dense subset of X.
(2) Let A be the set of all $x \in[0,1]$ whose decimal expansion contains only two digits: 0,1 . Show that A is uncountable and nowhere dense in \mathbb{R}.
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Define

$$
\operatorname{osc}(f, x)=\lim _{h \rightarrow 0} \sup \{|f(a)-f(b)|: a, b \in(x-h, x+h)\}
$$

(a) Show that f is continuous at x iff $\operatorname{osc}(f, x)=0$.
(b) Show that $\{x \in \mathbb{R}: \operatorname{osc}(f, x)<a\}$ is open in \mathbb{R} for each $a>0$.
(4) Call $X \subseteq \mathbb{R}$ a G-delta subset of \mathbb{R} iff X is the intersection of a countable family of open sets in \mathbb{R}. Show that for any $f: \mathbb{R} \rightarrow \mathbb{R}$, the set $\{x \in \mathbb{R}: f$ is continuous at $x\}$ is a G-delta subset of \mathbb{R}.
(5) Let $Y \subseteq \mathbb{R}$ be countable. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y=\{x \in \mathbb{R}: f$ is discontinuous at $x\}$.
(6) Show that there is no $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\{x \in \mathbb{R}: f$ is continuous at $x\}=\mathbb{Q}$.
(7) Show that the ternary Cantor set is Lebesgue null.
(8) Let \mathcal{A} be a family of subsets of X such that $\emptyset, X \in \mathcal{A}$. Let $f: \mathcal{A} \rightarrow[0, \infty]$ be such that $f(\emptyset)=0$. Define $m: \mathcal{P}(X) \rightarrow[0, \infty]$ by

$$
\begin{aligned}
m(X)= & \inf \left\{\sum_{n \geq 1} f\left(A_{n}\right):\left\langle A_{n}: n \geq 1\right\rangle \text { is a sequence of members of } \mathcal{A}\right. \\
& \text { such that } \left.X \subseteq \bigcup_{n \geq 1} A_{n}\right\}
\end{aligned}
$$

Show that m is an outer measure on X.
(9) Let \mathcal{F} be a σ-algebra on X. Show that \mathcal{F} is either finite or uncountable.
(10) Suppose X is a nonempty set and \mathcal{A} is a collection of subsets of X. Let \mathcal{E} be the family of all σ-algebras \mathcal{F} on X such that $\mathcal{A} \subseteq \mathcal{F}$. Show that $\bigcap \mathcal{E}$ is the smallest σ-algebra on X that contains every set in \mathcal{A}.
(11) Let $E \subseteq \mathbb{R}^{n}$ be bounded and Lebesgue measurable. Show the following.
(a) $\mu(E)=\inf \{\mu(U): E \subseteq U$ and U is open $\}$.
(b) $\mu(E)=\sup \{\mu(K): K \subseteq E$ and K is compact $\}$.
(c) There exists a G_{δ}-set $G \subseteq \mathbb{R}^{n}$ such that $E \subseteq G$ and $\mu(G \backslash E)=0$.
(d) There exists an F_{σ}-set $F \subseteq \mathbb{R}^{n}$ such that $F \subseteq E$ and $\mu(E \backslash F)=0$.
(12) Show that Baire $\left(\mathbb{R}^{n}\right)$ is a σ-algebra on \mathbb{R}^{n}.
(13) Let $0<a<1$. Show that there does not exist a Lebesgue measurable $E \subseteq \mathbb{R}$ such that for every open interval J,

$$
a \mu(J) \leq \mu(A \cap J) \leq(1-a) \mu(J)
$$

(14) Suppose $P \subseteq \mathbb{R}^{n}$ is perfect. Show that $|P|=\mathfrak{c}$.
(15) Show that there exists $E \subseteq \mathbb{R}$ such that for every interval J, both $J \cap E$ and $J \cap(\mathbb{R} \backslash E)$ have positive measure.
(16) Suppose $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable and $B \subseteq \mathbb{R}^{n}$ is a Bernstein set. Assume $\mu_{n}(E)>0$. Show that $B \cap E$ is Lebesgue non-measurable. Conclude that for every $E \subseteq \mathbb{R}^{n}$, either $\mu_{n}(E)=0$ or E has a Lebesgue non-measurable subset.
(17) Let $U \subseteq \mathbb{R}$ be open. Show that the characteristic function of U is a Baire class one function.
(18) Let (X, \mathcal{E}) and (Y, \mathcal{F}) be measurable spaces and $f: X \rightarrow Y$. Suppose $\mathcal{A} \subseteq \mathcal{F}$ and the σ-algebra generated by \mathcal{A} is \mathcal{F}. Then f is $(\mathcal{E}, \mathcal{F})$-measurable iff for every $A \in \mathcal{A}$, $f^{-1}[A] \in \mathcal{E}$.
(19) Show that for every Lebesgue measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there exists a Borel function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that f and g are almost everywhere equal.
(20) Suppose $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are Lebesgue measurable functions, $h: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function and $a, b \in \mathbb{R}$. Then $|f|, a f+b g, f g$ and $h \circ f$ are also Lebesgue measurable. Furthermore, if $0 \notin \operatorname{range}(f)$, then $1 / f$ is also Lebesgue measurable.
(21) Suppose $E \subseteq \mathbb{R}^{n}$, and $f_{k}: E \rightarrow \mathbb{R}$ is Lebesgue measurable for every $k \geq 1$. Assume that for every $x \in E, g(x)=\lim \sup _{k} f_{k}(x)$ and $h(x)=\liminf _{k} f_{k}(x)$ are finite. Show that $g, h: E \rightarrow \mathbb{R}$ are Lebesgue measurable.
(22) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Lebesgue measurable. Then for every $\varepsilon>0$, there exists a continuous $g:[a, b] \rightarrow \mathbb{R}$ such that $\mu\left(\left\{x \in \mathbb{R}^{n}: f(x) \neq g(x)\right\}\right)<\varepsilon$.
(23) Suppose (X, \mathcal{F}, m) is a measure space and $f: X \rightarrow[0, \infty)$ is an \mathcal{F}-measurable function.
(a) Show that for every $a>0, m(\{x \in X: f(x)>a\}) \leq \frac{1}{a} \int f d m$.
(b) Show that $\int f d m=0$ iff $m(\{x \in X: f(x)>0\})=0$.
(24) Let (X, \mathcal{F}, m) be a finite measure space. Assume (X, \mathcal{F}, m) is complete which means the following: For every $E \in \mathcal{F}$, if $m(E)=0$, then every subset of E is in \mathcal{F}. Suppose $f: X \rightarrow \mathbb{R}$ is a bounded function. Define

$$
\begin{aligned}
& \bar{\int} f d m=\sup \left\{\int h d m: h \leq f \text { and } h: X \rightarrow \mathbb{R} \text { is simple }\right\} \\
& \underline{\int} f d m=\inf \left\{\int h d m: f \leq h \text { and } h: X \rightarrow \mathbb{R} \text { is simple }\right\}
\end{aligned}
$$

Show that $\bar{\int} f d m=\underline{\int} f d m$ iff f is \mathcal{F}-measurable.
(25) Suppose (X, \mathcal{F}, m) is a measure space and $f_{n}: X \rightarrow \mathbb{R}$ is an \mathcal{F}-measurable function for every $n \geq 1$. Assume there exists an m-integrable function $g: X \rightarrow[0, \infty)$ such that $f_{n} \leq g$ for every $n \geq 1$. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=\limsup _{n} f_{n}(x)$. Show that

$$
\int f d m \geq \limsup _{n} \int f_{n} d m
$$

Also give an example to show that the above inequality can be strict.
(27) Let (X, \mathcal{F}, m) be a finite measure space and suppose $f: X \rightarrow \mathbb{R}$ is an m-integrable function. Show that $m(\{x \in X: f(x) \neq 0\})=0$ iff for every $E \in \mathcal{F}, \int_{E} f d m=0$.
(28) Let Y be a nonempty set. Let \mathcal{R} be a a family of subsets of Y such that
(a) $\emptyset \in \mathcal{R}$.
(b) If $A, B \in \mathcal{R}$, then $A \cap B \in \mathcal{R}$.
(c) If $A \in \mathcal{R}$, then $Y \backslash A$ is a disjoint union of finitely many members of \mathcal{R}.

Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R}. Show that \mathcal{A} is an algebra on Y.
(29) Let $\left(X_{1}, \mathcal{A}_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}\right)$ be measurable spaces and let \mathcal{R} be the family of all measurable rectangles in $Y=X_{1} \times X_{2}$. Let \mathcal{A} be the family of all sets which are disjoint unions of finitely many members of \mathcal{R}. Then \mathcal{A} is an algebra on Y.
(30) Let (X, \mathcal{F}, m) be any measure space. Put
$\mathcal{N}=\{Y \subseteq X:(\exists A \in \mathcal{F})(m(A)=0$ and $Y \subseteq A)\}$ and define
$\mathcal{E}=\{E \Delta Y: E \in \mathcal{F}, Y \in \mathcal{N}\}$ and $m^{\prime}: \mathcal{E} \rightarrow[0, \infty]$ by $m^{\prime}(E \Delta Y)=m(E)$ for every
$E \in \mathcal{F}$ and $Y \in \mathcal{N}$. Then $\left(X, \mathcal{E}, m^{\prime}\right)$ is a complete measure space and $m^{\prime} \upharpoonright \mathcal{F}=m$.
(31) Show that $\mu_{2}=\mu_{1} \otimes \mu_{1}$. Here, μ_{n} denotes Lebesgue measure in \mathbb{R}^{n}.
(32) Let $E \subseteq \mathbb{R}^{2}$ be Lebesgue measurable. Show that the following are equivalent.
(a) $\mu_{2}(E)=0$
(b) For almost every $x \in \mathbb{R}, \mu\left(E_{x}\right)=0$.
(c) For almost every $y \in \mathbb{R}, \mu\left(E^{y}\right)=0$.
(33) Let $E \subseteq \mathbb{R}^{n}$ be Lebesgue measurable. Show that for almost every $x \in E$,

$$
\lim _{r \downarrow 0} \frac{\mu(E \cap B(x, r))}{\mu(B(x, r))}=1
$$

(34) Assume $E \subseteq \mathbb{R}^{2}$ is unbounded and $\mu(E)>0$. Show that for every $a>0$ there exist x, y, z in E such that the area of the triangle with vertices x, y, z is a.
(35) Let $\left(\mathbb{R}^{n}, \mathcal{M}, \mu\right)$ be the Lebesgue measure space. Let ν be another measure on $\left(\mathbb{R}^{n}, \mathcal{M}\right)$ such that for every $x \in \mathbb{R}^{n}$ and $r>0, \nu(B(x, r))=\mu(B(x, r))$. Show that $\mu=\nu$.
(36) Let (X, \mathcal{F}) be a measurable space and suppose $m_{1}, m_{2}: \mathcal{F} \rightarrow[0,1]$ are two probability measures. Assume $m_{1} \ll m_{2}$ and $m_{2} \ll m_{1}$. Let $f_{1}=\frac{d m_{1}}{d m_{2}}$ and $f_{2}=\frac{d m_{2}}{d m_{1}}$. Show that for m_{1}-almost every $x \in X, f_{1}(x) f_{2}(x)=1$.
(37) Let (X, \mathcal{F}, m) be a finite measure space. Show that for every $1 \leq p \leq q<\infty$, $L^{q}(m) \subseteq L^{p}(m)$.
(38) Let μ be Lebesgue measure on \mathbb{R} and $1 \leq p<q<\infty$. Show that $L^{p}(\mu) \nsubseteq L^{q}(\mu)$ and $L^{q}(\mu) \nsubseteq L^{p}(\mu)$.
(39) Let $f:[a, b] \rightarrow \mathbb{R}$ be Lebesgue integrable. Define $h:[a, b] \rightarrow \mathbb{R}$ by $h(x)=\int_{a}^{x} f d \mu$. Show that for almost every $x \in[a, b], h^{\prime}(x)=f(x)$.

