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Abstract. We survey some set-theoretic problems about Turing degrees.

1. Introduction

The goal of this survey is to discuss some problems about Turing degrees where
set theory has played a role. Our starting point is the following question of Sacks
[12]. Does every locally countable partial ordering of size continuum embed into
the Turing degrees (D,≤T )? Recall that a poset (P,≤P) is locally countable iff for
every x ∈ P, {y ∈ P : y ≤P x} is countable. Sacks showed that the answer is yes
under the continuum hypothesis. But can we prove this in ZFC?

As far as we know, it is not even known if every well-founded locally countable
poset of size continuum embeds into the Turing degrees. It turns out that to be able
to embed such posets, we need to construct Turing independent sets with additional
properties. These matters are discussed in Section 3.

In Section 4, we discuss some Ramsey type problems about Turing independent
sets of the following type: Given a large set of reals, does it have a large Turing
independent subset? Largeness is defined in terms of cardinality, measure and
category. With a couple of exceptions, most of these problems turned out to be
undecidable in ZFC. Some questions remain open and have been stated at relevant
places.

Section 2 reviews some classical constructions of Spector and Sacks that are used
later. We have tried to present the main ideas behind the proofs of as many results
as possible. Anyone interested in seeing the details can find them in the relevant
citations.

1.1. Notation. Φe denotes the eth Turing functional. For x ∈ 2ω, k < ω and
` < 2, if the eth Turing functional with oracle x on input k halts/converges and
outputs `, then we write Φxe (k) ↓= `. If σ ⊆ x contains the (finite) oracle use of this
computation, then we also write Φσe (k) ↓= `. dom(Φxe ) = {k < ω : Φxe (k) ↓} and Φxe
is total iff dom(Φxe ) = ω. For x, y ∈ 2ω, we say that x is computable from/Turing
reducible to y and write x ≤T y if there exists e < ω such that Φxe = y. Turing
equivalence is defined by x ≡T y iff x ≤T y and y ≤T x. D is the set of all ≡T -
equivalence classes in 2ω with the induced partial order also denoted by ≤T . For
p ⊆ <ω2, define [p] = {x ∈ 2ω : (∀n < ω)(x � n ∈ p)}. For σ ∈ <ω2, we write
[σ] = {x ∈ 2ω : σ ⊆ x}. For a finite list 〈xk : k < n〉 of functions whose domains are
subsets of ω, we define the join of F , denoted

⊕
k<n xk, to be the partial function y

on ω satisfying y(nj+k) = xk(j) for every k < n and j ∈ dom(xk). (m,n) 7→ 〈m,n〉
is a fixed computable bijection from ω × ω to ω that is used to extend statements
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about functions with domain ⊆ ω to corresponding statements about functions with
domain ⊆ ω × ω. Similar conventions apply to other countable sets like <ω2.

2. Some classical constructions

Let S denote Sacks forcing: p ∈ S iff p is a perfect subtree of <ω2 and for
p, q ∈ S, p ≤S q iff p ⊆ q. If G is an S-generic filter over V , then the unique real
sG ∈

⋂
{[p] : p ∈ G} is called a Sacks real over V . Sacks [13] showed that if s is

a Sacks real over V , then for every x ∈ 2ω ∩ V [s], either x ∈ V or there exists
y ∈ 2ω ∩V such that s ≤T x⊕ y. In the same paper, he also introduced recursively
pointed trees.

Definition 2.1. We say that p ∈ S is recursively pointed iff every x ∈ [p] computes
p. Let Srp be the forcing whose conditions are recursively pointed trees in S ordered
by inclusion.

The following facts are useful in constructions involving Srp.

Fact 2.2 (Sacks). Let p ∈ Srp.

(a) For every y ∈ 2ω, p ≤T y iff (∃x ∈ [p])(x ≡T y).
(b) For every y ∈ 2ω, if p ≤T y, then there exists q ∈ Srp such that q ⊆ p and

q ≡T y.
(c) If q ∈ S, q ⊆ p and q ≤T p, then q ∈ Srp and q ≡T p.

How different is Srp from S? If G is an Srp-generic filter over V , then there is a
unique real xG ∈

⋂
{[p] : p ∈ G}. Any such real is called an Srp-generic real over V .

Using Fact 2.2(b), it is easy to see that every Srp-generic real over V computes every
real in V . It follows that in V Srp the ground model continuum becomes countable.
Therefore, unlike Sacks forcing, Srp is improper.

Definition 2.3. Let p ∈ S and e < ω. We say that p is an e-splitting tree iff for
every x 6= y in [p], there exists k < ω such that Φxe (k) ↓6= Φye(k) ↓.

Suppose p is e-splitting, x ∈ [p] and Φxe = y ∈ 2ω. We claim that x ≤T y ⊕ p.
To see this, suppose σ = x � n has been computed and we want to know whether
x(n) is 0 or 1. We can assume that both σ_0, σ_1 are in p otherwise this is easy.
As p is e-splitting and Φxe = y, we can perform a successful search for some ` < 2,
〈τi : i < N〉, 〈ki : i < N〉 and ρ ∈ p such that each real in [p] above σ_` extends
some τi, σ

_(1− `) � ρ and Φτie (ki) ↓6= Φρe(ki) ↓= y(ki). Then x(n) = 1− `.

Definition 2.4. Let p ∈ S and e < ω. We say that p is an e-good tree iff either
p is e-splitting or for every σ, τ ∈ p and k < ω, if Φσe (k) and Φτe (k) both converge,
then they are equal.

Suppose p is e-good and not e-splitting. Then for every x ∈ [p], if Φxe = y ∈ 2ω,
then y ≤T p since to compute y(k), we perform a (successful) search for some
τ ∈ p such that Φτe (k) ↓= ` and output `. Relativizing Spector’s minimal degree
construction to a recursively pointed tree gives the following.

Fact 2.5 (Spector minimal degree). Let p ∈ Srp.

(a) For every e < ω, there exists q ∈ Srp such that q ⊆ p, q ≡T p and q is
e-good. It follows that for every x ∈ [q], if Φxe = y ∈ 2ω, then either y ≤T q
or x ≤T y ⊕ q.
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(b) There exists r ∈ S such that r ⊆ p and for every x ∈ [r] and y ∈ 2ω, if
y ≤T x, then either y ≤ p or x ≤T y ⊕ p.

Proof. For p ∈ S, define Splitk(p) to be the set of all kth level splitting nodes of p.
So Split0(p) is the singleton containing the stem of p and Splitk(p) has 2k nodes.

(a) Call σ ∈ p an ambiguous node if there are there are k < ω and τ1, τ2 ∈ p
above σ such that Φτ1e (k) ↓6= Φτ2e (k) ↓. We consider two cases.

Case 1. Some σ ∈ p is not ambiguous. Define q = {τ ∈ p : τ � σ or σ � τ}.
By Fact 2.2(c), q ∈ Srp and q ≡T p. That q is e-good follows from the fact that σ
is not ambiguous.

Case 2. All nodes in p are ambiguous. Inductively construct a sequence 〈pn :
n < ω〉 of members of Srp as follows.

(i) p0 = p.
(ii) Given pn, define pn+1 as follows. Let {σj : j < 2n+1} list Splitn+1(pn). For

each j < 2n, search for the least k < ω and τj,0, τj,1 ∈ p above σj such that
Φ
τj,0
e (k) ↓6= Φ

τj,1
e (k) ↓ and define

pn+1 = {σ ∈ p : (∃` < 2)(∃j < 2n+1)(σ � τj,` or τj,` � σ)}.

Put q =
⋂
n<ω pn and observe that q ≤T p. So by Fact 2.2(c), q ∈ Srp and q ≡T p.

Note that for every x 6= y in [q], there exists k < ω such that Φxe (k) ↓6= Φye(k) ↓.
So q is e-splitting and therefore e-good.

(b) Using (a), construct a sequence 〈pn : n < ω〉 of members of Srp as follows.
p0 = p, pn+1 ⊆ pn, pn+1 ≡T pn, Splitn(pn) = Splitn(pn+1) and for each σ ∈
Splitn+1(pn+1), {τ ∈ pn+1 : τ � σ or σ � τ} is n-good. Define r =

⋂
n<ω pn. Then

r is as required. �

Definition 2.6. For A ⊆ 2ω, the Turing ideal generated by A, denoted IA, is the
set of all reals that are computable from the join of a finite subset of A. We say
that y ∈ 2ω is a minimal upper bound of IA iff

(a) for every x ∈ IA, x ≤T y and
(b) for every z <T y, there exists some x ∈ IA, x �T z.

Fact 2.7 (Sacks minimal upper bound). Let A ⊆ 2ω be countable. Then there
exists p ∈ S such that for every y ∈ [p], the following hold.

(i) y computes every real in IA.
(ii) If z ≤T y, then there exists x ∈ IA such that either z ≤T x or y ≤T x⊕ z.

(iii) If IA is not finitely generated, then y is a minimal upper bound of IA.

Proof. Fix a ≤T -increasing sequence 〈ak : k < ω〉 such that a0 ≡T 0, each ak ∈ IA
and (∀y ∈ IA)(∃k < ω)(y ≤T ak). We can further assume that if IA is not finitely
generated, then an <T an+1 for every n.

Inductively construct a sequence 〈pn : n < ω〉 of members of Srp satisfying the
following.

(1) p0 = <ω2.
(2) pn ∈ Srp and pn+1 ⊆ pn.
(3) Splitn(pn) = Splitn(pn+1).
(4) For every σ ∈ Splitn+1(pn+1), {τ ∈ pn+1 : σ � τ or τ � σ} is n-good.
(5) pn+1 ≡T an+1.
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To obtain pn+1 from pn, we use Facts 2.5(a) and 2.2(b). Let p′ ∈ S be the
intersection of {pn : n < ω}. Choose p ∈ S such that p ⊆ p′ and no member of [p]
is computable from any member of IA.

Let us check that p is as required. Fix y ∈ [p]. Since {an : n < ω} is ≤T -cofinal
in IA, it is clear than y computes every real in IA. Thus (i) holds. Next, assume
z ≤T y and fix e < ω such that Φye = z. Fix n > e + 1. Then by Clauses (4)
and (5), either z ≤T an or y ≤T z ⊕ an. So (ii) holds. Finally assume IA is not
finitely generated. Then an <T an+1 for every n. Towards a contradiction, fix some
z <T y such that (∀n)(an ≤T z). Using (ii), fix N < ω such that either z ≤T aN
(impossible since aN <T aN+1 ≤T z) or y ≤T z ⊕ aN . As aN ≤T z, the latter
implies y ≤T z <T y which is a contradiction. �

The next fact is a minor generalization of a result of Spector (see Lemma 2.3 in
[8]). Suppose A ⊆ 2ω is countable and p ∈ S, we say that [p] is a perfect set of
exact pairs for A iff for every distinct x, y ∈ [p],

IA = {z ∈ 2ω : z ≤T x and z ≤T y}.
Fact 2.8 (Spector exact pair). Suppose A ⊆ 2ω is countable. Then there exists
p ∈ S such that [p] is a perfect set of exact pairs for A.

Definition 2.9. Let X ⊆ 2ω and 1 ≤ n < ω.

(1) X is n-Turing independent iff for every F ⊆ X of size |F | ≤ n, the Turing
join of F does not compute any real in X \ F . 1-Turing independent sets
are also called Turing antichains.

(2) X is Turing independent iff it is n-Turing independent for every 1 ≤ n < ω.
(3) X is σ-Turing independent iff for every countable A ⊆ X, there exists

yA ∈ 2ω such that yA computes every real in A and (X \ A) ∪ {yA} is
Turing independent.

How large can a Turing independent set of reals be? In [12], Sacks constructed a
Turing independent set of size continuum. One can also construct p ∈ S via finite
approximations such that [p] is Turing independent. Relativizing this construction
to an arbitrary perfect tree gives the following.

Fact 2.10 (Sacks). For every p ∈ S, there exists q ∈ S such that q ⊆ p and [q] is
Turing independent.

Proof. Fix p ∈ S. Let Qp be the forcing whose conditions are finite subtrees T ⊆ p
ordered by end-extension. So T ≤ S iff S ⊆ T and for every τ ∈ T \ S there exists
a terminal node σ ∈ S such that σ � τ . One can write down a countable family
D of dense sets in Qp such that whenever G is a filter on Qp that meets every set
in D, q =

⋃
G is as required. The dense sets needed to ensure that q is a perfect

subtree of p are easy to write down and left to the reader. To ensure the Turing
independence of [q] we require that {De,n : e, n < ω} ⊆ D where De,n consists of
those T ∈ Qp which satisfy the following.

(i) Every terminal node in T has length ≥ n
(ii) For every injective sequence σ̄ = 〈σk : k ≤ N + 1〉 of terminal nodes in

T , if there exists 〈xk : k ≤ N〉 such that each σk � xk ∈ [p] and ΦXe is
total where X =

⊕
k≤N xk, then there exists m ∈ dom(σN+1) such that

Φρe(m) ↓6= σN+1(m) where ρ =
⊕

k≤N σk.

�
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3. Suborders of Turing degrees

Definition 3.1. Let Clc be the class of all locally countable posets of size continuum.
We say that P is universal for Clc if P ∈ Clc and every Q ∈ Clc embeds into P.

Fact 3.2 ([3]). There is a P ∈ Clc which is universal for Clc.

Note that the poset (D,≤T ) is in Clc.

Question 3.3 (Sacks). Is (D,≤T ) universal for Clc?

Sacks [12] showed that the answer is yes under CH or just MA. The problem
remains open in ZFC. As suggested in [3], it may be useful to first try to see if all
well-founded members of Clc can be embedded into the Turing degrees. In fact, the
problem seems non-trivial even for well-founded locally countable posets of finite
rank.

Definition 3.4 (Higuchi). For an infinite set X and n < ω, define the poset HnX
as follows. Put X0 = X and Xk+1 = [Xk]ℵ0 for every k ≥ 0. The universe of HnX
is defined to be the disjoint union

⊔
{Xk : k ≤ n}. We say that p belongs to the kth

level of HnX iff p ∈ Xk. For a,B ∈ HnX , define a � B iff either a = B or for some
k, a ∈ Xk, B ∈ Xk+1 and a ∈ B. Define ≤Hn

X
to be the transitive closure of �.

Note that HnX is a locally countable poset for every X and HnX ∈ Clc iff |X| ≤ c.
Furthermore, Hnc embeds into Hn+1

ω . The following is a minor generalization of
Theorem 2.2 in [8]. Also compare with Lemma 2.5 in [6].

Lemma 3.5. For every Turing independent X ⊆ 2ω, there is an embedding of H1
X

into the Turing degrees that is the identity on X.

Proof. By Fact 2.7, for each A ∈ [X]ℵ0 , we can fix pA ∈ S such that for every
xA ∈ [pA], xA computes every real in IA and for every z ≤T xA, there exists
y ∈ IA such that either z ≤T y or xA ≤T y ⊕ z.

Fix an injective enumeration 〈Ai : i < c〉 of [X]ℵ0 . We will inductively construct
〈xi : i < c〉 such that each xi ∈ [pAi ] and for every j < i < c, xj and xi are
Turing incomparable. At stage i, to be able to choose an appropriate xi ∈ [pAi ],
it is enough to show that for any j < i, both W1 = {x ∈ pAi

: x ≤T xj} and
W2 = {x ∈ pAi

: xj ≤T x} are countable. That W1 is countable is obvious. Towards
a contradiction, suppose W2 is uncountable. Choose an uncountable W ⊆W2 and
y? ∈ IAi

such that for every x ∈ W , xj <T x and either x ≤T xj ⊕ y? or xj ≤ y?.
Now xj ≤ y? is impossible because Aj is infinite and X is Turing independent. So
every real in W must be computable from xj ⊕ y?. But this is impossible since W
is uncountable. Therefore, 〈xi : i < c〉 can be constructed.

Define f : H1
X → 2ω by f � X is identity and f(Ai) = xAi

for each i < c. To
show that f is an embedding, it is enough to check the following.

(a) For every A ∈ [X]ℵ0 and y ∈ X, y ≤T f(A) iff y ∈ A.
(b) For every A 6= B in [X]ℵ0 , f(A) and f(B) are Turing incomparable.

Clause (b) follows from the fact that xi’s are pairwise Turing incomparable. Let
us check (a). If y ∈ A, then clearly y ≤T f(A). Next, towards a contradiction,
assume y ∈ X \ A and y ≤T f(A). Fix z ∈ IA such that either y ≤T z or
f(A) ≤T y ⊕ z. Since y /∈ A, z ∈ IA and X is Turing independent, we cannot have
y ≤T z. As X is Turing independent, only finitely many reals in A are computable
from y ⊕ z. But f(A) ≤T y ⊕ z computes every real in A. A contradiction. �
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3.1. An embedding. Working a little harder, we can improve Lemma 3.5 to the
following.

Lemma 3.6. For every Turing independent X ⊆ 2ω with |X| = ω, there is an
embedding of H2

X into the Turing degrees that is the identity on X.

Proof. Fix an injective enumeration 〈ak : k < ω〉 of X. Define a forcing P as follows.
p ∈ P iff p = (K, f) = (Kp, fp) where

(i) K < ω
(ii) f is a function with domain K2×K2 and for every σ, τ ∈ K2, the following

hold.
(a) f(σ, τ) is a partial function from ω × ω to 2.
(b) If τ 6= τ ′, then dom(f(σ, τ)) = dom(f(σ, τ)) and fσ,τ 6= fσ,τ ′ .
(c) K × ω ⊆ dom(f(σ, τ)).
(d) dom(f(σ, τ)) \ (K × ω) is finite.
(e) For every k < K, if σ(k) = 1, then {n < ω : f(σ, τ)(k, n) 6= ak(n)}

is finite.
(f) For every k < K, if σ(k) = 0, then {n < ω : f(σ, τ)(k, n) 6= 0} is

finite.

For p, q ∈ P, define p ≤ q iff Kq ≤ Kp and for every σ, τ ∈ Kp2, fq(σ � Kq, τ �
Kq) ⊆ fp(σ, τ).

Definition 3.7. Suppose p ∈ P, e,N < ω, i < Kp, σ̄ = 〈σk : k ≤ N + 1〉 and
τ̄ = 〈τk : k ≤ N + 1〉 are sequences of members of Kp2 and σ̄ is injective. We write
Splite(p, σ̄, τ̄ , i) to denote the following statement. If there exist xk : ω × ω → 2 for
k ≤ N such that fp(σk, τk) ⊆ xk and ΦXe is total where X =

⊕
k≤N xk, then there

exist xk : ω × ω → 2 for k ≤ N such that fp(σk, τk) ⊆ xk and the following hold.

(a) There exists (j,m) ∈ dom(fp(σN+1, τN+1)) such that

ΦXe (〈j,m〉) ↓6= fp(σN+1, τN+1)(j,m)

and the use of the computation ΦXe (〈j,m〉) is contained in
⊕

k≤N fp(σk, τk).

(b) If (∀k ≤ N)(σk(i) = 0), then there exists n < ω such that ΦXe (n) ↓6= ai(n)
and the use of the computation ΦXe (n) is contained in

⊕
k≤N fp(σk, τk).

The following is easy to check.

Claim 3.8. Suppose p, e, i,N , σ̄ and τ̄ are as in Definition 3.7 and Splite(p, σ̄, τ̄ , i)
holds. Assume q ∈ P, q ≤ p and Kq = Kp. Then Splite(q, σ̄, τ̄ , i) holds.

Definition 3.9. p ∈ P is a splitting condition iff whenever e, i < Kp, N < 2Kp

and σ̄, τ̄ are sequences of members of Kp2 of length N + 1 where σ̄ is injective,
Splite(p, σ̄, τ̄ , i) holds.

Every condition can be extended to a splitting condition.

Claim 3.10. For every p ∈ P, there exists q ≤ p such that Kq = Kp and q is a
splitting condition.

Proof of Claim 3.10. In view of Claim 3.8, it suffices to show the following. If
e, i < Kp, N < 2Kp and σ̄, τ̄ are sequences of members of Kp2 of length N + 1 and
σ̄ is injective, then there exists q ≤ p such that Kq = Kp and Splite(q, σ̄, τ̄ , i) holds.
So fix such e, i, σ̄ = 〈σk : k ≤ N + 1〉 and τ̄ = 〈τk : k ≤ N + 1〉. Fix an arbitrary
(j,m) ∈ (ω × ω) \ dom(fp(σN+1, τN+1)) and ask the following.
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Does there exist 〈xk : k ≤ N〉 such that for all k, fp(σk, τk) ⊆ xk ∈ ω×ω2 and
ΦXe (〈j,m〉) converges where X =

⊕
k≤N xk?

If the answer is no, then define r = p. Otherwise, fix such 〈xk : k ≤ N〉, put
X =

⊕
k≤N xk and choose r ≤ p such that

(1) Kp = Kr,
(2) fr(σN+1, τN+1)(j,m) 6= ΦXe (〈j,m〉) and
(3) the use of the computation ΦXe (〈j,m〉) is contained in

⊕
k≤N fr(σk, τk).

This is possible because σ̄ is injective and the oracle use in computing ΦXe (〈j,m〉)
is finite.

Next, assume (∀k ≤ N)(σk(i) = 0) and ask the following. Do there exist n < ω
and 〈xk : k ≤ N〉 such that for all k, fr(σk, τk) ⊆ xk ∈ ω×ω2 and ΦXe (n) ↓6= ai(n)
where X =

⊕
k≤N xk?

If the answer is no, then define q = r. Otherwise, fix such n and 〈xk : k ≤ N〉,
put X =

⊕
k≤N xk and choose q ≤ r such that

(4) Kq = Kr and
(5) the use of the computation ΦXe (n) is contained in

⊕
k≤N fr(σk, τk).

One can now check that Splite(q, σ̄, τ̄ , i) holds. To see that Definition 3.7 clause
(b) holds, note that since (∀k ≤ N)(σk(i) = 0) and X is Turing independent, ai is
not computable from

⊕
k≤N fr(σk, τk). This concludes the proof of Claim 3.10. �

Using Claim 3.10, we can recursively construct a sequence p̄ = 〈pn : n < ω〉
of splitting conditions in P such that each pn+1 ≤ pn and Kpn → ∞. Fix such a
sequence and define the following.

• Define F : 2ω × 2ω → 2ω×ω by F (x, y) =
⋃
n<ω fpn(x � Kpn , y � Kpn).

• For every A ⊆ X, define PA = {F (1A, y) : y ∈ 2ω} where 1A : ω → 2 is the
characteristic function of A.

Claim 3.11. For every A ⊆ X, PA ⊆ 2ω×ω is a perfect set of reals. Furthermore,
if A0, · · · , A` are pairwise distinct subsets of X and zk ∈ Ak for k ≤ `, then the
following hold.

(a) {zk : k ≤ `} is Turing independent.
(b) For every a ∈ X, a is computable from

⊕
k≤` zk iff a ∈

⋃
k≤`Ak.

Proof of Claim 3.11. That PA is perfect follows from the fact that the map
y 7→ F (1A, y) is both continuous and injective (by Clause (ii)(b) in the definition
of P above).

Next, suppose A0, · · · , A` are pairwise distinct subsets of X and zk ∈ Ak for
k ≤ `. Fix yk ∈ 2ω such that zk = F (1Ak

, yk).

(a) Towards a contradiction, suppose {zk : k ≤ `} is not Turing independent.
Then ` ≥ 1. Put N = `−1 and assume that zN+1 is computable from

⊕
k≤N zk say

via the functional Φe. Choose n such that e < Kpn and σ̄ = 〈σk : k ≤ N + 1〉 has
pairwise distinct members where σk = 1Ak

� Kpn . Define τ̄ = 〈τk : k ≤ N + 1〉 by
τk = yk � Kpn . Now use the fact that Splite(pn, σ̄, τ̄ , 0) holds to get a contradiction
via Clause (a) in Definition 3.7.

(b) Suppose a ∈ A. Fix i < ω such that a = ai. First assume that ai ∈
⋃
k≤`Ak

and fix k ≤ ` such that ai ∈ Ak. Observe that for every y ∈ 2ω, the ith column
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of F (1Ak
, y) differs from ai on a finite set (by Clause ii(e) in the definition of P

above). Hence a ≤T F (1Ak
, yk).

Next, suppose ai /∈
⋃
k≤`Ak and towards a contradiction, assume that ai is

computable from
⊕

k≤` zk say via the functional Φe. Choose n such that e, ` < Kpn

and 〈1Ak
� Kpn : k ≤ `〉 has pairwise distinct members. Define σk = 1Ak

� Kpn and
τk = yk � Kpn for k ≤ `. Fix some σ`+1 ∈ Kpn 2 \ {σk : k ≤ `} and τ`+1 ∈ Kpn 2.
Define σ̄ = 〈σk : k ≤ ` + 1〉 and τ̄ = 〈τk : k ≤ ` + 1〉. Now use the fact that
Splite(pn, σ̄, τ̄ , i) holds to get a contradiction via Clause (b) in Definition 3.7. �

We can now construct the desired embedding h : H2
X → 2ω as follows. Put

X1 = [X]ℵ0 and X2 = [X1]ℵ0 . Fix injective enumerations 〈Ai : i < c〉 and 〈Bi : i <
c〉 of X1 and X2 respectively. We will inductively construct a sequence of partial
functions 〈hi : i < c〉 from H2

X to 2ω such that the following hold.

(1) hi � X is the identity and i < j < c =⇒ hi ⊆ hj .
(2) dom(hi) ∩X1 = {Aj : j < i} and hi(Aj) ∈ PAj

for all j < i < c.
(3) dom(hi) ∩X2 = {Bj : j < i ∧ Bj ⊆ {Ak : k < i}}.
(4) hi is a partial embedding of H2

X into (2ω,≤T ).

At any limit stage i < c, define hi =
⋃
j<i hj . At a successor stage i + 1, we

define hi+1 as follows.
First choose hi+1(Ai) ∈ PAi such that for every B ∈ dom(hi) ∩X1, hi+1(Ai) is

not computable from hi(B). This constraint only rules out fewer than continuum
candidates from PAi

.
Next assume Bi ⊆ dom(hi) ∪ {Ai} and define h(Bi) as follows. Fix q ∈ S such

that [q] is a perfect set of exact pairs for {hi+1(A) : A ∈ Bi}. To ensure that hi+1

remain a partial embedding, we will choose hi+1(Bi) ∈ [q] satisfying the following.

(a) hi+1(Bi) is Turing incomparable with hi(B) for every B ∈ dom(hi) ∩X2.
(b) For each j ≤ i, Aj ∈ Bi iff hi+1(Aj) ≤T hi+1(Bi).
(c) For every y ∈ X \

⋃
Bi, y is not computable from hi+1(Bi).

Observe that for each B ∈ dom(hi) ∩ X2, there is at most one member of [q]
that computes hi(B). Since if there were two such members, then hi(B) would be
computable from the join of a finite subset of {hi+1(A) : A ∈ Bi} which contradicts
the fact that {hi+1(Ai) : i ≤ j} is Turing independent (by Claim 3.11(a)). Also,
there are at most countable many members of [q] that are computable from hi(B).
So requirement (a) rules out fewer than continuum choices in hi+1(Bi) ∈ [q].

A similar reasoning shows that for each j ≤ i, if Aj /∈ Bi, then hi+1(Aj) is
computable from at most one member of [q]. So requirement (b) also rules out
fewer than continuum choices.

Finally, note that X is countable and for each y ∈ X \
⋃
Bi, by Claim 3.11(b),

y is computable from at most one member of [q]. So requirement (c) rules out only
countably many members of [q].

This completes the construction of 〈hi : i < c〉. Define h =
⋃
i<c hi. Then

h : H2
X → 2ω is the required embedding. �

3.2. Embedding H2
c . We do not know if H2

c can be embedded into the Turing
degrees. Let us try to explain some difficulties in doing so.

Definition 3.12. We say that X ⊆ 2ω is n-embeddable iff X is infinite and there
is an embedding h of HnX into the Turing degrees such that h � X is the identity.
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Using Lemma 3.5, it is easy to see that an infinite set of reals is 1-embeddable
iff it is Turing independent.

Lemma 3.13. Every 2-embeddable set is σ-Turing independent (Definition 2.9(3)).

Proof. Assume X ⊆ 2ω is 2-embeddable. Then X is 1-embeddable and hence
Turing independent. First assume that X is countable. For each A ⊆ X, choose
yA ∈ PA as defined in Claim 3.11. Then it is easy to check that yA computes every
real in A and X \A ∪ {yA} is Turing independent. So X is σ-Turing independent.

Now suppose X is uncountable and fix an embedding h : H2
X → 2ω such that

h � X is the identity. Let A ⊆ X be countable. If A is finite, we can take yA
to be the join of A. So assume A is infinite and define yA = h(A). Since h is an
embedding, yA computes every real in A. Towards a contradiction, suppose there
exist a finite F ⊆ X \ A and x ∈ X \ (A ∪ F ) such that x is computable from the
join of F ∪ {yA}. Choose {Bk : k < ω} such that each Bk ∈ [X \ (A ∪ {x})]ℵ0 and
F ⊆ B0. Define B = {A,Bk : k < ω}. Then h(B) computes h(A) = yA and every
real in B0 ⊇ F . Hence h(B) computes x. But this is impossible as x �H2

X
B. �

The following puts some limitations on the possibility of generalizing Claim 3.11
to uncountable sets.

Lemma 3.14. In the Groszek-Slaman model (see Theorem 4.1), there is a Turing
independent set of reals of size ω1 that is not σ-independent.

Proof. Fix V , κ, s̄ and t̄ as in Theorem 4.1. Let W ∈ V ∩ [ω1]ω1 be arbitrary. Put
X = {si : i ∈W}. Then X is Turing independent. We claim that X is not σ-Turing
independent in V [s̄][t̄]. Suppose not and for each countable A ⊆ W , fix yA ∈ 2ω

such that yA computes every real in {si : i ∈ A} and {si : i ∈ W \ A} ∪ {yA}
is Turing independent. Note that the function A 7→ yA is injective with inverse
y 7→ {i ∈ W : si ≤T y}. Let α = min(W ). Since V [s̄][t̄] |= [W ]ℵ0 = c > ω1, we can
find A ∈ [W ]ℵ0 ∩V [s̄][t̄] such that α /∈ A and yA /∈ V [s̄]. Using Theorem 4.1(d), fix
x ∈ V ∩ 2ω such that sα ≤T x⊕ yA. Since W ∈ V , an easy density argument shows
that there are uncountably many β ∈ W such that x ≤T sβ . Fix such a β > α in
W \A. Then sα ≤T sβ ⊕ yA. It follows that {si : i ∈W \A} ∪ {yA} is not Turing
independent. A contradiction. �

3.3. Definability. Lemma 3.5 implies that H1
2ω can be embedded into the Turing

degrees. Using Lusin-Novikov uniformization theorem, Higuchi and Lutz have
shown (Lemma 2.7 in [6]) that one can arrange such an embedding to be Borel.
Remarkably though, there is no such embedding for H2

2ω .

Theorem 3.15 ([6]). There is no Borel embedding of H2
2ω into the Turing degrees.

The proof uses the following result of Lutz and Siskind.

Theorem 3.16 ([11]). Suppose p ∈ S and D is a countable dense subset of [p].
Assume x ∈ 2ω computes every member of D. Then for every z ∈ 2ω, there are
{y1, y2, y3, y4} ⊆ [p] such that z ≤T x⊕ y1 ⊕ y2 ⊕ y3 ⊕ y4.

Note that Theorem 3.16 implies that a σ-Turing independent set cannot contain
a perfect set (see Theorem 1.2 in [6]). So it is natural ask the following.

Question 3.17. Must there exist a σ-Turing independent set of size c?
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3.4. Order dimension. For a poset (P,≤P), the order dimension of P, denoted
odim(P), is the smallest cardinality of a family O of linear orderings on P whose
intersection is≤P. It is easy to see that if P embeds intoQ, then odim(P) ≤ odim(Q).
A possible way of obtaining the consistency of a negative answer to Question 3.3
would be to construct a model of ZFC in which odim(D) 6= max{odim(P) : P ∈ Clc}.
This optimism is ill-founded.

Fact 3.18 ([8]). odim(D) is the smallest cardinality of a family L of linear orders
on 2ω such that for every A ∈ [2ω]ℵ0 and x ∈ 2ω \A, there exists � in L such that
(∀a ∈ A)(a ≺ x). Furthermore, for every P ∈ Clc, odim(P) ≤ odim(D) = odim(H1

c).

odim(D) appears to be quite different from other classical cardinal invariants.
For example, in [5], it was shown that if c = κ+ where κ is regular uncountable,
then odim(D) ≤ κ. Also, Martin’s axiom has no effect on odim(D). For a proof of
these and more, see [5, 8].

4. Turing independent sets

4.1. Maximality. X ⊆ 2ω is a maximal Turing independent set if it is Turing
independent and for every y ∈ 2ω \X, X∪{y} is not Turing independent. Maximal
n-independent and σ-independent sets are analogously defined. Every maximal
Turing independent set is uncountable and under Martin’s axiom, it has size c.
Groszek and Slaman showed that they can consistently have size < c.

Theorem 4.1 ([4]). Assume V |= κ ≥ cf(κ) ≥ ω1 = c. Let P be the countable
support product of ω1 copies of S and let s̄ = 〈si : i < ω1〉 ∈ V P be the generic
sequence of Sacks reals. In V P, let Q be the countable support product of κ copies
of Sacks forcing. Let t̄ = 〈ti : i < κ〉 ∈ V P?Q be the generic sequence of Sacks reals
added by Q. Then, the following hold.

(a) Forcing with P ?Q preserves all cofinalities and V [s̄][t̄] |= c = κ.
(b) For every x ∈ V ∩ 2ω, |{i < ω1 : x ≤T si}| = ω1.
(c) S = {si : i < ω1} is a maximal Turing independent set of reals in V [s̄].
(d) For every i < ω and x ∈ 2ω ∩ (V [s̄][t̄] \ V [s̄]), there exists y ∈ V ∩ 2ω such

that si ≤T x⊕ y.
(e) S remains maximal in V [s̄][t̄].

Clause (a) is standard and (b) follows from an easy density argument. The
proofs of clauses (c) and (d) use a fusion argument. To see how (e) follows, assume
x ∈ 2ω\S. If x ∈ V [s̄], then clause (c) implies that S∪{x} is not Turing independent.
So assume x ∈ V [s̄][t̄] \ V [s̄]. Using clause (d), we can find y ∈ V ∩ 2ω such that
s0 ≤ x⊕y. Using clause (c), choose 0 < i < ω1 such that y ≤T si. Then s0 ≤ x⊕si.
Hence S ∪ {x} is not even 2-Turing independent.

Note that while consistently, a maximal 2-Turing independent set can have size
< c, every maximal 1-Turing independent set must have size c. To see this, apply
Fact 2.5(b) to p = 2<ω, to get r ∈ S such that for every x ∈ [r] and y ≤T x,
either x ≤T y or y is computable. Now observe that if X ∈ [2ω]<c is 1-Turing
independent, then for every y ∈ [r] \ {z : (∃x ∈ X)(z ≤T x)}, X ∪ {y} is also
1-Turing independent. So X cannot be maximal.

Let Tm be the set of cardinalities of a maximal Turing independent set. Then
c ∈ Tm and under Martin’s axiom, Tm = {c}. Theorem 4.1 shows that consistently,
c > ω1 ∈ Tm.
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Question 4.2. Is it consistent that c > ω2 ∈ Tm? More generally, what are the
possible values of Tm?

4.2. Cardinality. In view of Fact 2.10, one might ask if we can carry out a similar
construction within every set of reals of size continuum? More precisely, given any
X ∈ [2ω]c, can be find Y ∈ [X]c such that Y is Turing independent? We can
recursively build X = {xi : i < ω1} ⊆ 2ω such that xi’s are <T -increasing. So
under CH, |X| = c and X doesn’t even have a Turing antichain of size 2. But what
happens when c > ω1? The following theorem says that the answer is yes in the
Cohen/random real model. For a more general version, see Theorem 3.1 in [9].

Theorem 4.3 ([9]). Let V |= CH. Suppose P is the forcing for adding ω2

Cohen/random reals. Then the following hold in V P.

(a) c = κ.
(b) For every X ⊆ [2ω]c, there exists Y ⊆ X such that |Y | = c and Y is Turing

independent.

Proof. We will sketch the argument for random forcing. The proof in the case of
Cohen forcing is identical except that one has to use Kuratowski-Ulam theorem
instead of Fubini’s theorem. Let P be the forcing for adding ω2 random reals
r̄ = 〈ri : i < ω2〉 where each ri ∈ 2ω. Fix X = {xi : i < ω2} ⊆ 2ω. Using
Borel reading of names (Lemma 3.1.7 in [1]) and the fact that V |= CH, choose
W ∈ [ω2]ω2 , 〈Bi : i ∈W 〉, γ < ω1 and f such that the following hold.

(i) 〈A t Bi : i ∈ W 〉 is a ∆-system of countable subsets of ω2 with root
A ∈ [ω2]ℵ0 and otp(A ∪Bi) = γ does not depend on i ∈W .

(ii) f : 2γ → 2ω is a Borel function coded in V .
(iii) For each i ∈W , f(r̄ � (A ∪Bi)) = xi.

By replacing V with V [r̄ � A] and modifying f , we can assume that A = ∅.
WLOG, we can also assume that the trivial condition forces (i)-(iii) above. This
implies that f � K is not constant for any positive measure K ⊆ 2γ .

Claim 4.4. For every n ≥ 1, the set

En = {(a1, · · · , an) ∈ (2γ)n : {f(a1), · · · , f(an)} is not Turing independent}

has measure zero.

Proof of Claim 4.4: Suppose not and fix the least n ≥ 2 for which En has positive
measure. Choose K ⊆ En and 1 ≤ j ≤ n such that K has positive measure and for
every (a1, · · · , an) ∈ K, f(aj) is computable from the join of {f(ai) : i 6= j}. Using
Fubini’s theorem, choose b̄ = (b1, · · · , bn) ∈ K such that

Kb̄,j = {a ∈ 2γ : (b1, · · · , bj−1, a, bj+1, · · · , bn) ∈ K}

has positive measure. Since the join of {bi : i 6= j} can only compute countably
many reals, f must be constant on a positive measure subset of Kb̄,j which is
impossible. So the claim holds. �

Note that for any i(1) < · · · < i(n) in W , 〈r̄ � Ai(k) : 1 ≤ k ≤ n〉 avoids
any null subset of (2γ)n coded in V . It follows that Y = {xi : i ∈ W} is Turing
independent. �

What is the best that we can do in ZFC? First observe that Hajnal’s set mapping
theorem (Theorem 44.3 in [2]) implies the following.
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Fact 4.5. Suppose X ⊆ 2ω and |X| ≥ ω2. Then there exists Y ⊆ X such that
|Y | = |X| and Y is 1-Turing independent.

For n ≥ 2, this can consistently fail. In fact, we have the following.

Theorem 4.6 ([9]). Assume Martin’s axiom and c ≥ ωn where 2 ≤ n < ω. Then
there exists X ∈ [2ω]ωn such that every Turing independent subset of X has size
≤ n.

The proof of this theorem involves two steps. The first is a purely combinatorial
ZFC construction. Recall that a poset (P,�) is an upper semi-lattice iff every finite
F ⊆ P has a �-least upper bound in P (called the join of F ).

Lemma 4.7 ([9]). For each 2 ≤ n < ω, there exists a locally countable upper semi-
lattice (P,�) such that |P| = ωn and for every F ∈ [P]n+1, there exists x ∈ F such
that x is �-below the join of F \ {x}.

The upper semi-lattices witnessing Lemma 4.7 are constructed using a theorem
of Kuratowski on set mappings (see Lemma 3.6 in [9]). The next step is to find
an isomorphic copy of this lattice inside the Turing degrees. This is consistently
possible by the following theorem of W. Wei.

Theorem 4.8 ([15]). Assume Martin’s axiom. Let (P,�) be a locally countable
upper semi-lattice where |P| ≤ c. Then there exists a join preserving embedding of
P into the Turing degrees.

Theorem 4.6 immediately follows. We conclude this section with the following
result of Groszek and Slaman.

Theorem 4.9 ([4]). In the Cohen/random real model, there is a locally countable
upper semi-lattice (P,�) of size ω2 such that there is no join preserving embedding
of (P,�) into the Turing degrees.

Proof. Let (P,�) be as in Lemma 4.7 for n = 2. Towards a contradiction, fix a join
preserving embedding f : P→ 2ω into the Turing degrees. Put X = range(f). Then
|X| = ω2 and Lemma 4.7 implies that X does not have any Turing independent
subset of size 3. But this contradicts Theorem 4.3. �

4.3. Category and measure. Suppose X ⊆ 2ω is Turing independent. How large
can X be in the sense of Baire category and Lebesgue measure? If X is Lebesgue
measurable and µ(X) > 0, then for some σ ∈ <ω2, µ(X ∩ [σ]) > 0.5µ([σ]). So
there must exist x, y ∈ X above σ such that the XOR sum of x and y is 0|σ|_1ω.
Thus X cannot even be 1-Turing independent. A similar argument shows that if
X is 1-Turing independent and has the Baire property, then X is meager. So the
question becomes the following. Does there exist a Turing independent X ⊆ 2ω

such that X is non-meager (resp. non-null)?

In [9], it was shown that the answer is yes in the case of category. A rough
outline of the construction is as follows – For more details, see [9]. First construct
F : <ω2→ <ω2 and K : ω → ω both computable such that for every e < n < ω and
pairwise distinct ρ0, ρ1, · · · , ρN in n2, letting F (ρi) = σi we have ρi � σi ∈ K(n)2
and the e-th Turing functional cannot compute any real extending σ0 using any
oracle extending the join of 〈σk : 1 ≤ k ≤ n〉.
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Let C consist of all pairs (m, x) where x ∈ 2ω and m = 〈mk : k < ω〉 is a
strictly increasing sequence in ω. Observe that range(H) is non-meager for every
H : C → 2ω satisfying

H(m, x) = y =⇒ (∃∞k) (y � [mk,mk+1) = x � [mk,mk+1)) .

Now the key step is the following. Given a non-principal ultrafilter U on ω,
one can construct an H : C → 2ω, definable in U , as above such that for every
y ∈ range(H), {n < ω : F (y � K(n)) ⊆ y} ∈ U . Then range(H) is both non-meager
and Turing independent.

The measure version is open.

Question 4.10. Does there exist a non-null Turing independent set of reals?

In analogy with the discussion in subsection 4.2, we can ask the following.
Suppose X ⊆ 2ω is non-meager (resp. non-null). Must there exist a Turing
independent Y ⊆ X such that Y is non-meager (resp. non-null)?

4.3.1. Martin’s axiom. Under Martin’s axiom, the answer is yes. The following (see
Lemma 4.1 in [9]) is a minor generalization of the fact that non-trivial Turing cones
are both meager and null.

Fact 4.11 (Sacks). Suppose x, y ∈ 2ω and x is not computable from y. Then
{z ∈ 2ω : x ≤T y ⊕ z} is both meager and null.

Now assume add(N ) = c (a consequence of Martin’s axiom) and fix any non-null
X ⊆ 2ω. Let 〈Ki : i < c〉 list all compact K ⊆ 2ω such that K ∩ X is non-null.
Now recursively construct a Turing independent subset {yi : i < c} ⊆ X such
that for every i < c, yi ∈ Ki ∩ X. To see that yi’s can be chosen, use Fact 4.11
and add(N ) = c. A similar argument shows that, assuming add(M) = c, every
non-meager set has a non-meager Turing independent subset.

4.3.2. Antichains. Fix any non-meager (resp. non-null) X ⊆ 2ω. As in the case of
cardinality, just in ZFC, we can always get a non-meager (resp. non-null) 1-Turing
independent Y ⊆ X. But the proof is more involved and relies on some facts
about effectively random/Cohen reals. The following consequence of a result of Yu
(Lemma 3.11 in [16]) suffices for this application. For more details see Lemma 4.5
in [9].

Fact 4.12. Let M be a countable transitive model of ZFC. Suppose E ⊆ 2ω is a
meager (resp. null) set of Cohen (resp. random) reals over M . Then the set of all
reals that compute some member of E is meager (resp. null).

Question 4.13. Find a “set-theoretic proof” of Fact 4.12.

Let X ⊆ 2ω be non-meager (resp. non-null). Fix a countable transitive M |=
ZFC. By throwing away a meager subset of X, we can assume that each real in
X is Cohen (resp. random) over M . Towards a contradiction, assume that every
1-Turing independent subset of X is meager (resp. null). Call S ⊆ X good iff no
two distinct reals in S compute the same real in X. Let Y be a maximal good
subset of X. Let W = {x ∈ X : (∃y ∈ Y )(x ≤T y)}. Since Y is good, W is
1-Turing independent and hence meager (resp. null) by assumption. Let T be the
set of all reals that compute some member of W . By Fact 4.12, T is also meager
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(resp. null). We claim that X ⊆ T and therefore we get a contradiction. To see
this, suppose x ∈ X \ T . Since Y ⊆ W ⊆ T , we must have x /∈ Y . Since Y is a
maximal good subset of X, there exist y ∈ Y and w ∈ X such that both x and y
compute w. As x ≥T w ∈W , we get x ∈ T . A contradiction.

4.3.3. Measurable cardinal. Assuming the consistency of a measurable cardinal, it is
consistent that there is a non-meager (resp. non-null) X ⊆ 2ω all of whose 2-Turing
independent subsets are meager (resp. null). This follows from the following.

Theorem 4.14 ([9]). Suppose there is a measurable cardinal. Then there is a ccc
forcing P such that the following hold in V P. There are X ⊆ 2ω and a total Turing
functional Φ such that X is non-meager (resp. non-null) and for every non-meager
(resp. non-null) Y ⊆ X, there are distinct x, y, z ∈ Y such that Φx⊕y = z.

Proof. Since the pairing function (x, y) 7→ x⊕y is a computable measure preserving
homeomorphism from 2ω × 2ω to 2ω, we can work in 2ω × 2ω instead of 2ω.

By a result of Komjath [7] (resp. Shelah [14]), starting with a measurable
cardinal, one can construct a ccc forcing P such that in V P, there is a non-meager
(resp. non-null) A ⊆ 2ω such that for every f : A→ A, (the graph of) f is meager
(resp. null) in the product space 2ω × 2ω.

Put X = A×A. Then it follows that for every Y ⊆ X that is non-meager (resp.
non-null) in the product space 2ω × 2ω, there are x, y, z ∈ X that form the vertices
of a right triangle at z with xz parallel to the vertical axis and yz parallel to the
horizontal axis. Let Φ : 2ω × 2ω be defined by Φ(x, y) = (x0, y1) where x = (x0, x1)
and y = (y0, y1). Then X,Φ are as required. �

4.3.4. Avoiding large cardinals. In the case of category, one can avoid the use of
large cardinals.

Theorem 4.15 ([10]). Relative to ZFC, it is consistent that there is a non-meager
X ⊆ 2ω such that for every noon-meager Y ⊆ X, there are distinct x, y, z ∈ Y such
that z ≤T x⊕ y.

The measure analogue remains open.

Question 4.16. Can we prove the consistency of the following statement without
assuming the consistency of any large cardinals? There is a non-null set of reals
all of whose non-null subsets are 2-Turing independent.
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