SUPERSATURATED IDEALS

ASHUTOSH KUMAR AND DILIP RAGHAVAN

Dedicated to the memory of Ken Kunen

Abstract. An ideal I on a set X is supersaturated iff $\text{add}(I) \geq \omega_2$ and for every family F of I-positive sets with $|F| < \text{add}(I)$, there exists a countable set that meets every set in F. We show that many well-known ccc forcings preserve supersaturation. We also show that the existence of supersaturated ideals is independent of ZFC plus “There exists an ω_1-saturated σ-ideal”.

1. Introduction

Saturation properties of ideals are ubiquitous in modern set theory and there is a considerable body of work (for example, see [3, 5, 6, 7]) on the study of a large number of such properties. Throughout this paper, by an ideal I on X, we mean an ideal I on X that contains every finite subset of X. Supersaturation is a strengthening of ω_1-saturation defined as follows.

Definition 1.1. Suppose I is an ideal on X and λ is a cardinal. We say that I is λ-supersaturated iff $\text{add}(I) \geq \lambda^+$ and for every $A \subseteq I^+$, if $|A| < \text{add}(I)$, then there exists $W \in [X]^{<\lambda}$ such that for every $A \in A$, $A \cap W \neq \emptyset$. I is supersaturated iff it is ω_1-supersaturated.

Suppose I is a supersaturated ideal on X. Since $\text{add}(I) \geq \omega_2$, it follows that I^+ cannot have an uncountable subfamily of pairwise disjoint sets because no countable set can meet all of them. So I is ω_1-saturated. Let $\mu = \text{add}(I)$. Ulam showed that either μ is a measurable cardinal or μ is a weakly inaccessible cardinal $\leq \mathfrak{c}$. Solovay showed that μ admits a normal ω_1-saturated ideal J and μ is a measurable cardinal in the inner model $L[J]$. For proofs of these facts, see [7].

Though closely related to some of the works of Fremlin, supersaturated ideals were formally introduced in [4] where it was shown that if $\kappa \leq \mathfrak{c}$ admits a normal supersaturated ideal then the order dimension of the Turing degrees is at least κ. An earlier motivation for investigating these ideals comes from the following question of Fremlin – See Problem EG(h) in [1].

Question 1.2 (Fremlin). Suppose κ is real valued measurable and $m : \mathcal{P}(\kappa) \to [0, 1]$ is a witnessing normal measure. Let F be a family of subsets of κ such that $|F| < \kappa$ and for every $A \in F$, $m(A) > 0$. Must there exist a countable $N \subseteq \kappa$ such that for every $A \in F$, $N \cap A \neq \emptyset$?

So Question 1.2 is asking if the null ideal of every normal witnessing measure on a real valued measurable cardinal must be supersaturated. One of the standard ways of obtaining ω_1-saturated ideals on cardinals below the continuum is to start

Both authors were partially supported by Singapore Ministry of Education’s research grant number MOE2017-T2-2-125.
with a measurable cardinal κ and a witnessing normal prime ideal \mathcal{I} on κ, and force with a ccc forcing \mathbb{P} that adds $\geq \kappa$ reals. Let \mathcal{J} be the ideal generated by \mathcal{I} in $V^\mathbb{P}$. Then \mathcal{J} is always an ω_1-saturated normal ideal on $\kappa \leq \mathfrak{c}$. But whether or not \mathcal{J} is supersaturated will depend on the choice of \mathbb{P}. This motivates the notion of supersaturation preserving forcings (Definition 2.1). In Section 2, we show that a large class of ccc forcings for adding new reals are supersaturation preserving. In particular, the following holds.

Theorem 1.3. Let Random_λ denote the forcing for adding λ random reals.

(1) Every σ-linked forcing is supersaturation preserving.

(2) Random_λ is supersaturation preserving for every λ.

The question of whether every ω_1-saturated ideal must be supersaturated was raised in [4]. Our main result shows that this is independent.

Theorem 1.4. Each of the following is consistent.

(1) There is an ω_1-saturated ideal on a cardinal below the continuum and there are no supersaturated ideals.

(2) There is an ω_1-saturated ideal on a cardinal below the continuum and every ω_1-saturated ideal is supersaturated.

Notation: Let \mathcal{I} be an ideal on X. Define $\mathcal{I}^+ = \mathcal{P}(X) \setminus \mathcal{I}$. $\text{add}(\mathcal{I})$ denotes the least cardinality of a subfamily of \mathcal{I} whose union is in \mathcal{I}^+. For $A \subseteq X$, define $\mathcal{I} \upharpoonright A = \{Y \subseteq X : Y \cap A \in \mathcal{I}\}$. Suppose $V \subseteq W$ are transitive models of set theory, $X, \mathcal{I} \in V$ and $V \models \"\mathcal{I} is an ideal on $X\"$. Recall that the ideal generated by \mathcal{I} in W is $\mathcal{J} = \{A \in W : (\exists B \in \mathcal{I})(A \subseteq B)\}$.

For a set of ordinals X, $\otimes(X)$ denotes the order type of X. An ordinal δ is indecomposable iff for every $X \subseteq \delta$, either $\otimes(X) = \delta$ or $\otimes(\delta \setminus X) = \delta$. If \mathbb{P}, \mathbb{Q} are forcing notions, we write $\mathbb{P} \leq \mathbb{Q}$ iff $\mathbb{P} \subseteq \mathbb{Q}$ and every maximal antichain in \mathbb{P} is also a maximal antichain in \mathbb{Q}. Cohen_λ denotes the forcing for adding λ Cohen reals. Random_λ is the measure algebra on 2^λ equipped with the usual product measure denoted by μ_λ. If λ is clear from the context, then we drop it and just write μ.

2. CCC FORCINGS AND SUPERSATURATION

Definition 2.1. A forcing \mathbb{P} is κ-ssp (ssp = supersaturation preserving) iff for every normal supersaturated ideal \mathcal{I} on κ, $V^\mathbb{P} \models \"the ideal generated by \mathcal{I} is supersaturated\"$, \mathbb{P} is ssp iff it is κ-ssp for every κ.

In [4], the following forcings were shown to be κ-ssp for every κ.

(a) Cohen_λ for any λ.

(b) Any finite support iteration of ccc forcings of size $< \kappa$.

It was also shown that Random_λ is κ-ssp for any measurable κ. The next theorem improves this to all κ.

Theorem 2.2. Random_λ is κ-ssp for every κ and λ.

Proof. Fix a normal supersaturated ideal \mathcal{I} on κ. Put $\mathbb{B} = \text{Random}_\lambda$ and let \mathcal{J} be the ideal generated by \mathcal{I} in $V^\mathbb{B}$. Suppose $\theta < \kappa$ and $\models _\mathbb{B} \langle \dot{A}_i : i < \theta \rangle$ is a sequence of \mathcal{J}-positive sets. It suffices to find $B \in [\kappa]^{\mathfrak{c}}_\theta$ such that $\models _\mathbb{B} (\forall i < \theta)(\dot{A}_i \cap B \neq \emptyset)$.

For $i < \theta$ and $\alpha < \kappa$, put $p_{i,\alpha} = [[\alpha \in \dot{A}_i]]_\mathbb{B}$. So each $p_{i,\alpha}$ is a Baire subset of 2^λ. Put $T_i = \{\alpha < \kappa : p_{i,\alpha} \neq 0_\mathbb{B}\}$.
Claim 2.3. For each $p \in B \setminus \{0_B\}$, $\{\alpha \in T_i : p_i,\alpha \cap p \neq 0_B\} \subseteq I^+$.

Proof. Put $X_p = \{\alpha \in T_i : p_i,\alpha \cap p \neq 0_B\}$ and suppose $X_p \subseteq I$. Since the empty condition forces that $A_i \in \mathcal{F}^+$, it follows that for every $X \subseteq I$, $\{p_i,\alpha : \alpha \in T_i \setminus X\}$ is predense in B. But every condition in $\{p_i,\alpha : \alpha \in T_i \setminus X_p\}$ is incompatible with p which is impossible. \hfill \Box

For a finite partial function f from λ to 2, define $[f] = \{x \in 2^\lambda : x \upharpoonright \text{dom}(f) = f\}$. For a clopen $K \subseteq 2^\lambda$, define $\text{supp}(K)$ to be the smallest finite set $S \subseteq \lambda$ such that $(\forall x,y \in 2^\lambda)(x \upharpoonright S = y \upharpoonright S \implies (x \in K \iff y \in K))$. If $\text{supp}(K) = S$, then there is finite list $\{f_{K,n} : n < n_*\}$ where $f_{K,n}$'s are pairwise distinct functions from S to 2 and $K = \bigsqcup_{n < n_*} [f_{K,n}]$.

Definition 2.4. Suppose C is a family of clopen sets in 2^λ. We say that C is a strong Δ-system of width (n_*,N_*) iff $n_*,N_* < \omega$ and the following hold.

(a) $\langle \text{supp}(K) : K \in C \rangle$ is a Δ-system with root R.
(b) For every $K \in C$, $|\text{supp}(K) \setminus R| = n_*$.
(c) For every $K \in C$, $K = \bigsqcup_{n < N_*} [f_{K,n}]$ where each $f_{K,n} : \text{supp}(K) \to 2$ and $f_{K,n}$'s are pairwise distinct.
(d) For every $K_1,K_2 \in C$ and $n < N_*$, $\forall i,\alpha,\epsilon,\gamma,\delta \in [\lambda]^{n_*}$ such that the following hold.

(i) $f_{K_1,n} \upharpoonright R = f_{K_2,n} \upharpoonright R$ and $f_{K_1,n} \upharpoonright R = f_{K_2,n} \upharpoonright R$
(ii) if for $m \in \{1,2\}$, $\{\xi_m^n : j < |R| + n_*\}$ lists $\text{supp}(K_m)$ in increasing order, then $f_{K_1,j}(\xi_j^1) = f_{K_2,j}(\xi_j^2)$ for every $j < |R| + n_*$.

Lemma 2.5. Suppose $p \subseteq 2^\lambda$ is Baire and C is an infinite strong Δ-system of clopen sets in 2^λ of width (n_*,N_*). Let $\epsilon > 0$ and assume that for infinitely many $K \in C$, $\mu(p \cap K) \geq \epsilon$. Then for all but finitely many $K \in C$, $\mu(p \cap K) \geq \epsilon/2$.

Proof. Let R be the root of $\langle \text{supp}(K) : K \in C \rangle$. For each $K \in C$, fix $\{f_{K,n} : n < N_*\}$ such that $K = \bigsqcup_{n < N_*} [f_{K,n}]$. First suppose that p is clopen. Let $C_p = \{K \in C : \text{supp}(K) \setminus R \cap \text{supp}(p) = \emptyset\}$. Then $C \setminus C_p$ is finite and for each $K \in C_p$, $\mu(p \cap K) = \sum_{n < N_*} \mu(p \cap [f_{K,n}]) = 2^{-n_*} \sum_{n < N_*} \mu(p \cap [f_{K,n} \upharpoonright R])$

which does not depend on $K \in C_p$. It follows that the result holds if p is clopen. The general case follows by applying the previous case to a clopen $q \subseteq 2^\lambda$ satisfying $\mu(p \Delta q) < \epsilon/2$. \hfill \Box

For each $\alpha \in T_i$, fix $S_{i,\alpha} \subseteq [\lambda]^N_0$ such that $p_{i,\alpha}$ is supported in $S_{i,\alpha}$. For every $i < \theta$, $\alpha \in T_i$, and $\epsilon > 0$ rational, choose a clopen set $K_{i,\alpha,\epsilon} \subseteq 2^\lambda$ with $\text{supp}(K_{i,\alpha,\epsilon}) \subseteq S_{i,\alpha}$ such that $\frac{\mu(p_{i,\alpha} \Delta K_{i,\alpha,\epsilon})}{\mu(K_{i,\alpha,\epsilon})} < \epsilon$

Claim 2.6. For each $i < \theta$ and $\epsilon > 0$ rational, we can find $F_{i,\epsilon} \subseteq I^+$ and $\langle (n_{i,\epsilon,Y},N_{i,\epsilon,Y}) : Y \in F_{i,\epsilon} \rangle$ such that the following hold.

(1) $F_{i,\epsilon}$ is a countable family of pairwise disjoint sets and $T_i \setminus \bigsqcup F_{i,\epsilon} \subseteq I$.
(2) For each $Y \in F_{i,\epsilon}$, $\{K_{i,\alpha,\epsilon} : \alpha \in Y\}$ is a strong Δ-system of width $(n_{i,\epsilon,Y},N_{i,\epsilon,Y})$.

Proof. Fix $i < \theta$ and $\varepsilon > 0$ rational. To simplify notation, we write K_α instead of $K_{i,\alpha,\varepsilon}$. It suffices to show that for every \mathcal{I}-positive $X \subseteq T_i$, there exists $Y \subseteq X$ such that $Y \in \mathcal{I}^+$ and there exist (n_Y, N_Y) such that $\{K_\alpha : \alpha \in Y\}$ is a strong Δ-system of width (n_Y, N_Y). Since then we can take $\mathcal{F}_{i,\varepsilon}$ to be a maximal disjoint family of such Y's. That each $\mathcal{F}_{i,\varepsilon}$ is countable follows from the fact that \mathcal{I} is ω_1-saturated.

Fix a club $E \subseteq \kappa$ such that for every $\gamma \in E$ and $\alpha \in T_i \cap \gamma$, $\text{max}(\text{supp}(K_\alpha)) < \gamma$. Suppose $X \subseteq T_i \cap E$ and $X \in \mathcal{I}^+$. Since \mathcal{I} is normal and the map $\alpha \mapsto \text{max}(\text{supp}(K_\alpha \cap \alpha))$ is regressive on X, we can find $R \subseteq \kappa$ finite and $Y_1 \subseteq X$ such that $Y_1 \in \mathcal{I}^+$, $(\forall \alpha \in Y_1)(\text{supp}(K_\alpha) \cap \alpha = R)$ and $\text{supp}(K_\alpha) \setminus R = n_\ast$ does not depend on $\alpha \in Y_1$. It also follows that $(\text{supp}(K_\alpha) : \alpha \in Y_1)$ forms a Δ-system with root R. For each $\alpha \in Y_1$, let $K_\alpha = \bigcup_{n_\ast < N_\ast}[f_{\alpha, n}]$ where each $f_{\alpha, n} : \text{supp}(K_\alpha) \rightarrow 2$. Choose $Y_2 \subseteq Y_1$ such that $Y_2 \in \mathcal{I}^+$ and $N_\ast = N_\ast$ does not depend on $\alpha \in Y_2$. Finally, choose $Y \subseteq Y_2$ such that $Y \in \mathcal{I}^+$ and $\{K_\alpha : \alpha \in Y\}$ is a strong Δ-system of width (n_\ast, N_\ast). \hfill \Box

Since \mathcal{I} is supersaturated, we can choose $B \in [\kappa]^{\omega_0}$ such that for every $i < \theta$, $\varepsilon > 0$ rational and $Y \in \mathcal{F}_{i,\varepsilon}$, we have $|B \cap Y| = N_0$. It suffices to show that for each $i < \theta$, $\{p_\alpha : \alpha \in B\}$ is predense in \mathcal{P}.

Suppose not. Fix $i < \theta$ and $p \subseteq 2^\lambda$ Baire such that $\mu(p) > 0$ and for every $\alpha \in B$, $\mu(p_\alpha \cap p) = 0$. Let $X = \{\alpha \in T_i : \mu(p_\alpha \cap p) > 0\}$. By Claim 2.3, $X \in \mathcal{I}^+$. Using the argument in the proof of Claim 2.3, we can choose $\varepsilon > 0$ rational, $X_\ast \subseteq X$ and $n_\ast, N_\ast < \omega$ such that

(a) $X_\ast \in \mathcal{I}^+$ and for each $\alpha \in X_\ast$, $\mu(p_\alpha \cap p) \geq 4\varepsilon$.

(b) $\{K_{i,\alpha,\varepsilon} : \alpha \in X_\ast\}$ is a strong Δ-system of width (n_\ast, N_\ast).

Choose $Y \in \mathcal{F}_{i,\varepsilon}$ such that $Y \cap X_\ast \in \mathcal{I}^+$. Since $|Y \cap X_\ast| \geq N_0$ and $|Y \cap B| = N_0$, by Lemma 2.5, we can choose $\alpha \in Y \cap B$ such that $\mu(p \cap K_{i,\alpha} \varepsilon) \geq 2\varepsilon$. But since $\mu(p_\alpha \Delta K_{i,\alpha,\varepsilon}) \leq \varepsilon \mu(K_{i,\alpha,\varepsilon}) \leq \varepsilon$, it follows that $\mu(p \cap p_\alpha) \geq \varepsilon > 0$: Contradiction. This completes the proof of Theorem 2.2. \hfill \Box

Theorem 2.7. Every σ-linked forcing is κ-ssp for every κ.

Proof. Let \mathcal{I} be a normal supersaturated ideal on κ. Suppose \mathcal{P} is a σ-linked forcing and \mathcal{J} is the ideal generated by \mathcal{I} in $V^\mathcal{P}$. Fix $\theta < \kappa$ and WLOG, assume that the trivial condition forces that $\{\dot{A}_i : i < \theta\}$ is a sequence of \mathcal{J}-positive sets. It suffices to construct $X \in [\kappa]^{\omega_0}$ such that $\Vdash_{\mathcal{P}} (\forall i < \theta)(X \cap \dot{A}_i \neq \emptyset)$.

Since \mathcal{P} is σ-linked, we can write $\mathcal{P} = \bigcup\{L_n : n < \omega\}$ where each $L_n \subseteq \mathcal{P}$ has pairwise compatible members. For each $i < \theta$ and $n < \omega$, define

$$B_{i, n} = \{\alpha < \kappa : \exists p \in L_n)(p \vdash \alpha \in \dot{A}_i)\}$$

Claim 2.8. $W_i = \bigcup\{L_n : n < \omega, B_{i, n} \in \mathcal{I}^+\}$ is dense in \mathcal{P}.

Proof. Suppose not and fix $p \in \mathcal{P}$ such that no extension of p lies in W_i. Put $C = \{\alpha < \kappa : (\exists q \leq p)(q \vdash \alpha \in \dot{A}_i)\}$. Since no extension of p lies in W_i, it follows that $C \subseteq \bigcup\{B_{i, n} : n < \omega, B_{i, n} \in \mathcal{I}\}$ and hence $C \in \mathcal{I}$. It now follows that $p \vdash \dot{A}_i \in \mathcal{J}$ which is impossible. \hfill \Box

Since \mathcal{I} is supersaturated, we can find a countable $X \subseteq \kappa$ such that for every $i < \theta$ and $n < \omega$, if $B_{i, n} \in \mathcal{I}^+$, then $X \cap B_{i, n} \neq \emptyset$. We claim that $\Vdash (\forall i < \theta)(X \cap \dot{A}_i \neq \emptyset)$.
Suppose not and fix \(p \in P \) and \(i < \theta \) such that \(p \Vdash X \cap \dot{A}_i = \emptyset \). Using Claim \[2.8\] choose \(n < \omega \) and \(p' \leq p \) such that \(p' \in L_n \) and \(B_{i,n} \in \mathcal{I}^+ \). Choose \(\alpha \in B_{i,n} \cap X \) and \(q \in L_n \) such that \(q \Vdash \alpha \in \dot{A}_i \). Since \(L_n \) is linked, we can find a common extension \(r \in P \) of \(p', q \). But \(r \Vdash \alpha \in X \cap \dot{A}_i \): Contradiction.

Corollary 2.9. Each of the following forcings is ssp: Cohen, random, Amoeba, Hechler, Eventually different real forcing.

We do not know if we can improve Theorem \[2.7\] to the class of \(\sigma \)-finite-cc forcings. For example, one can ask the following.

Question 2.10. Suppose \(\mathbb{B} \) is a boolean algebra and \(m : \mathbb{B} \to [0,1] \) is a strictly positive finitely additive measure on \(\mathbb{B} \). Must \(\mathbb{B} \) be supersaturation preserving?

The next two facts are well known.

Fact 2.11. Suppose \(P \) is a separative \(\sigma \)-linked forcing. Then \(|P| \leq \mathfrak{c} \).

Fact 2.12. Let \(\langle P_\xi, \dot{Q}_\xi \rangle : \xi < \lambda \) be a finite support iteration with limit \(P_\lambda \) where for every \(\xi < \lambda \), \(V^P_\xi \models \dot{Q}_\xi \) is \(\sigma \)-linked. Assume \(\lambda < \mathfrak{c}^+ \). Then \(P_\lambda \) is also \(\sigma \)-linked.

Theorem 2.13. Let \(\mathcal{I} \) be a normal supersaturated ideal on \(\kappa \) and let \(\lambda \leq \kappa^+ \). Suppose \(\langle \langle P_\xi, \dot{Q}_\xi \rangle : \xi < \lambda \rangle \) is a finite support iteration with limit \(P_\lambda \) where for every \(\xi < \lambda \), \(V^P_\xi \models \dot{Q}_\xi \) is \(\sigma \)-linked. Let \(\mathcal{J} \) be the ideal generated by \(\mathcal{I} \) in \(V^{P_\lambda} \). Then \(\mathcal{J} \) is supersaturated.

Proof. By induction on \(\lambda \). First suppose \(\kappa \leq \mathfrak{c} \). If \(\lambda < \kappa^+ \), then by Fact \[2.12\] \(P_\lambda \) is \(\sigma \)-linked and the claim holds by Theorem \[2.7\] So assume \(\lambda = \kappa^+ \) and fix any \(P_\lambda \)-generic filter \(G_\lambda \) over \(V \). Let \(\langle A_i : i < \theta \rangle \) be a sequence of \(\mathcal{J} \)-positive sets in \(V[G_\lambda] \) where \(\theta < \kappa \). Since \(P_\lambda \) is a finite support iteration of ccc forcings, there exists \(\eta < \lambda = \kappa^+ \) such that \(\langle A_i : i < \theta \rangle \in V[G_\eta] \) where \(G_\eta = P_\eta \cap G_\lambda \). Note that each \(A_i \) is \(J_\eta \)-positive where \(J_\eta \) is the ideal generated by \(\mathcal{I} \) in \(V[G_\eta] \). By inductive hypothesis, there is a countable set that meets \(A_i \) for every \(i < \theta \). Hence \(\mathcal{J} \) is supersaturated.

Next assume \(\kappa > \mathfrak{c} \). Then \(\kappa \) is measurable and \(\mathcal{I} \) is a normal prime ideal on \(\kappa \). First suppose \(\lambda \leq \kappa \). By Fact \[2.11\] \(|P_\xi| \leq |\xi \cdot \kappa| < \kappa \) for every \(\xi < \kappa \). Hence by Theorem 4.9 in [4], it follows that \(\mathcal{J} \) is supersaturated. Next suppose \(\kappa < \lambda \leq \kappa^+ \). Note that \(V^{P_\lambda} \models V \) \(\mathfrak{c} \geq \kappa \) since Cohen reals are added at each stage of cofinality \(\omega \). So we can work in \(V^{P_\lambda} \) and repeat the argument for the case \(\kappa \leq \mathfrak{c} \).

It is now natural to ask the following.

Question 2.14 ([3]). Suppose \(\kappa \) is measurable. Is every ccc forcing \(\kappa \)-ssp?

In Section [4] we’ll show that the answer is negative. We end this section with the following weaker positive result.

Theorem 2.15. Suppose \(\kappa \) is measurable and \(\mathcal{I} \) is a normal prime ideal on \(\kappa \). Let \(\mathbb{B} \) be a ccc complete boolean algebra. Then \(V^\mathbb{B} \models \text{“the ideal generated by } \mathcal{I} \text{ is } \omega_2 \text{-supersaturated.”} \)

Proof. It suffices to show that the following holds in \(V^\mathbb{B} \): For every \(A \subseteq \mathcal{J}^+ \), if \(|A| < \kappa \), then there exists \(X \in [\kappa]^\mathbb{B} \) such that \(X \) meets every member of \(A \).
Suppose $\theta < \kappa$ and $\|\mathcal{B}\{\mathcal{A}_i : i < \theta\} \subseteq \mathcal{I}^+$. Choose $Y \subseteq \kappa$ of \mathcal{I}-measure one such that for every $i < \theta$ and $\alpha \in Y$, $p_{i,\alpha} = [\{\alpha \in \mathcal{A}_i\}] > 0_\mathcal{B}$. Using the inaccessibility of κ, the following claim is easy to check.

Claim 2.16. There exists $(\mathcal{B}_\alpha : \alpha < \kappa)$ such that the following hold.

1. $\mathcal{B}_\alpha \ll \mathcal{B}$ and $|\mathcal{B}_\alpha| < \kappa$.
2. \mathcal{B}_α's are increasing and continuous at α when $cf(\alpha) > \kappa_0$.
3. $\{p_{i,\beta} : \beta < \alpha, i < \theta\} \subseteq \mathcal{B}_\alpha$.

Let $\pi_\alpha : \mathcal{B} \to \mathcal{B}_\alpha$ be a projection map witnessing $\mathcal{B}_\alpha \ll \mathcal{B}$. Choose $f : \kappa \to \kappa$ such that for every $i < \theta$ and $\alpha < \kappa$, we have $\alpha < f(\alpha)$ and $p_{i,\alpha} \in \mathcal{B}_f(\alpha)$. Choose $Y_1 \subseteq Y$ of measure one and $\alpha_* < \kappa$ such that for every $i < \theta$, $\pi_\alpha(p_{i,\alpha}) = p_{i,*} \in \mathcal{B}_{\alpha_*}$ does not depend on $\alpha \in Y_1$ and range$(f \upharpoonright \alpha) \subseteq \alpha$ for every $\alpha \in Y_1$. Note that $p_{i,*} = 1_\mathcal{B}$ since $\|\mathcal{B}\mathcal{A}_i \subseteq \mathcal{I}^+$. Let $X \subseteq Y \setminus \alpha_*$ be such that otp$(X) = \omega_1$ and for every $\alpha < \beta$ in X, $f(\alpha) < f(\beta)$.

Claim 2.17. For every $i < \theta$, $\{p_{i,\alpha} : \alpha \in X\}$ is predense in \mathcal{B}.

Proof. Let $\sup(X) = \gamma_*$. Then $cf(\gamma_*) = \aleph_1$ and hence $\mathcal{B}_{\gamma_*} = \bigcup\{\mathcal{B}_\gamma : \gamma \in X\}$. Fix $i < \theta$. Given $p \in \mathcal{B}$, choose $\gamma \in X$ such that $\pi_{\gamma_1}(p) \in \mathcal{B}_{\gamma}$. Now since

$$\mathcal{B} = \mathcal{B}_\gamma \ast \mathcal{B}_{\gamma_2}/\mathcal{B}_\gamma \ast \mathcal{B}/\mathcal{B}_{\gamma},$$

we can decompose $p = (\pi_{\gamma_1}(p), 1, x)$ and $p_{i,\gamma} = (1, y, 1)$. Hence $p, p_{i,\gamma}$ are compatible. \hfill \Box

It follows that \mathcal{J} is ω_2-supersaturated. \hfill \Box

3. **Consistently, there are ω_1-saturated ideals on \mathfrak{c} and all of them are supersaturated**

The aim of this section is to show that it is consistent that every ω_1-saturated σ-ideal is supersaturated.

Theorem 3.1. It is consistent that there is a normal supersaturated ideal on \mathfrak{c} and every ω_1-saturated σ-ideal is supersaturated.

Lemma 3.2. Suppose that every σ-ideal \mathcal{I} satisfying (i)-(iv) below is supersaturated.

1. \mathcal{I} is a uniform ideal on λ,
2. $\mu \leq \lambda$,
3. for every $X \in \mathcal{I}^+$, add$(\mathcal{I} \upharpoonright X) = \mu$ and \mathcal{I} is ω_1-saturated.

Then every ω_1-saturated σ-ideal is supersaturated.

Proof. Suppose \mathcal{J} is an ω_1-saturated σ-ideal on X. Note that for every $A \in \mathcal{J}^+$, there exists $B \subseteq A$ such that $(\ast)_B$ holds where

$$(\ast)_B$$

says the following: $B \in \mathcal{J}^+, [B]^{<|B|} \subseteq \mathcal{J}$ and for every $C \subseteq B$, if $C \in \mathcal{J}^+$, then add$(\mathcal{J} \upharpoonright C) = \text{add}(\mathcal{J} \upharpoonright B)$.

Since \mathcal{J} is ω_1-saturated, we can find a countable partition \mathcal{F} of X such that for each $B \in \mathcal{F}$, $(\ast)_B$ holds. Now by assumption, each $\mathcal{J} \upharpoonright B$ is supersaturated. Hence \mathcal{J} is also supersaturated. \hfill \Box
Lemma 3.3. Suppose P is a ccc forcing, $\kappa > c$ and $V^P \models \mathcal{J}$ is a κ-complete ω_1-saturated uniform ideal on λ. Let $\mathcal{I} = \{X \subseteq \kappa : 1_p \models X \in \mathcal{J}\}$. Then there is a countable partition \mathcal{F} of λ such that for every $A \in \mathcal{F}$, $\mathcal{I} \upharpoonright A = \{Y \subseteq \lambda : Y \cap A \in \mathcal{I}\}$ is a κ-complete prime ideal on λ.

Proof. It is clear that \mathcal{I} is a κ-complete uniform ideal on λ. Suppose $\mathcal{F} \subseteq \mathcal{I}^+$ is an uncountable family of pairwise disjoint sets. For each $A \in \mathcal{F}$, choose $p_A \in P$ such that $p_A \models A \not\in \mathcal{J}$. Since P is ccc, some $p \in P$ forces uncountably many p_A’s into the P-generic filter. But this contradicts the fact that \mathcal{J} is ω_1-saturated in V^P. So \mathcal{I} is ω_1-saturated. Since \mathcal{I} is κ-complete and $\kappa > c$, \mathcal{I} is nowhere atomless. Hence there is a countable partition \mathcal{F} of λ such that for every $A \in \mathcal{F}$, $\mathcal{I} \upharpoonright A = \{Y \subseteq \lambda : Y \cap A \in \mathcal{I}\}$ is a κ-complete prime ideal on λ. □

Lemma 3.4. Suppose κ is an inaccessible cardinal and U is a κ-complete uniform ultrafilter on λ. Let $P = \text{Cohen}_\kappa$. Let \mathcal{J} be the ideal generated by the dual ideal of U in V^P. Then for each $A \subseteq \mathcal{J}^+$, if $|A| < \kappa$, then there exists a countable set that meets every member of A.

Proof. We identify conditions $p \in P$ as members of the Baire algebra on 2^κ which is the σ-algebra generated by clopen subsets of 2^κ. Note that for every Baire $p \subseteq 2^\kappa$ there is a countable $S \subseteq \kappa$ such that for every $x, y \in 2^\kappa$ satisfying $x \upharpoonright S = y \upharpoonright S$, we have $x \in p$ if and only if $y \in p$. We call such an S, a support of p. The ordering on Cohen is defined by $p \leq q$ if $p \setminus q$ is meager in 2^κ. Recall that if $p \subseteq 2^\kappa$ is Baire and $S \in [\kappa]^{\omega_1}$ is a support of p then there is a countable family \mathcal{P} of clopen subsets of 2^κ each supported in S such that the symmetric difference of p and $\bigcup \mathcal{P}$ is meager. So p is completely determined by the family \mathcal{P}.

It is clear that \mathcal{J} is a κ-complete uniform ideal on λ. Suppose $\theta < \kappa$ and $\langle \dot{A}_i : i < \theta \rangle$ is a sequence of \mathcal{J}-positive sets in V^P. WLOG, assume that the trivial condition forces this. For $i < \theta$ and $\alpha < \lambda$, let $p_{i,\alpha} = [\{\alpha \in A_i\}]_P$. Note that for each $i < \theta$, and $Z \in U$, $\{p_{i,\alpha} : \alpha \in Z\}$ is predense in P since otherwise some condition will force $\dot{A}_i \in \mathcal{J}$. Since U is κ-complete, we can choose $X \in U$ such that for every $i < \theta$ and $\alpha \in X$, $p_{i,\alpha} > 0_P$. Let $S_{i,\alpha} \in [\kappa]^{\omega_1}$ be a support of $p_{i,\alpha}$. Since κ is inaccessible, we can choose $Y \subseteq X$ such that $Y \in U$ and for each $i < \theta$, the following hold.

(a) For every $\alpha, \beta \in Y$, $(S_{i,\alpha}, 2^{S_{i,\alpha}}, p_{i,\alpha}) \cong (S_{i,\beta}, 2^{S_{i,\beta}}, p_{i,\beta})$. Put $\text{otp}(S_{i,\alpha}) = \gamma_i$. Let $h_{i,\alpha} : \gamma_i \rightarrow S_{i,\alpha}$ be the order isomorphism and define $H_{i,\alpha} : 2^{\gamma_i} \rightarrow 2^{S_{i,\alpha}}$ by $H_{i,\alpha}(x) = x \circ h_{i,\alpha}^{-1}$. Choose $p_i \subseteq 2^{\gamma_i}$ such that $H_{i,\alpha}[p_i] = p_{i,\alpha}$.

(b) For each $\gamma < \gamma_i$, either $|\{h_{i,\alpha}(\gamma) : \alpha \in Y\}| = 1$ or for every $Z \in U$, $|\{h_{i,\alpha}(\gamma) : \alpha \in Z \cap Y\}| \geq \kappa$. Put $\Gamma_i = \{\gamma < \gamma_i : |\{h_{i,\alpha}(\gamma) : \alpha \in Y\}| = 1\}$ and $h_{i,\alpha}[\Gamma_i] = R_i$.

Define

$$B_{i,\alpha} = \{x \in 2^{R_i} : \{y \upharpoonright (S_{i,\alpha} \setminus R_i) : y \in p_{i,\alpha} \land y \upharpoonright R_i = x\} \text{ is meager}\}.$$

Then $B_{i,\alpha} = B_i$ does not depend on $\alpha \in Y$ and B_i is meager in 2^{R_i} since otherwise $\{p_{i,\alpha} : \alpha \in Y\}$ will not be predense in P.

Using (b), choose $B \in [Y]^{\omega_1}$ such that for every $i < \theta$ and $\alpha \neq \beta$ in B, $S_{i,\alpha} \cap S_{i,\beta} = R_i$. It follows now that for every $i < \theta$, $\{p_{i,\alpha} : \alpha \in B\}$ is predense in P. Hence $\models (\forall i < \theta)(B \cap \dot{A}_i \neq \emptyset)$. □
Proof of Theorem 3.1 Let $V \models "\kappa = \omega_1 \text{ and } \kappa \text{ is the least measurable cardinal}"$. Let $\mathbb{P} = \text{Cohen}_\kappa$. We already know that there is a normal supersaturated ideal on $\kappa = \kappa$ in $V^\mathbb{P}$. Let us check that, $V^\mathbb{P} \models "\text{Every } \omega_1\text{-saturated } \sigma\text{-ideal is supersaturated}"$. By Lemma 3.2, it suffices to consider ideals \mathcal{J} that satisfy the following for some $\omega_1 \leq \mu \leq \lambda$.

(i) \mathcal{J} is a uniform ideal on λ,

(ii) for every $X \in \mathcal{J}^+$, $\text{add}(\mathcal{J} \upharpoonright X) = \mu$ and

(ii) \mathcal{J} is ω_1-saturated.

Since $V^\mathbb{P} \models \kappa = \kappa$, we can assume that $\mu \leq \kappa$. Otherwise there is a countable partition \mathcal{E} of λ into \mathcal{J}-positive sets such that for each $X \in \mathcal{E}$, $\mathcal{J} \upharpoonright X$ is a μ-complete prime ideal and it easily follows that \mathcal{J} is supersaturated.

Towards a contradiction, suppose $\mu < \kappa$. Working in $V^\mathbb{P}$, define an ideal \mathcal{K} on μ as follows. Since $\text{add}(\mathcal{J}) = \mu$, we can choose a family $\{A_i : i < \mu\} \subseteq \mathcal{J}$ of pairwise disjoint sets such that $\bigcup_{i < \mu} A_i \in \mathcal{J}^+$. Define

$$\mathcal{K} = \{\Gamma \subseteq \mu : \bigcup\{A_i : i \in \Gamma\} \in \mathcal{J}\}$$

It is easy to see that \mathcal{K} is a μ-additive ω_1-saturated ideal on μ. For simplicity, assume that $1_p \Vdash \mathcal{K}$ is a μ-additive ω_1-saturated ideal on μ. Coming back to V, define $\mathcal{K}' = \{X \subseteq \mu : 1_p \Vdash X \in \mathcal{K}\}$. It is clear that $V \models \mathcal{K}'$ is a μ-additive ideal on μ. We claim that $V \models \mathcal{K}'$ is ω_1-saturated. Suppose not and fix $\langle (A_\xi, p_\xi) : \xi < \omega_1 \rangle$ such that A_ξ’s are pairwise disjoint subsets of μ and for every $\xi < \omega_1$, $p_\xi \Vdash A_\xi \notin \mathcal{K}$. Since \mathbb{P} is ccc, we can find some $p_\kappa \in \mathbb{P}$ that forces uncountable many p_ξ’s into the generic $G_\mathbb{P}$. But this means that $p_\kappa \Vdash \mathcal{K}$ is not ω_1-saturated which is impossible. So $V \models \mathcal{K}'$ is ω_1-saturated. So μ is weakly inaccessible in V. Since $V \models \mu > \omega_1 = \kappa$, it follows that μ must be measurable in V. But κ is the least measurable cardinal in V. Hence $\mu \geq \kappa$: Contradiction.

So we must have $\mu = \kappa$. Let $\mathcal{I} = \{Y \subseteq \lambda : 1_p \Vdash X \in \mathcal{J}\}$. By Lemma 3.3 there is a countable partition \mathcal{F} of λ such that for each $X \in \mathcal{F}$, $\mathcal{I} \upharpoonright X$ is a κ-complete prime ideal on λ. For each $X \in \mathcal{F}$, let \mathcal{I}_X be the ideal generated by $\mathcal{I} \upharpoonright X$ in $V^\mathbb{P}$. By Lemma 3.4 for every $\mathcal{A} \subseteq \mathcal{I}_X^+$, if $|\mathcal{A}| < \kappa$, then there is a countable set that meets every member of \mathcal{A}. Since $\mathcal{I}_\lambda \subseteq \mathcal{I} \upharpoonright A$ and $\text{add}(\mathcal{J} \upharpoonright A) = \kappa$, it follows that $\mathcal{J} \upharpoonright A$ is supersaturated for each $A \in \mathcal{F}$. Since \mathcal{F} is a countable partition of λ, it follows that \mathcal{J} is also supersaturated.

4. Killing supersaturated ideals

Definition 4.1. Suppose $\delta < \omega_1$ is indecomposable and κ is an infinite cardinal. Let Q_δ^κ consist of all countable partial maps from κ to 2 such that

1. $\text{otp}(\text{dom}(p)) < \delta$ and
2. $\{\xi \in \text{dom}(p) : p(\xi) = 1\}$ is finite.

For $p, q \in Q_\delta^\kappa$ define $p \leq q$ iff $q \subseteq p$. Let \mathbb{P}_κ be the finite support product of $\{Q_\delta^\kappa : \delta < \omega_1, \delta \text{ indecomposable}\}$.

Lemma 4.2. Let \mathbb{P}_κ be as in Definition 4.1.

1. \mathbb{P}_κ is ccc.
2. If $\kappa \geq \omega_1$, then \mathbb{P}_κ is not σ-finite-cc.
Proof. (1) Towards a contradiction, suppose \(A = \{ p_i : i < \omega_1 \} \) is an uncountable antichain in \(\mathbb{P}_\kappa \). Put \(D_i = \text{dom}(p_i) \). By passing to an uncountable subset of \(A \), we can assume that \(D_i \)'s form a \(\Delta \)-system with root \(D \). For each \(\delta \in D \) and \(i < \omega_1 \), put \(s_{i,\delta} = \{ \gamma : p_i(\delta)(\gamma) = 1 \} \) and \(X_{i,\delta} = \{ \gamma : p_i(\delta)(\gamma) = 0 \} \). Note that \(\text{otp}(X_{i,\delta}) < \delta \).

Choose \(B \in [A]^{\omega_1} \) such that for each \(\delta \in D \), \(\langle s_{i,\delta} : i \in B \rangle \) is a \(\Delta \)-system with root \(s_\delta \) and for every \(i < j \) in \(B \), \(s_{j,\delta} \cap X_{i,\delta} = \emptyset \).

Choose \(j \in B \) and \(\delta \in D \) such that letting \(C = \{ i \in B \cap j : p_i(\delta) \perp Q, p_j(\delta) \} \), every transversal of \(\{ s_{i,\delta} \setminus s_\delta : i \in C \} \) has order type \(\geq \delta \). Now observe that \(X_{j,\delta} \) has to meet \(s_{i,\delta} \setminus s_\delta \) for every \(i \in C \). Hence \(\text{otp}(X_{j,\delta}) \geq \delta \): Contradiction.

(2) It is enough to show that \(Q = Q^{\omega_1}_\omega \) is not \(\sigma \)-finite-cc. Towards a contradiction, suppose \(Q = \bigcup_{n < \omega} W_n \) where no \(W_n \) has an infinite antichain. Choose \(\langle A_n : n < \omega \rangle \) as follows.

(a) \(A_0 \subseteq W_0 \) is a maximal antichain of conditions \(p \) such that \(\max(\text{dom}(p)) = \gamma_p \) exists and \(p(\gamma_p) = 1 \). Define \(\gamma_0 = \max(\{ \gamma_p : p \in A_0 \}) \).

(b) \(A_{n+1} \subseteq W_{n+1} \) is a maximal antichain of conditions \(p \in W_{n+1} \) such that \(\max(\text{dom}(p)) = \gamma_p \) exists, \(\gamma_p > \gamma_n \) and \(p(\gamma_p) = 1 \). If \(A_{n+1} \neq \emptyset \), define \(\gamma_{n+1} = \max(\{ \gamma_p : p \in A_{n+1} \}) \). Otherwise, \(\gamma_{n+1} = \gamma_n \).

Put \(A = \bigcup_{n < \omega} A_n \) and \(\gamma = \sup(\{ \gamma_n : n < \omega \}) \). Fix \(\gamma_\ast \in (\gamma, \omega_1) \). Let \(p_* \) be defined by \(\text{dom}(p_*) = \{ \gamma_p : p \in A \} \cup \{ \gamma_\ast \} \) and for every \(\xi \in \text{dom}(p_*) \), \(p(\xi) = 1 \) iff \(\xi = \gamma_\ast \). Note that \(\text{otp}(\text{dom}(p_*)) \leq \omega + 1 < \omega^2 \) and hence \(p_* \in Q \). Choose \(n < \omega \) such that \(p_* \in W_n \). But now \(A_n \cup \{ p_* \} \subseteq W_n \) is an antichain which contradicts the maximality of \(A_n \).

\(\square \)

Theorem 4.3. Suppose \(\omega_1 \leq \kappa \leq \lambda \), \(I \) is an \(\omega_1 \)-saturated uniform ideal on \(\lambda \) and \(\text{add}(I) = \kappa \). Let \(\mathbb{P}_\kappa \) be as in Definition 4.2. Let \(J \) be the ideal generated by \(I \) in \(V^{\mathbb{P}_\kappa} \). Then there exists \(A \subseteq J^+ \) such that \(|A| = \omega_1 \) and there is no countable set that meets every member of \(A \). Hence \(V^{\mathbb{P}_\kappa} \models J \) is an \(\omega_1 \)-saturated \(\kappa \)-complete uniform ideal on \(\lambda \) which is not supersaturated.

Proof. As \(\mathbb{P}_\kappa \) is ccc, it is easy to see that in \(V^{\mathbb{P}_\kappa} \), \(J \) is an \(\omega_1 \)-saturated \(\kappa \)-complete uniform ideal on \(\lambda \). So it suffices to show that in \(V^{\mathbb{P}_\kappa} \), there exists \(A \subseteq J^+ \) such that \(|A| = \omega_1 \) and there is no countable set that meets every member of \(A \).

Since \(\text{add}(I) = \kappa \), we can fix \(Y \in I^+ \) and a partition \(Y = \bigcup_{\alpha < \kappa} W_\alpha \) such that for each \(\Gamma \in [\kappa]^{<\kappa} \), \(\bigcup_{\alpha \in \Gamma} W_\alpha \in I \). Let \(G \) be \(\mathbb{P}_\kappa \)-generic over \(V \). Let \(G_\delta = \{ p(\delta) : p \in G \} \). So \(G_\delta \) is \(Q_{\delta} \)-generic over \(V \). Define \(A_\delta \in V^{\mathbb{P}_\kappa} \cap P(\lambda) \) by

\[
\gamma \in A_\delta \iff (\exists p \in G)(p(\delta)(\alpha) = 1 \land \gamma \in W_\alpha)
\]

Suppose \(Y \in I \) and \(p \in \mathbb{P}_\kappa \) with \(\delta \in \text{dom}(p) \). Choose \(\alpha < \kappa \) such that \(W_\alpha \setminus Y \neq \emptyset \) and \(\alpha \notin \text{dom}(p(\delta)) \). Let \(q \leq p \) be such that \(q(\delta)(\alpha) = 1 \). Then \(q \Vdash_{\mathbb{P}_\kappa} A_\delta \setminus Y \neq \emptyset \). Hence \(\Vdash_{\mathbb{P}_\kappa} A_\delta \in J^+ \).

Towards a contradiction suppose that in \(V^{\mathbb{P}_\kappa} \), there is a countable \(X \subseteq \lambda \) that meets each \(A_\delta \). Since \(\mathbb{P} \) satisfies ccc, we can assume that \(X \in V \). Fix \(p \in \mathbb{P}_\kappa \) such that \(p \Vdash (\forall \delta)(X \cap A_\delta \neq \emptyset) \). Put \(W = \{ \alpha < \kappa : W_\alpha \cap X \neq \emptyset \} \). So \(W \subseteq \kappa \) is countable. Choose \(\delta \in \omega_1 \setminus \text{dom}(p) \) indecomposable such that \(\delta > \text{otp}(W) \). Define
Suppose fact that J is nowhere prime iff every J-positive set can be partitioned into two J-positive subsets.

Fact 4.6. Suppose I_1, I_2 are ω_1-saturated σ-ideals on X and $I_1 \subseteq I_2$. Then there is a partition $X = A \sqcup B$ such that $A \in I_2$ and $I_2 \upharpoonright B = I_1 \upharpoonright B$.

Proof. Take A to be the union of a maximal family of pairwise disjoint sets in $I_2 \setminus I_1$. □

The following lemma will be used in the proofs of Theorems 4.5 and 4.8(d).

Lemma 4.7. Suppose \mathcal{J} is a nowhere prime supersaturated ideal on X and $\mu = \text{add}(\mathcal{J})$. Then $\mu \leq \kappa$ and there exists a μ-additive supersaturated ideal on μ.

Proof. Towards a contradiction, suppose $\mu > \kappa$. Construct a tree $\langle A_\sigma : \sigma \in 2^{<\omega_1} \rangle$ of subsets of X as follows.

(i) $A_\emptyset = X$.

(ii) If $A_\sigma \in \mathcal{J}^+$, then $\{A_{\sigma_0}, A_{\sigma_1}\}$ is a partition of A_σ into two \mathcal{J}-positive sets.

This is possible since \mathcal{J} is nowhere prime.

(iii) If $A_\sigma \in \mathcal{J}$, then $A_{\sigma_0} = A_{\sigma_1} = A_\sigma$.

(iv) If $\alpha < \omega_1$ is limit and $\sigma \in 2^\alpha$, then $A_\sigma = \bigcap\{A_{\sigma|\beta} : \beta < \alpha\}$.

Put $\mathcal{F} = \{A_\sigma : \sigma \in 2^{<\omega_1} \text{ and } A_\sigma \in \mathcal{J}\}$. We claim that $X = \bigcup \mathcal{F}$. Suppose not and fix $y \in X \setminus \bigcup \mathcal{F}$. Now observe that $\{A_{\sigma_k} : \sigma \in 2^{<\omega_1} \land k < 2 \land y \in (A_\sigma \setminus A_{\sigma_k})\}$ is an uncountable family of pairwise disjoint \mathcal{J}-positive sets which contradicts the fact that \mathcal{J} is ω_1-saturated. So $X = \bigcup \mathcal{F}$. But since $|\mathcal{F}| \leq |2^{<\omega_1}| = \kappa$, this contradicts the fact that $\text{add}(\mathcal{J}) = \mu > \kappa$. Hence $\mu \leq \kappa$.

Since $\text{add}(\mathcal{J}) = \mu$, there are $Y \in \mathcal{J}^+$ and a partition $Y = \bigcup_{\alpha < \mu} W_\alpha$ such that for every $\Gamma \in |\mu|^{<\mu}$, $\bigcup_{\alpha \in \Gamma} W_\alpha \in \mathcal{J}$. Define

$$\mathcal{K} = \{\Gamma \subseteq \mu : \bigcup_{\alpha \in \Gamma} W_\alpha \in \mathcal{J}\}$$

Then \mathcal{K} is a μ-additive ω_1-saturated ideal on μ. So μ is weakly inaccessible.

We claim that \mathcal{K} must also be supersaturated. To see this, suppose $A \subseteq \mathcal{K}^+$ and $|A| < \mu$. For each $A \in \mathcal{A}$, define $Y_A = \bigcup_{\alpha \in A} W_\alpha$. Then $\{Y_A : A \in \mathcal{A}\} \subseteq \mathcal{J}^+$.

\[q \in \mathbb{P}_\kappa \text{ by } \text{dom}(q) = \text{dom}(p) \cup \{\delta\}, q \upharpoonright \text{dom}(p) = p \text{ and } q(\delta) \in \mathbb{Q}_\delta \text{ is constantly zero on } W. \]
Since \(J \) is supersaturated, we can choose a countable \(T \subseteq Y \) that meets \(Y_A \) for every \(A \in \mathcal{A} \). Let \(B = \{ \alpha < \mu : T \cap W_\alpha \neq \emptyset \} \). Then \(B \subseteq \mu \) is countable (as \(W_\alpha \)'s are pairwise disjoint) and it meets every \(A \in \mathcal{A} \). Hence \(\mathcal{K} \) is a \(\mu \)-additive supersaturated ideal on \(\mu \). \(\square \)

Proof of Theorem 4.5 Clause (a) is easy to check. Let us prove Clause (b). Suppose \(J \) is a supersaturated ideal on \(X \). Put \(\mu = \text{add}(J) \). We claim that it suffices to show that \(V^\mathcal{S} \models \mu > \mathfrak{c} \). First note that, by Lemma 4.7, this would imply that for every \(Y \in J^+ \), there exists \(J \)-positive \(Z \subseteq Y \) such that \(J \upharpoonright Z \) is a prime ideal. Hence by \(\omega_1 \)-saturation of \(J \), we can find a countable partition of \(X \) into \(J \)-positive sets such that the restriction of \(J \) to each one of them is a prime ideal.

So towards a contradiction, assume \(V^\mathcal{S} \models \mu \leq \mathfrak{c} \). Fix \(Y \in J^+ \) such that for every \(J \)-positive \(Z \subseteq Y \), \(\text{add}(J \upharpoonright Z) = \mu \). Since \(\mu \leq \mathfrak{c} \), it follows that \(J \upharpoonright Y \) is a nowhere prime supersaturated ideal. Using Lemma 4.7 again, we can get a \(\mu \)-additive supersaturated ideal \(\mathcal{K} \) on \(\mu \). Let us assume that the trivial condition in \(\mathcal{S} \) forces all of this about \(\mathcal{K} \).

Since \(V^\mathcal{S} \models \text{“} \mu \leq \mathfrak{c} = \kappa^+ \text{”} \) and \(\mu \) is weakly inaccessible”, we must have \(\mu \leq \kappa \). We consider two cases.

Case \(\mu < \kappa \): In \(V \), define \(\mathcal{I}' = \{ X \subseteq \mu : 1_\mathcal{S} \vDash X \in \mathcal{K} \} \). Since \(\mathcal{S} \) is ccc, \(V \models \mathcal{I}' \) is a \(\mu \)-additive \(\omega_1 \)-saturated ideal on \(\mu \). As \(V \models \mu > \omega_1 = \mathfrak{c} \), \(\mu \) is measurable in \(V \).

Since \(\kappa \) is the least measurable cardinal in \(V \), \(\mu \geq \kappa \): Contradiction.

Case \(\mu = \kappa \): In \(V \), define \(\mathcal{I}' = \{ X \subseteq \kappa : 1_\mathcal{S} \vDash X \in \mathcal{K} \} \). Since \(V \models \kappa > \mathfrak{c} = \omega_1 \), we must have \(V \models \mathcal{I}' \) is a \(\kappa \)-additive prime ideal on \(\kappa \). Let \(\mathcal{K}' \) be the ideal generated by \(\mathcal{I}' \) in \(V^\mathcal{S} \). Then \(V^\mathcal{S} \models \mathcal{K}' \subseteq \mathcal{K} \) are \(\omega_1 \)-saturated \(\kappa \)-additive ideals on \(\kappa \). Using Fact 4.6, fix \(B \in \mathcal{K}' \) such that \(\mathcal{K}' \upharpoonright B = \mathcal{K} \upharpoonright B \).

Choose \(\gamma < \kappa^+ \) such that \(B \in V^{\mathcal{S}^\gamma} \). Let \(\mathcal{K}'' \) be the ideal generated by \(\mathcal{I}' \) in \(V^{\mathcal{S}^\gamma} \). By Theorem 4.3, it follows that in \(V^{\mathcal{S}^\gamma+1} \), the ideal generated by \(\mathcal{K}'' \upharpoonright B \) is not supersaturated. Now observe that \(\mathcal{K} \upharpoonright B = \mathcal{K}' \upharpoonright B \) is the ideal generated by \(\mathcal{K}'' \upharpoonright B \) in \(V^\mathcal{S} \). It follows that \(\mathcal{K} \) is not a supersaturated ideal: Contradiction. \(\square \)

Using some results about separating families and supersaturated ideals from [2, 4], we can also get the following.

Theorem 4.8. Suppose \(\kappa \) is a measurable cardinal with a witnessing normal prime ideal \(\mathcal{I} \). Let \(\mathbb{P}_\kappa \) be the forcing in Definition 4.4. Then the following hold in \(V^{\mathbb{P}_\kappa} \).

(a) \(\mathfrak{c} = \kappa \) and the ideal generated by \(\mathcal{I} \) is a normal \(\omega_1 \)-saturated ideal on \(\kappa \).

(b) There is a family \(\mathcal{F} \subseteq \mathcal{P}(\kappa) \) such that \(|\mathcal{F}| = \omega_1 \) and for every countable \(X \subseteq \kappa \) and \(\alpha \in \kappa \setminus X \), there exists \(S \in \mathcal{F} \) such that \(\alpha \in S \) and \(S \cap X = \emptyset \).

(c) The order dimension of Turing degrees is \(\omega_1 \).

(d) There are no nowhere prime supersaturated ideals.

Proof. (a) Since \(\mathbb{Q}_\kappa^\kappa \) adds \(\kappa \) Cohen reals, \(\mathfrak{c} \geq \kappa \). The other inequality follows by a name counting argument using the facts that \(\mathbb{P}_\kappa \) is a ccc forcing, \(|\mathbb{P}_\kappa| = \kappa \) and \(\kappa^\omega = \kappa \). That the ideal generated by \(\mathcal{I} \) is a normal \(\omega_1 \)-saturated ideal on \(\kappa \) follows from the fact that \(\mathbb{P}_\kappa \) is ccc.
(b) For each indecomposable \(\delta < \omega_1 \), define
\[
S_\delta = \{ \alpha < \kappa : (\exists p \in G_{P_\kappa})(\delta \in \text{dom}(p) \land p(\delta)(\alpha) = 1) \}
\]
Let \(\mathcal{F} = \{ S_\delta : \delta < \omega_1 \text{ is indecomposable} \} \). Suppose \(X \subseteq \kappa \) is countable and \(\alpha \in \kappa \setminus X \). We’ll find an \(S_\delta \in \mathcal{F} \) such that \(\alpha \in S_\delta \) and \(X \cap S_\delta = \emptyset \). Since \(P_\kappa \) is ccc, we can find a countable \(Y \in V \) such that \(X \subseteq Y \subseteq \kappa \setminus \{ \alpha \} \). Now an easy density argument shows that the set
\[
D_{\alpha,Y} = \{ p \in P_\kappa : (\exists \delta \in \text{dom}(p))(p(\delta)(\alpha) = 1 \land (\forall \beta \in Y)(p(\delta)(\beta) = 0)) \}
\]
is dense in \(P_\kappa \). So we can choose \(p \in D_{\alpha,Y} \cap G_{P_\kappa} \). Let \(\delta \) witness that \(p \in D_{\alpha,Y} \). Then it is clear that \(\alpha \in S_\delta \) and \(X \cap S_\delta \subseteq Y \cap S_\delta = \emptyset \).

(c) This follows from Theorem 3.9 in [2] and part (b) above.

(d) Suppose not. Then by Lemma 4.7, we can find some \(\mu \leq \mathfrak{c} = \kappa \) and a \(\mu \)-additive supersaturated ideal on \(\mu \). Define \(\mathcal{E} = \{ S \cap \mu : S \in \mathcal{F} \} \). Then \(|\mathcal{E}| = \omega_1 \) and for every countable \(X \subseteq \mu \) and \(\alpha \in \mu \setminus X \), there exists \(S \in \mathcal{E} \) such that \(\alpha \in S \) and \(S \cap X = \emptyset \). Now applying Lemma 4.2 in [4] gives us a contradiction. \(\square \)

We conclude with the following questions.

1. Suppose \(I, J \) are normal ideals on \(\kappa \), \(I \) is supersaturated and \(P(\kappa)/I \) is isomorphic to \(P(\kappa)/J \). Must \(J \) be supersaturated?
2. Suppose \(\kappa \) is regular uncountable, \(I \) is a \(\kappa \)-complete normal ideal on \(\kappa \) and \(P(\kappa)/I \) is a Cohen algebra. Must \(I \) be supersaturated?
3. Do \(\sigma \)-finite/bounded-cc forcings preserve supersaturation? What about Boolean algebras that admit a strictly positive finitely additive measure?

References