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Abstract

This thesis contains a few applications of set-theoretic methods to certain problems in

real analysis.

In the first two sections of Chapter 1, we discuss some results related to a question

of Fremlin about partitions of a set of reals into null sets. In Section 3, we answer a

question of Komjáth in dimension one. Our proof uses some results of Gitik and Shelah

in an essential way. There seems to be more open problems than answers here.

In Chapter 2, we answer a couple of questions about finitely additive total extensions

of Lebesgue measure. These problems arose from a question of Juhász in set-theoretic

topology.

In Chapter 3, we give some “natural” examples of additive subgroups of reals of

arbitrarily high finite Borel rank. The existence of such groups is an old and well known

result.

In Chapter 4, we construct a non principal ultrafilter from any free maximal ideal in

the ring of bounded continuous functions on reals.
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Chapter 1

On partitions into small sets

1.1 Introduction

Suppose Y ⊆ X ⊆ Rn. We say that Y has full outer measure in X if for every compact

K ⊆ Rn of positive measure, if X ∩ K is non null then Y ∩ K is non null. If X has

finite outer measure then Y ⊆ X has full outer measure in X iff µ?(Y ) = µ?(X) where

µ? denotes Lebesgue outer measure. The category analogue of this is defined as follows:

For Y ⊆ X ⊆ Rn, we say that Y is everywhere non meager in X if for every open

set U ⊆ Rn, if X ∩ U is non meager then Y ∩ U is non meager. For X ⊆ Rn, env(X)

(envelope of X) denotes a Gδ set containing X such that the inner measure of env(X)\X

is zero. Observe that the outer measure of a set is equal to the measure of its envelope.

One of the early questions on the possibility of dividing a large set into two every-

where large subsets was asked by Kuratowski [20]: Suppose X ⊆ Rn. Can we always

partition X into two subsets which are everywhere non meager in X? He observed that

if X is Borel or if one assumes the continuum hypothesis (CH) then this can be done.

The measure analogue of Kuratowski’s question would be: Suppose X ⊆ Rn. Can we

always partition X into two subsets which have full outer measure in X? Lusin [22]

answered both questions positively without any extra set-theoretic assumption.

Theorem 1 (Lusin). Suppose X ⊆ Rn. Then X can be partitioned into two subsets
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which have full outer measure in X. It can also be partitioned into two everywhere non

meager sets in X.

Proof: We first prove the measure case and then supply the necessary modifications

for the category case. WLOG, we can assume that X is a non null subset of [0, 1]. It is

enough to show that for every non null X ⊆ [0, 1] there is a Z ⊆ X such that µ?(Z) > 0

and µ?(X\Z) = µ?(X). Since then, we can take Y to be the union of a maximal family

of subsets of X with this property such that their envelopes are pairwise disjoint. So

assume that for every Z ⊆ X, if µ?(Z) > 0 then µ?(X\Z) < µ?(X). We claim that

this implies that µ? � P(X) is countably additive. Since µ? is countably subadditive, it

is enough to show that µ? � P(X) is finitely additive. Suppose this fails and let A,B

be disjoint subsets of X with µ?(A) + µ?(B) > µ?(A ∪ B). Then envelopes of A and B

must intersect on a non null Borel set E in which both A∩E and B ∩E have full outer

measure. But then we could have removed A ∩ E from X without reducing its outer

measure. It follows that for disjoints subsets A,B ⊆ X, env(A) ∩ env(B) is null.

Let κ be the additivity of the sigma ideal I of null subsets of X as witnessed by

〈Nα : α < κ〉 where Nα’s form an increasing sequence of null subsets of X. By replacing

X with
⋃
{Nα : α < κ}, we can assume that the additivity of the null ideal restricted to

every non null subset of X is κ. Notice that B = P(X)/I is isomorphic to the measure

algebra of Borel subsets of env(X) modulo null via the map that takes A ⊆ X to env(A).

So forcing with I is isomorphic to random forcing. Let G be B-generic over V . In V [G],

the G-ultrapower of V is well founded because I is ω1-saturated. Let M be its transitive

collapse and j : V → M , the diagonal elementary embedding with critical point κ. In

V , X =
⋃
{Nα : α < κ} is an increasing union of a κ-sequence of null sets. Hence in M ,

j(X) is an increasing union of a j(κ)-sequence 〈N ′α : α < j(κ)〉 of null sets. Moreover,
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since j fixes every real in V , Nα ⊆ N ′α = j(Nα) for each α < κ. Hence X is covered by

a null Borel set coded in M . But then X is null in V [G] which contradicts the fact that

random forcing preserves non null sets of reals in the ground model.

In the case of category, assuming the negation, we first obtain some non meager

X ⊆ [0, 1] such that for every non meager Y ⊆ X, there is some open set U such that

X ∩U is non meager but (X\Y )∩U is meager. Then forcing with the meager ideal over

X is isomorphic to Cohen forcing which preserves non meager sets in the ground model

so that we get a similar contradiction. K

One might ask if it is also possible to partition any given set into uncountably many

everywhere non meager/full outer measure subsets. The question then becomes inde-

pendent of ZFC. In the case of category, starting with a measurable cardinal, Komjath

[16] constructed a model of set theory in which there is a non meager set of reals which

cannot be partitioned into uncountably many non meager sets. In the case of measure,

Shelah [25] obtained a similar model using more sophisticated arguments.

Lusin’s original proof of the above theorem does not use forcing. The argument we

gave is inspired from Bukovsky [1] where he proved the following: For every partition

{Ai : i ∈ S} of Rn into null sets, there is a subset T of S such that
⋃
{Ai : i ∈ T}

is not Lebesgue measurable. A similar result holds in the case of category. One can

interpret this result as saying that both
⋃
{Ai : i ∈ T} and

⋃
{Ai : i ∈ (T\S)} have full

outer measure in some positive measure Borel subset of Rn. It is therefore natural to

ask if, like Lusin’s result, we can get an “everywhere big” partition of S. In the case of

category, Cichon et al. [4] showed that this is indeed the case in a more general setup:

For every partition {Ai : i ∈ S} of a non meager set X ⊆ Rn into meager sets, there is

a subset T of S such that both
⋃
{Ai : i ∈ T} and

⋃
{Ai : i ∈ (T\S)} are everywhere
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non meager in X. A key ingredient in their argument was a result of Gitik and Shelah

[9] which says that forcing with a sigma ideal cannot be isomorphic to Cohen forcing.

The measure case, however, is still open.

1.2 A question of Fremlin

The following is a strengthened version of a question of Fremlin [6]. In [4], the authors

prove the category version of this and ask this problem for X = [0, 1].

Question 1. Suppose X ⊆ [0, 1] and {Ai : i ∈ S} is a partition of X into Lebesgue null

sets. Is there a subset T of S such that the sets
⋃
{Ai : i ∈ T},

⋃
{Ai : i ∈ (S\T )} and

X all have the same Lebesgue outer measure?

Fremlin and Todorcevic have shown [7] that when X = [0, 1], for every ε > 0, one can

get a T ⊆ S such that the outer measure of both
⋃
{Ai : i ∈ T} and

⋃
{Ai : i ∈ (S\T )}

is more than 1 − ε. They also remarked that if there is no quasi measurable cardinal

below the continuum, then the answer to the above question is positive. An uncountable

cardinal κ is quasi measurable if there is a κ-additive ω1-saturated ideal I over κ which

contains all singletons in κ. We’ll show, on the other hand, that if there is a real valued

measurable cardinal below the continuum then the answer to the above question is yes

for X = [0, 1]. In fact, we have the following:

Theorem 2. Suppose every countably generated sigma algebra extending the Borel al-

gebra on [0, 1] admits a measure extending the Lebesgue measure. Then the answer to

above question is yes when X = [0, 1].

Proof: Suppose this is false. Then one can get a partition 〈Ni : i ∈ S〉 of [0, 1] into
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null sets such that the projected sigma ideal I = {A ⊆ S :
⋃
{Ni : i ∈ A} is null} is

ω1-saturated (See [7] for this). Hence, it is enough to show:

Theorem 3. Suppose every countably generated sigma algebra extending the Borel al-

gebra on [0, 1] admits a measure extending the Lebesgue measure. Then [0, 1] cannot

be partitioned into null sets such that the corresponding projected sigma ideal is ω1-

saturated.

Proof: Suppose not and let 〈Ni : i ∈ S〉 be a partition of [0, 1] into null sets such

that I = {A ⊆ S :
⋃
{Ni : i ∈ A} is null} is ω1-saturated. Using the ω1-saturation of I,

get 〈Sn : n < ω〉, 〈κn : n < ω〉, 〈i(n, α) : α < κn〉 such that

• 〈Sn : n < ω〉 is a partition of S,

• |Sn| = κn and Sn /∈ I,

• for each n < ω, 〈i(n, α) : α < κn〉 is a one-one enumeration of Sn and for every

α < κn, {i(n, β) : β < α} ∈ I.

For n < ω, α ≤ κn, let A(n, α) =
⋃
{Ni : i ∈ {i(n, β) : β < α}} and A(n) = A(n, κn).

Let m be a sufficiently large extension of Lebesgue measure on [0, 1] which allows the

Fubini type argument below to go through. We will show that m(A(n)) = 0 for each

n < ω which gives us the desired contradiction. Fix n < ω, and consider the set

W ⊆ [0, 1]2 whose vertical section at x, Wx = {y : (x, y) ∈ W} is empty if x is not

in A(n) and is A(n, α) otherwise, where α < κn is least such that x ∈ A(n, α). Note

that Wx is Lebesgue null for each x ∈ [0, 1]. For each x, let Gx be a null Gδ set

covering Wx. For each m ≥ 1, let Ux,m be an open set of length less than 1/m such that⋂
{Ux,m : m ≥ 1} = Gx. Let U(m) =

⋃
{{x} × Ux,m : x ∈ [0, 1]}. Then every vertical
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section of U(m) is open hence there are countably many subsets 〈Xk : k < ω〉 of [0, 1]

such that each U(m) and hence G is in the product algebra Σ⊗B where B is the Borel

algebra and Σ is the sigma algebra generated by Xk’s together with the Borel sets. So

by Fubini’s theorem, W is null in the product measure m⊗ µ (µ is Lebesgue measure)

so that some horizontal section W y = {x : (x, y) ∈ W} for y ∈ A(n) and hence A(n) is

m-null. K

We do not know if it is consistent to have a partition of [0, 1] into null sets/meager

sets such that the projected ideal is ω1-saturated. Carlson [3] has constructed a model

of ZFC in which every countably generated sigma algebra containing the Borel algebra

admits an extension of Lebesgue measure. This is also true in the presence of a real

valued measurable cardinal below the continuum. In Carlson’s model and in the presence

of a real valued measurable cardinal below the continuum, there is a Sierpinski set. In

the presence of a Sierpinski set, it is not difficult to see that the answer to Question 1

is yes for X = [0, 1]. We do not know if the assumption in Theorem 2 guarantees the

existence of a Sierpinski set.

1.3 A question of Komjáth

We tried looking at Question 1 in the case when each each member of the partition is

countable. In this case the problem is equivalent to the following.

Question 2. Suppose X ⊆ [0, 1] and {Ai : i ∈ S} is a partition of X into countable

sets. Is there a full outer measure subset Y of X which meets each Ai at one point?

Using Theorem 1, it can be shown that this is true if one replaces countable by finite.

Komjáth informed us about a problem [17] of a similar flavor, which coincidentally, is a



7

special case of this question in dimension one.

Question 3. Let X ⊆ Rn. Is there always a full outer measure subset Y of X such that

the distance between any two distinct points of Y is irrational?

In [18] he showed that Rn can be colored by countably many colors such that the

distance between any two points of the same color is irrational. It follows that one can

always find a subset of positive outer measure that avoids rational distances. Under the

assumption that there is no weakly inaccessible cardinal below the continuum, he also

showed in [17] that in dimension one we can always find a subset Y of full outer measure

in X, avoiding rational distances. Gitik and Shelah showed the following in [10], [11]:

For any sequence 〈An : n ∈ ω〉 of sets of reals, there is a disjoint refinement of full

outer measure; i.e., there is a sequence 〈Bn : n ∈ ω〉 of pairwise disjoint sets such that

Bn ⊆ An and they have the same outer measure. It follows that one can omit integer

distances in dimension one while preserving outer measure. Their argument relies on

one of their results about forcing with sigma ideals which says that forcing with any

sigma ideal cannot be isomorphic to a product of Cohen and random forcing. We use

this to answer Komjáth’s question in dimension one.

Let T be a subtree of ω<ω such that every node in T has at least two children; i.e.,

for every σ ∈ T , |{n ∈ ω : σn ∈ T }| ≥ 2.

Definition 1. Call a family 〈Aσ : σ ∈ T 〉 a full tree on A ⊆ Rn if:

• A = Aφ, and for every σ ∈ T ,

• Aσ is a disjoint union of Aσn’s where σn ∈ T and

• Aσ has full outer measure in A.
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The following application of Theorem 5 is implicit in [10]:

Theorem 4. Let A ⊆ Rn and let 〈Aσ : σ ∈ T 〉 be a full tree on A. Then there is

a B ⊆ A of full outer measure in A such that for every σ ∈ T , Aσ\B has full outer

measure in Aσ.

This theorem is a consequence of the following theorem in [10], [11]:

Theorem 5. Suppose I is a sigma ideal over a set X. Then forcing with I cannot be

isomorphic to Cohen × Random.

Let us explain how Theorem 4 follows from Theorem 5. It is clearly enough to

show that there is a non null X ⊆ A such that Aσ\X has full outer measure in Aσ

for every σ ∈ T , for then the union B of a maximal family {Xn : n ∈ ω} of such sets

with pairwise disjoint envelopes will be as required. Suppose that this fails so that for

every non null X ⊆ A, there is some σ ∈ T such that env(Aσ) is strictly larger than

env(Aσ\X). Consider the map that sends every positive outer measure subset X ⊆ A

to the supremum, in the complete Boolean algebra Cohen × Random, of all pairs (σ,E)

where σ ∈ T and E is a positive measure Borel subset of env(A) such that E is disjoint

with env(Aσ\X). This gives a dense embedding from P(A)/Null to Cohen × Random

contradicting the fact that they cannot be forcing isomorphic.

Theorem 6. Let X ⊆ R. Then there is a Y ⊆ X such that Y has full outer measure

in X and the distance between any two points in Y is irrational.

Proof: Let X0 be a set of representatives from the partition on X induced by the

equivalence relation x ∼ y iff x − y is rational. Let 〈rn : n ≥ 0〉 be a list of all

rationals with r0 = 0. For each n ≥ 0, let fn : X0 → R be defined by fn(x) = x + rn,
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if x + rn ∈ X, otherwise fn(x) = x, also put Xn = range(fn). For m,n ≥ 0, let

Fm
n = fn ◦ f−1m : Xm → Xn. Note that fn = F 0

n . Also note that for every m,n ≥ 0,

x ∈ Xm, Fm
n (x) = x + r, for some r ∈ {0, rn,−rm, rn − rm}. This will allow us to use

Lemma 1 below with k ≤ 4.

We will inductively define a sequence 〈Kn : n ≥ 0〉 of pairwise disjoint subsets of

X0 such that for each n ≥ 0, fn[Kn] has full outer measure in Xn. Theorem 6 will

immediately follow by setting Y =
⋃
{fn[Kn] : n ∈ ω}. We need a definition for our

next lemma.

Definition 2. Let Y ⊆ R and F : Y → R. We say that F is fullness preserving if

whenever W is a full outer measure subset of Y , F [W ] is a full outer measure subset of

F [Y ].

Observe that if F : Y → R is fullness preserving, then for any W ⊆ Y of full outer

measure in Y , F � W is also fullness preserving.

Lemma 1. Suppose F : Y → R acts by translating k many pieces of Y ; i.e., there

are a partition {T1, T2, . . . , Tk} of Y and reals s1, s2, . . . , sk such that for every x ∈ Ti,

F (x) = x + si. Then, there is another partition of size k, {Yi : 1 ≤ i ≤ k} of Y , such

that for every i ≤ k,

• Yi has full outer measure in Y and

• F � Yi is fullness preserving.

Proof of Lemma 1: Use induction on k. If k = 1, Y1 = Y works. So assume k = l+1.

Let Z =
⋃
{Ti : 1 ≤ i ≤ l}. Let {Zi : 1 ≤ i ≤ l} be a partition of Z such that each

Zi has full outer measure in Z and F � Zi is fullness preserving. Let E1 = env(Z),
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E2 = env(Tk) and D = E1

⋂
E2. Let W1, W2 be a partition of Z1

⋂
(E1\D) into two full

outer measure subsets. Let {Vj : 1 ≤ j ≤ k} be a partition of Tk
⋂

(E2\D) into k full

outer measure subsets. Set Y1 = W1

⋃
(Z1

⋂
D)
⋃
V1. For 2 ≤ i ≤ l, put Yi = Zi

⋃
Vi

and let Yk = W2

⋃
(D
⋂
Tk)
⋃
Vk. Then {Yi : 1 ≤ i ≤ k} is a partition of Y with the

required properties.

Claim 1.1. There exists K0 ⊆ X0, such that K0 has full outer measure in X0 and for

every n ≥ 1, Xn\fn[K0] has full outer measure in Xn.

Proof of Claim 1.1: Using Lemma 1, construct a full tree 〈Yσ : σ ∈ 2<ω〉 on Y = X0

such that for each n ≥ 1, σ ∈ 2n, fn � Yσ is fullness preserving.

Now Theorem 4 will imply that there is some K0 ⊆ X0 of full outer measure in X0,

such that for every σ ∈ 2<ω, Yσ\X0 has full outer measure in Yσ. Fix any n ≥ 1. Since

for each σ ∈ 2n, fn � Yσ is fullness preserving, we get that fn[Yσ\X0] has full outer

measure in fn[Yσ]. It follows that Xn\fn[K0] =
⋃
{fn[Yσ\X0] : σ ∈ 2n} has full outer

measure in
⋃
{fn[Yσ] : σ ∈ 2n} = Xn.

Next suppose that for some N ≥ 1, we have a pairwise disjoint family {Ki : 0 ≤ i <

N} of subsets of X0 such that

• for each 0 ≤ i < N , fi[Ki] has full outer measure in Xi and

• for each j ≥ N , fj[X0\
⋃
{Ki : 1 ≤ i < N}] has full outer measure in Xj.

Following the arguments in the proof of Claim 1.1, we first construct, using Lemma 1,

a full tree 〈Yσ : σ ∈ 4<ω〉 on Y = fN [X0\
⋃
{Ki : 1 ≤ i < N}] such that for each n ≥ 1,

σ ∈ 2n, FN
N+n � Yσ is fullness preserving. Using Theorem 4, we get some K ⊆ Y of full

outer measure in Y , such that for every σ ∈ 4<ω, Yσ\K has full outer measure in Yσ.

Putting KN = f−1N [K] it follows that
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• for each 0 ≤ i < N , Ki ∩KN = φ,

• fN [KN ] has full outer measure in XN and

• for each j ≥ N + 1, fj[X0\
⋃
{Ki : 1 ≤ i ≤ N}] has full outer measure in Xj.

This concludes the proof of Theorem 6. One can easily see that the above arguments

can be applied to avoid any countable set of distances by replacing the rationals with

the additive subgroup generated by this countable set. One can also obtain a category

analogue in the following sense: Let X ⊆ R. Then there is a subset Y ⊆ X such that

Y is everywhere non meager in X and the distance between any two distinct points of

Y is irrational. Here we call a subset Y ⊆ X everywhere non meager in X if for every

open set U , if X ∩ U is non meager then Y ∩ U is also non meager. The proof follows

essentially the same lines except that one has to use a category analogue of Theorem 4

which depends on the following result of Gitik and Shelah [9]: Suppose I is a sigma

ideal over a set X. Then forcing with I cannot be isomorphic to Cohen forcing. We

do not know the answer to Komjáth’s question (and its category analogue) in higher

dimensions.

1.4 Avoiding null distances

Andrews asked if we can avoid null sets of distances.

Question 4. Suppose N ⊆ R+ is null. Given X ⊆ R, must there exist Y ⊆ X such that

the distance between any two points in Y is not in N and X and Y have same Lebesgue

outer measure?
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It is clear that this holds under CH. Using the following result, independently due

to Friedman and Shelah, we’ll show that this fails in the strongest possible way in the

Cohen model.

Theorem 7. Let V � 2ω = ω1. Let P = Fn(ω2, 2) add ω2 Cohen reals. Then in V P ,

for every Fσ set F ⊆ R2, if F contains a rectangle of positive outer measure, then it

contains a compact rectangle of positive measure.

For a proof of Theorem 7, see [29] or [2].

Theorem 8. Let P be as above. The following holds in V P : Let N be a null dense Gδ

subset of R+. Then for every non null X ⊆ R there are x, y ∈ X such that |x− y| ∈ N .

Proof: The set F = {(x, y) : |x−y| /∈ N} is an Fσ subset of plane whose complement

has zero area. Note that by Steinhaus theorem F cannot contain a compact rectangle

of positive measure so, in V P , it cannot contain a non null rectangle either. Suppose

X ⊆ R is non null and it avoids distances in N . Let A,B be two disjoint non null subsets

of X. Then A×B is a non null rectangle contained in F which is impossible. K

We do not know if the category analogue is also independent:

Question 5. Suppose G is a dense Gδ subset of R2. Must G contain a non meager

rectangle?



13

Chapter 2

Around a question of Juhász

2.1 Introduction

We investigate some questions around a problem of Juhász. In particular, we show

that the following is consistent: There is no real valued measurable cardinal below the

continuum and there is a finitely additive extension m : P([0, 1]) → [0, 1] of Lebesgue

measure whose null ideal is a sigma ideal. We also show that there is a countable partition

of [0, 1] into interior free sets under the m-density topology of any such extension. Here,

the m-density topology is defined by declaring those subsets of [0, 1] open, each of whose

points is an m-density one point.

The next section contains well known results. For background on elementary embed-

dings and forcing we refer the reader to Kanamori’s book [15].

2.2 Induced ideals in Cohen and random extensions

We start with the following question: Suppose κ is a measurable cardinal and I is a

witnessing normal prime ideal over κ. Let P be a forcing notion and G a P -generic filter

over V . Let Î be the ideal generated by I over κ in V [G]. Describe forcing with Î; i.e.,

P(κ)/Î. For the purpose of this chapter, the specific forcings that we consider are all
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ccc. In this case, the induced ideal is ω1-saturated and normal.

Proposition 9 (Prikry [24]). Let I be a κ-additive ω1-saturated ideal over an uncount-

able cardinal κ. Let P be a ccc forcing notion and G a P -generic filter over V . Let Î be

the ideal generated by I over κ in V [G]. Then Î is a κ-additive ω1-saturated ideal over

κ. Furthermore, if I is normal so is Î.

Proof: Let 〈Bi : i < θ〉 ⊂ Î where θ < κ. Let 〈Ai : i < θ〉 ⊂ I be such that

Bi ⊆ Ai for each i < θ. Let p ∈ P force this. In V , for each i < θ, get a maximal

antichain 〈pi,n : n < ω〉 below p deciding Åi. Say 〈Ci,n : n < ω〉 ⊂ I is such that

pi,n  Åi = Ci,n. Let Ci =
⋃
{Ci,n : n < ω}. Then p  B̊i ⊆ Ci for each i < θ

and hence
⋃
{Bi : i < θ} ⊆

⋃
{Ci : i < θ} ∈ I. It follows that Î is κ-additive.

Next suppose Î is not ω1-saturated and let p force that 〈Xi : i < ω1〉 is a collection of

pairwise disjoint Î-positive sets. Work in V . Let Yi = {α < κ : ∃q ≤ p(q  α ∈ X̊i)}.

Then Yi ∈ I+ for each i < ω1. Now observe that there must exist some A ∈ I+

such that every I-positive subset of A has I-positive intersections with uncountably

many Yi’s. Otherwise we can extract an I-positive disjoint refinement of an uncountable

subsequence of 〈Yi : i < ω1〉 which is impossible as I is ω1-saturated. By thinning

down we can also assume that
⋃
{Yi : i < ω1} = A. It follows that for each j < ω1,⋃

{Yi : j < i < ω1} contains A modulo I. Hence lim sup〈Yi : i < ω1〉 = A modulo

I. In particular, some α < κ belongs to uncountably many Yi’s and the witnessing

conditions qi’s must form an antichain contradicting the ccc-ness of P . Now suppose

that I is normal. We’ll show that Î is closed under diagonal unions in V [G]. So let

〈Aα : α < κ〉 ⊂ I and Aα ⊂ (α, κ) = {i : α < i < κ}. Let p ∈ P force this. Working

in V , for each α < κ, get a maximal antichain 〈pα,n : n < ω〉 below p deciding Åα.
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Say 〈Bα,n : n < ω〉 ⊂ I is such that pα,n  Åα = Bα,n. Let Bα =
⋃
{Bα,n : n < ω}.

Then Bα ∈ I and p  Aα ⊆ Bα ⊂ (α, κ) for each α < κ. By normality of I, we get⋃
{Bα : α < κ} ∈ I. Hence

⋃
{Aα : α < κ} ∈ Î. K

2.2.1 Prikry’s model

Again, let κ be a measurable cardinal with a witnessing normal ideal I. Let j : V →M

be the corresponding ultrapower embedding with critical point κ. We’ll repeatedly use

Mκ ⊂ M . Denote by Cλ, the Cohen algebra on 2λ for adding λ many Cohen reals.

Let G be Cλ-generic over V . We attempt to describe, in V [G], the algebra P(κ)/Î

where Î is the ideal generated by I. If λ < κ, this algebra is trivial so assume λ ≥ κ.

By elementarity plus the fact that M is countably closed, j(Cλ) = Cj(λ) is the Cohen

algebra for adding j(λ) many Cohen reals. Suppose, H is Cj(λ)-generic over V . Consider,

G = {p ∈ Cλ : j(p) ∈ H}.

Lemma 2. G is Cλ-generic over V .

Proof: Clearly, G is a filter over Cλ. Suppose, 〈pn : n ∈ ω〉 ⊆ Cλ is a maximal

antichain. Then, j(〈pn : n ∈ ω〉) = 〈j(pn) : n ∈ ω〉 is a maximal antichain in Cj(λ). So

some j(pn) ∈ H. Hence pn ∈ G.

The embedding j : V → M extends to j? : V [G] → M [H] satisfying j?(G) = H

by defining j?(X) = valH(j(X̊)). The inclusion j[G] ⊆ H ensures that j?(X) does not

depend on the choice of the name for X.

Working in V [G], consider the function φ : P(κ)/Î → Cj(λ)/j[G] defined by:

φ([X]) = [[κ ∈ j(X̊)]]Cj(λ)/j[G]
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Lemma 3. φ is a Boolean isomoprhism.

Proof: First note that φ is well defined since if p  X̊∆Y̊ ⊆ A for some A ∈ I, then

[[κ ∈ j(X̊)]]Cj(λ) ∧ j(p) = [[κ ∈ j(Y̊ )]]Cj(λ) ∧ j(p) so that φ(X) = φ(Y ). It is clear that

φ preserves boolean operations. To see that it is injective, note that if φ(X) = 0, then

for some p ∈ G, [[κ ∈ j(X̊)]]Cj(λ) ∧ j(p) = 0. Then, p  X̊ ∈ Î. Finally, if q ∈ j(Cλ)/

j[G], then for some pα ∈ Cλ, for α < κ, q = [〈pα : α < κ〉]. Let X̊ be such that

[[α ∈ X̊]]Cλ = pα, for α < κ. Then, [[κ ∈ j(X̊)]]Cj(λ) = j(X̊)([id]) = [〈pα : α < κ〉] = q.

Hence φ is surjective.

Corollary 2.1 (Prikry [24]). In V [G], forcing with P(κ)/Î is same as adding |j(λ)\j[λ]|

Cohen reals. In particular, when κ ≤ λ ≤ 2κ, P(κ)/Î adds 2κ Cohen reals. If λ = 2κ,

P(κ)/Î is σ-centered.

Proof: The first statement is clear. The second follows from the fact that whenever

κ ≤ λ ≤ (2κ)V , we have 2κ < j(λ) < (2κ)+. For the third statement, use the fact that

2(2ω) is a separable space. K

2.2.2 Solovay’s model

Once again, let κ be a measurable cardinal with a witnessing normal ideal I and j :

V →M is the corresponding ultrapower embedding with critical point κ. Let Rλ be the

measure algebra on 2λ for adding λ many random reals with λ ≥ κ. So j(Rλ) = Rj(λ) as

above. Let H be Rj(λ)-generic over V . Set G = {p ∈ Rλ : j(p) ∈ H}. As in Lemma 2,

we get

Lemma 4. G is Rλ-generic over V .
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The embedding j : V → M extends to j? : V [G] → M [H] satisfying j?(G) = H by

defining j?(X) = valH(j(X̊)). In V [G], consider the function φ : P(κ)/Î → Rj(λ)/j[G]

defined by:

φ([X]) = [[κ ∈ j(X̊)]]Rj(λ)/j[G]

Lemma 5. φ is a Boolean isomoprhism.

Corollary 2.2 (Solovay [28]). In V [G], forcing with P(κ)/Î is same as adding |j(λ)\j[λ]|

random reals. In particular, in V [G], the continuum is real valued measurable.

2.3 Around a question of Juhász

A topological space is called resolvable it has a dense codense subset. An old result

of Sierpinski [27] says that every metric space is maximally resolvable in the following

sense.

Theorem 10. Suppose X is a metric space and κ is an infinite cardinal such that every

open ball in X has at least κ many points. Then X can be partitioned into κ many dense

sets.

Proof: We first show that this is the case if each open ball has size exactly κ.

Claim 2.3. Let κ be an infinite cardinal and X a metric space in which every open ball

has size κ ≥ ω. Let us call such a space κ-homogeneous. Then X can be divided into κ

many dense subsets.

In this case, |X| = κ so that X has a basis of size κ (use rational radii balls), say

{Bα : α < κ}. Inductively construct {Dα : α < κ} by putting, at stage α, one point

from each Bβ, β < α into every Dβ, β < α.



18

Claim 2.4. Let X be a metric space in which every open ball is infinite. Then there is a

family of pairwise disjoint open balls U in X, such that the union of this family is dense

in X and each U is a κ-homogeneous metric space for some uncountable cardinal κ.

Every open ball in X contains a homogeneous ball as there is no infinite decreasing

sequence of cardinals. So take a maximal family of pairwise disjoint homogeneous open

balls in X. Theorem 10 easily follows from the above claims. K

Resolvable spaces were introduced by Hewitt [13] where the following example of a

Hausdorff irresolvable space appears: Let T be the usual topology on R. Let F be the

family of all topologies on R that extend T and are without isolated points. The union

of every chain (under inclusion) in F is also in F hence F has a maximal topology say

τ . Then τ is irresolvable.

Juhász recently asked the following question (communicated by Miller):

Question 6. Is there a ccc Hausdorff space X without isolated points such that for every

partition X =
⋃
{Yn : n ∈ ω} there is some Yn with non empty interior?

If X is such a space then by passing to some open subset of X we can assume

every open subset of X is such a space. So the family of interior free subsets of X

forms a σ-ideal which is also ω1-saturated as X is ccc. So we need the consistency of a

measurable cardinal. Starting with a real valued measurable cardinal below continuum

Kunen, Szymanski and Tall have constructed such a space - See Corollary 3.6 in [19].

Kunen described another construction to us which even makes the space T4.

Theorem 11 (Kunen). Suppose κ is measurable in V . Let Cκ be Cohen forcing for

adding κ Cohen reals. Let G be Cκ-generic over V . Then, in V [G], there is a ccc T4
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space X wihthout isolated points such that whenever X =
⋃
{Yn : n ∈ ω}, some Yn has

non empty interior.

Proof: Let I be a witnessing normal ideal over κ and Î, the ideal generated by I in

V [G]. By Corollary 2.1, P(κ)/Î is isomorphic to C2κ . For α < 2κ, let Eα = {f : 22κ →

2 : f(α) = 1}. Then {[Eα] : α < κ} is an independent family that completely generates

C2κ . Let {[Aα] : α < 2κ} be the corresponding family in P(κ)/Î. We’ll define a topology

T on κ by choosing a member Aα from each equivalence class [Aα] and declaring it to

be clopen. We do it in such a way so that for any two disjoint sets X, Y ∈ Î, there is

some Aα, α < 2κ separating them - i.e., X ⊂ Aα and Y ⊂ κ\Aα. Since there are only

2κ many such pairs, this can clearly be done. Thus T is Hausdorff. Also, every set in

Î is T -closed since for any X ∈ Î, the union of Aα’s disjoint with X is κ\X. We claim

that for any B ⊆ κ, B ∈ Î iff the T -interior of B is empty. Notice that the family F

of finite boolean combinations of Aα’s is a basis for T . Since each member of this basis

is Î-positive, every member of Î has empty T -interior. Conversely, if B is Î-positive,

then for some X ∈ Î and A ∈ F , A\X ⊆ B. This is because {[A] : A ∈ F} is dense in

P(κ)/Î. As X is closed, T -interior of B is empty. T is ccc because P(κ)/Î is ccc. Since

Î is κ-additive, every partition of κ into fewer than κ many sets contains one set with

non empty T -interior. It remains to show that T is normal. Fix C,D ⊆ κ disjoint and

T -closed. Let C ′, D′ be T -interiors of C and D. Let C1 = C\C ′, D1 = D\D′. Then

C1, D1 ∈ Î since their T -interiors are empty. Let Aα separate C1, D1. Then (Aα
⋃
C ′)\D

and ((κ\Aα)
⋃
D′)\C are T -open sets separating C and D. K

Juhász wondered if the density topology of some countably additive total extension

m of Lebesgue measure could give an example of such a space. Kunen pointed out,

that using a result of Maharam [23], together with the fact that the measure algebra
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of m is everywhere inseparable (by a theorem of Gitik and Shelah [9]), one can deduce

the existence of some X ⊂ [0, 1] with m(X) = 1/2 which divides every Borel set into

two pieces of equal measure so this is impossible. He also remarked that it may still be

possible to have a finitely additive total extension of Lebesgue measure whose density

topology may give an example of such a space. This led us to consider the following

question:

Question 7. Does there exist a finitely additive extension m : P([0, 1]) → [0, 1] of

Lebesgue measure whose null ideal is countably additive but m is nowhere countably

additive?

Kunen suggested the following model: Start with a measurable cardinal κ. Let G

be a generic filter for a finite support iteration of random forcing of length κ. Then

in V [G], there is no real valued measurable cardinal below continuum and there is a

finitely additive extension m : P([0, 1])→ [0, 1] of Lebesgue measure whose null ideal is

countably additive. We now sketch a proof of this.

Definition 3. A strictly positive finitely additive probability measure (SPFAM) on a

Boolean algebra B is a function m : B → [0, 1] satisfying the following:

• For every b ∈ B, m(b) = 0⇔ b = 0B and m(1B) = 1

• For every a, b ∈ B, if a ∩ b = 0 then m(a ∪ b) = m(a) +m(b)

Lemma 6. Let B be a complete Boolean algebra (cBa) with a SPFAM m and let µ, C̊

be B-names such that [[C̊ is a cBa and µ is a SPFAM on C̊]]B = 1. Then B ?C̊ admits

a SPFAM extending m, identifying B with a complete subalgebra of B ? C̊.
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Proof: We begin by reviewing B ? C̊ - See [14] for details. Let S = {τ ∈ V B :

[[τ ∈ C̊]]B = 1}. Define an equivalence relation on S: σ ∼ τ iff [[σ = τ ]]B = 1. Let

D be a complete set of representatives. Then D is a cBa under Boolean operations

induced from C̊. In particular, for any c1, c2 ∈ D, c1 ≤D c2 iff [[c1 ≤C c2]]B = 1. We let

B ? C̊ = D. The map e : B → D defined by setting e(b) to be the unique τ ∈ D such

that [[τ = 1C ]]B = b and [[τ = 0C ]]B = −b is a complete embedding of B into D and we

identify the image e[B] with B.

Now define φ : D → [0, 1] as follows: Let τ ∈ D. For each n ≥ 1, let 〈I0, I1, . . . , I2n−1〉

be the dyadic partition of [0, 1] into intervals of length 1/2n. Let

φn(τ) =
2n−1∑
k=0

m([[µ(τ) ∈ Ik]]B)k/2n

Then 0 ≤ φn(τ) ≤ φn+1(τ) ≤ 1 for every n ≥ 1. Let φ(τ) = supn φn(τ).

Claim 2.5. φ is a SPFAM on D, extending m.

Clearly, φ(0D) = 0, φ(1D) = 1. If σ, τ ∈ D are disjoint then [[σ ∩ τ = 0]]B = 1.

Hence [[µ(σ ∪ τ) = µ(σ) + µ(τ)]]B = 1 and it follows that φ(σ ∪ τ) = φ(σ) + φ(τ).

φ is strictly positive because [[µ is strictly positive]]B = 1. Finally if b ∈ B, then

[[e(b) = {〈1C , b〉, 〈0C ,−b〉}]]B = 1. Hence, φ(b) = 1 ·m(b) + 0 ·m(−b) = m(b). K

Theorem 12. Suppose κ is measurable and I is a witnessing normal ideal. Let G be

a generic filter for finite support iteration of random focring of length κ. Let Î be the

induced ideal in V [G]. Then P(κ)/Î is a cBa that admits a SPFAM m. Furthermore

one can identify the random algebra Rω with a complete subalgebra of P(κ)/Î on which

m agrees with the Lebegsue measure.

Proof: Let j : V → M be the ultrapower embedding. Let 〈Bα, C̊α : α < κ〉 be the

finite support iteration of random forcing; i.e.,
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• B0 = Rω

• Bα+1 = Bα ? C̊α where [[C̊α = Rω]]Bα = 1

• When λ is limit, Bλ is the Boolean completion of the direct limit of 〈Bα : α < λ〉.

So we have B0 l B1 l · · · l B = Bκ where Bκ is the completion of the direct limit

of this iteration.

By elementarity plus the fact that M is countably closed, j(B) is the finite support

iteration of random forcings of length j(κ) in M . Notice that B l j(B) since j(B)

extends B through a longer iteration. Let G be B-generic over V . Then j � G is identity

and hence j[G] = G. Let Î be the ideal generated by I in V [G]. Consider the map

φ : P(κ)/Î → j(B)/G defined by φ([X]) = [[κ ∈ j(X̊)]]j(B)/G. Then φ is a Boolean

isomorphism. Now in M [G], j(B)/G is a finite support iteration of random forcing

indexed by j(κ)\κ. By previous lemma, we can construct an increasing sequence of

SPFAMs 〈mα : κ + 1 ≤ α < j(κ)〉 on this iteration. Let m : j(B)/G → [0, 1] be their

union. Since M [G] and V [G] have same reals, we can also assume that the measure

algebra of mκ+1 is the random algebra in V [G]. Now in V [G], we can lift m to a SPFAM

on P(κ)/Î via the isomorphism φ and this finishes the proof.

To lift m to an extension of Lebesgue measure on 2ω, create a tree 〈Xσ : σ ∈ 2<ω〉 of

subsets of κ such that

• Xφ = κ

• For every σ ∈ 2<ω, Xσ is a disjoint union of Xσ0 and Xσ1

• m(Xσ) = 2−|σ|, where |σ| is the length of σ

Furthermore, m restricted to the sigma algebra generated by {Xσ : σ ∈ 2<ω} is

isomorphic to Lebesgue measure on Rω under an isomorphism that takes Xσ to [σ] ∈ 2ω.
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Let f : κ → 2ω be such that f(α) = y iff ∀n(α ∈ Xy�n). Define ν : P(2ω) → [0, 1] by

ν(Y ) = m(f−1[Y ]). Then, ν is a finitely additive total extension of Lebesgue measure

whose null ideal is 2ω-additive. To finish note that since Cohen reals are added cofinally

often, every set of reals of size less than κ is Lebesgue null. It is well known that that if

there a real valued measurable cardinal below the continuum then there is a Sierpinski

set of size ω1. Hence ν is nowhere countably additive. K

We now address the question:

Question 8. Let m : P([0, 1])→ [0, 1] be a finitely additive total extension of Lebesgue

measure whose null ideal is countably additive. Can the density topology of m on [0, 1]

provide an example of a ccc Hausdorff space without isolated points such that every

partition of [0, 1] into countably many sets contains a set with non empty interior?

It turns out that the answer is no. In fact, we’ll show the following:

Theorem 13. Let m : P([0, 1])→ [0, 1] be a finitely additive total extension of Lebesgue

measure. Denote the m-density topology by T . Then there is a countable partition of

[0, 1] into T -interior free sets.

Proof: Call S ⊆ [0, 1] small if S can be covered by countably many m-null sets. Let

{Sn : n ∈ ω} be a maximal collection of pairwise disjoint small sets of positive measure.

Then A = [0, 1]\
⋃
n∈ω Sn does not contain any small set of positive measure. Hence the

null ideal of m restricted to A is countably additive. It is now enough to split A into

countably many T -interior free sets.

Lemma 7. Let m be as above. Suppose X ⊂ [0, 1] is open in the m-density topology

T . Then there is a Gδ set G (in usual topology) such that m(G) = m(X) and X\G is

Lebesgue null.
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Proof: Fix an arbitrary ε > 0. Let V be the collection of all closed intervals in which

the fractional measure of X is more than 1− ε. Since every point of X is a density one

point of X, V is a Vitali covering of X; i.e., for each δ > 0, and y ∈ X there is an interval

I ∈ V that contains y and has length less than δ. By Vitali covering theorem, there is a

disjoint subcollection {In : n ∈ ω} ⊂ F which covers all but a Lebesgue null part of X.

Setting Uε =
⋃
{In : n ∈ ω}, we get m(X) ≥

∑
n∈ωm(X ∩ In) ≥ (1− ε)

∑
n∈ωm(In) =

(1− ε)m(Uε). Let G be the intersection of Uε’s where ε runs over positive rationals.

Lemma 8. Let m, A be as above. Then there is a partition of A into countably many

T -interior free sets.

We first show that there is no positive measure X ⊆ A all of whose positive measure

subsets have non empty interior in the m-density topology. Suppose otherwise. Let

{Yn : n ∈ ω} be a maximal collection of pairwise disjoint T -open subsets of X. Then

Y =
⋃
{Yn : n ∈ ω} covers all but an m-null part of X. Hence there is a Gδ set G such

that X∆G is m-null. The same holds of any positive measure subset of X. It follows

that m � P(X) is countably additive but its measure algebra is separable. But this is

impossible by Gitik Shelah theorem.

Now let {Wn : n ∈ ω} be a maximal family of pairwise disjoint, T -interior free,

positive measure subsets of A. Let X = A\
⋃
n∈ωWn. Then every positive measure

subset of X has non empty interior and hence X must be m-null and we are done. K
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Chapter 3

On a hierarchy of Borel additive

subgroups of reals

3.1 Introduction

In his “A course of pure mathematics”, G. H. Hardy considers the following limit (Ex-

ample XXIV.14 in [12]):

lim
n→∞

sin (n!πx)

He remarks that when x is rational, this limit is 0. Let G be the set of reals where

this limit is 0. It is easily verified that G is an additive subgroup of R. It is also not

hard to see that Euler’s constant e is also in G. Going a little further, one can show the

following.

Lemma 9. Suppose x ∈ [0, 1]. Then x has a unique representation of the form

x =
∑
n≥2

xn
n!

where xn ∈ {0, 1, . . . , n− 1}. Under this representation, x ∈ G iff lim
n→∞

xn
n

is either 0 or

1.

Proof: Let d(x,Z) denote the distance of x from the set of integers. First notice

that for any sequence of reals 〈xn : n ≥ 1〉, lim
n→∞

sin (πxn) = 0 iff lim
n→∞

d(xn,Z) = 0. For
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any x ∈ [0, 1) with xn’s as above, d(n!x,Z) = d(bn,Z), where bn =
xn+1

n+ 1
+ εn where

0 ≤ εn < 1/n. Hence if
xn
n
→ 0 or 1, then d(bn,Z) → 0. Conversely suppose, along

some subsequence nk, lim
k→∞

xnk
nk

= a where 0 < a < 1. Then for all large enough k,

d((nk − 1)!x,Z) is arbitrarily close to a so that sin (n!πx) is bounded away from zero on

this subsequence.

3.2 A true Π0
3 group

As we remarked above, G can also be described as follows:

G = {x ∈ R : lim
n→∞

d(n!x,Z) = 0}

In this section, we’ll show that G is a true Π0
3 additive subgroup of R. Recall the

definition of the pointclasses Σ0
α, Π0

α:

• Σ0
1 is the family of open subsets of R, Π0

1 is the family of closed sets.

• for each 1 < α < ω1, a set X is in Σ0
α (resp. Π0

α) iff it is the union (resp.

intersection) of a countable subfamily of
⋃
β<α Π0

β (resp.
⋃
β<α Σ0

β).

One can also consider these pointclasses over other Polish spaces (separable com-

pletely metrizable spaces) like 2ω (Cantor space), ωω (Baire space). A set in Π0
α is a

true Π0
α set if it is not in Σ0

α. A true Σ0
α set is defined similarly. We begin by recalling

some basic facts about Wadge reductions. In what follows, all Polish spaces are un-

countable and therefore the Borel hierarchies on such spaces do not terminate at any

countable level.

Let f : X → Y be a continuous map between Polish spaces and let A ⊆ X and

B ⊆ Y . We write f : (X,A)
Wadge−−−→ (Y,B) (read “f Wadge reduces A to B”) if
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f−1[B] = A. The following are easily proved.

Lemma 10. If f : (X,A)
Wadge−−−→ (Y,B) where B is Σ0

α (resp. Π0
α) in Y then A is Σ0

α

(resp. Π0
α) in X.

Lemma 11. If f : (X,A)
Wadge−−−→ (Y,B) and A is true Σ0

α (resp. Π0
α) in X, and if B is

Σ0
α (resp. Π0

α) in Y then B is true Σ0
α (resp. Π0

α) in Y .

Let A be a Σ0
α (resp. Π0

α) set in X. We say A is Σ0
α-complete (resp. Π0

α-complete)

if for every Σ0
α (resp. Π0

α) set B in any Polish space Y there is a Wadge reduction

f : (Y,B)
Wadge−−−→ (X,A). The following result in Wadge’s thesis shows that any two true

Σ0
α (resp. Π0

α) sets in Cantor space Wadge reduce to each other.

Theorem 14 (Wadge). A subset A of 2ω is Σ0
α-complete if A is true Σ0

α in 2ω.

Some examples follow.

• Any countable dense subset D of an uncountable Polish space X is Σ0
2-complete.

E.g., Q = {x ∈ 2ω : lim
n→∞

x(n) = 0}. The trueness of D follows by Baire category

theorem. Hence by Wadge’s theorem, D is Σ0
2-complete.

• Let 〈, 〉 : ω2 → ω be a pairing function; for example, 〈m,n〉 = 1
2
(m+n+1)(m+n)+n.

Let P = {x ∈ 2ω : ∀m( lim
n→∞

x(〈m,n〉) = 0}. Then P is Π0
3-complete.

Proof: It is clear that P is Π0
3. To show that P is Π0

3-complete, fix an arbitrary Π0
3

set A in a Polish space X. Let A =
⋂
n∈ω An, where An’s are Σ0

2. Since Q is Σ0
2-complete,

there are Wadge reductions fm : (X,An)
Wadge−−−→ (2ω, Q). Let F : (X,A)

Wadge−−−→ (2ω, P )

be given by F (x)(〈m,n〉) = fm(n).

Theorem 15. The set G = {x ∈ R : lim
n→∞

d(n!x,Z)) = 0} is a true Π0
3 additive subgroup

of reals.
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Proof: It is clear that G is an additive subgroup of reals and that it is Π0
3:

x ∈ G⇔ ∀ε > 0(∃n0(∀n ≥ n0(d(n!x,Z) ≤ ε)))

It suffices to construct a Wadge reduction from P = {x ∈ 2ω : ∀m( lim
n→∞

x(〈m,n〉) = 0}

to G. Let f : 2ω → R be defined as follows. Given x ∈ 2ω, let yx : ω → ω be defined

by letting yx(n) to be the least index m < n such that x(〈m,n〉) = 1. In case no such

m < n exists, we let yx(n) = n. It is clear that the function x 7→ yx is continuous and for

every x ∈ 2ω, x ∈ P ⇔ lim
n→∞

yx(n) =∞. Set f(x) =
∑
n≥2

an
n!

, where an = b
(

n

2 + yx(n)

)
c,

and bxc denotes the greatest integer not greater than x. Now if lim
n→∞

yx(n) = ∞, then

lim
n→∞

an
n

= 0, hence f(x) ∈ G. On the other hand, if x /∈ P , then along some subsequence

〈nk : k ∈ ω〉, yx(nk) is constant so that
ank
nk

does not go to either 0 or 1. K

3.3 A few more groups

Let G0 = G, Gk+1 = {x ∈ R : lim
n→∞

frac(n!x) ∈ Gk}. Then one can easily check that, for

each k ∈ ω, Gk is an additive subgroup of R. Next we show that

Lemma 12. Gk is Π0
k+3.

Proof: Let W = {x ∈ R : lim
n→∞

d(n!x,Z) exists}. Then W is Π0
3 since

x ∈ W ⇔ ∀ε > 0(∃n0(∀m,n ≥ n0(|d(m!x,Z)− d(n!x,Z)| ≤ ε)))

Let h : W → R be defined by h(x) = lim
n→∞

d(n!x,Z). For every open interval (a, b), and

for every x ∈ W ,

h(x) ∈ (a, b)⇔ ∃n0∀n ≥ n0(d(n!x,Z) ∈ [a+ 1/n, b− 1/n])
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This implies that for every open set U , h−1[U ] is the intersection of a Σ0
2 set with W .

This implies that, if Gk ∈ Π0
k+3, then Gk+1 = h−1[Gk] is the intersection of a Π0

k+4 set

with W hence is also Π0
k+4. K

In the remaining part of this section we will show that Gk is a true Π0
k+3 set. First

we need a nice family of Π0
k-complete sets for k ≥ 3. The following construction appears

in [21].

Let φ : 2ω → 2ω be defined by φ(x)(m) = 1 iff ∀n(x(〈m,n〉)) = 0. Extend φ to

2≤ω by defining φ(σ) = φ(σ0), where σ ∈ 2<ω and σ0 is σ followed by 0’s. Note that

although φ is not continuous, (e.g., 0n1 converges to 0, φ(0n1) = 0 does not converge to

φ(0) = 1), φ(x � n) does converge to φ(x). Let H1 = {0}, Hk+1 = φ−1[Hk]. Then Hk is

Π0
k-complete.

Theorem 16. For every k ∈ ω, Gk is a true Π0
k+3 additive subgroup of reals.

Proof: When k = 0, this was proved above. Suppose f : (2ω, Hk+3)
Wadge−−−→ (R, Gk),

where Hk+3 is the Π0
k+3-complete set defined above. For x ∈ 2ω, let an = f(φ(x � n)) and

a = lim
n→∞

an = lim
n→∞

f(φ(x � n)) = f( lim
n→∞

φ(x � n)) = f(φ(x)). Put bn = bn(d(an,Z))c

and define g : 2ω → R by g(x) =
∑
n≥2

bn
n!

. Then g is continuous. Also g(x) ∈ Gk+1 iff

lim
n→∞

bn
n

= lim
n→∞

d(an,Z) = d(a,Z) ∈ Gk. Hence x ∈ Hk+4 ⇔ φ(x) ∈ Hk+3 ⇔ f(φ(x)) ∈

Gk ⇔ a ∈ Gk ⇔ d(a,Z) ∈ Gk ⇔ g(x) ∈ Gk+1.

As a corollary, Gω =
⋃
{Gk : k ∈ ω} is in Σ0

ω but not in Σ0
k for any k ∈ ω since

Gω = {x ∈ R : lim
n→∞

d(n!x,Z) ∈ Gω}. K
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Chapter 4

On definability of free maximal

ideals

4.1 Introduction

Let C?(R) denote the ring of bounded continuous functions on R. Let I be the ideal

of those functions in C?(R) that go to zero as |x| → ∞. Madhuresh has asked (email

conversation) if one can explicitly define a maximal ideal extending I. Under the axiom

of constructibility, every set is definable so the interesting question is: Is there a model

of set theory where there is no definable maximal extension of I? In this note we show

that one can pass in a definable fashion, from any maximal ideal extending I in C?(R)

to a non principal ultrafilter on the set of natural numbers. It is well known that any

such ultrafilter corresponds to a set of reals which is both Lebesgue non measurable and

does not have the Baire property and Shelah [26] has shown that any model of ZFC has

a generic extension in which every ordinal definable set of reals has the Baire property.

Hence it is consistent to assume that there is no ordinal definable free maximal ideal in

C?(R).
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4.2 Free maximal ideals in C(R)

Let C(R) be the ring of all continuous functions from R to R. A free maximal ideal M

in C(R) is a maximal ideal that satisfies: For every real x, there is some f ∈ M such

that f(x) 6= 0.

Theorem 17. Let M be a free maximal ideal in C(R). Then there is a non principal

ultrafilter on ω which is definable by a formula using M as a parameter.

Proof: For each f ∈ M let Zf = {x : f(x) = 0}. Let F = {Zf : f ∈ M}. Then the

following are easily verified:

• φ /∈ F , R ∈ F .

• If A and B are in F then A ∩B is also in F .

• If A ∈ F and B is a closed set containing A then B ∈ F .

Moreover, the maximality of M implies that F is a maximal family of closed sets

with these properties: If C is a non empty closed set not in F then the distance function

g(x) = d(x,C) is not in M . So for some f ∈ M and h ∈ C(R), f + gh = 1. Hence Zf

is a closed set in F disjoint with C. In the literature on rings of continuous functions,

F is called a Z-ultrafilter - See, for example [8]. Note further that for every x ∈ R,

there is a closed set C ∈ F that does not contain x. Let us call a Z-ultrafilter free if it

has this additional property. We can now forget about M and construct a non principal

ultrafilter on the set of integers Z directly from F . First suppose that Z ∈ F . Let

U = {C ∩ Z : C ∈ F}. Then U is a filter over Z that contains all cofinite subsets of Z

as F is free. To see that U is maximal, suppose A ⊂ Z is not in U . Then, since A is

closed in R, for some C ∈ F , A ∩ C = φ. But then, Z ∩ C is a set in U disjoint with
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A. Next suppose Z /∈ F . Then there is a closed set C ∈ F disjoint with Z. It follows

that every closed set in F contains infinitely many non integer points. For each C ∈ F ,

let ZC = {n ∈ Z : C ∩ (n, n + 1) 6= φ}. Let U = {ZC : C ∈ F}. We have φ /∈ U and

Z ∈ U . Also if C ∈ F and X ⊆ Z contains ZC then there is a closed set D containing

C that meets (n, n+ 1) iff n ∈ X. Next suppose C,D ∈ F then there is a closed set C ′

containing C such that ZC ∩ ZD = ZC′∩D. Hence U is a filter. Finally if X ⊂ Z is not

in U then the closed set C =
⋃
{[n, n+ 1] : n ∈ X} is not in F . Hence there is a D ∈ F

disjoint with C. But then ZD is in U and is disjoint with X. Thus U is a free ultrafilter

over Z. K

4.3 Free maximal ideal in C?(R)

Theorem 18. Let M be a free maximal ideal in C?(R). Then there is a non principal

ultrafilter on ω which is definable by a formula using M as a parameter.

Proof: Recall that a maximal ideal M in C?(R) is free if for every x ∈ R, there is

an f ∈M such that f(x) 6= 0. It is enough to construct a free Z-ultrafilter definable in

M as above. For each ε > 0, f ∈ M , let Zf,ε = {x : |f(x)| ≤ ε}. Consider the family

F = {Zf,ε : f ∈ M, ε > 0}. Then φ /∈ F and R ∈ F . Suppose C ∈ F and D is a closed

set containing C. Let C = Zf,ε where f ∈M , ε > 0. We can also assume that f is non

negative. Let g ∈ C?(R) be defined as follows:

g(x) =


d(x,D)

1 + d(x,D)
+

1

f(x)
if x /∈ C

1/ε if x ∈ C

Here d(x,D) denotes the distance of x from D. Then gf ∈ M and Zgf,1 = D ∈ F .
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Next suppose C,D ∈ F . We can assume that C = Zf,1 and D = Zg,1 for some f, g ∈M .

Let h = f 2 + g2. Then Zh,1 ⊆ C ∩ D. It follows F is closed under finite intersection.

Next suppose C is a non empty closed set not in F . Suppose no set in F is disjoint

with C. Let G be the proper filter generated by F ∪ {C}. Let N be the collection of

all f ∈ C?(R) such that for some ε > 0, Zf,ε ∈ G. Then N is an ideal in C?(R) that

contains M . Moreover the function g(x) =
d(x,C)

1 + d(x,C)
+ 1 is in N\M . Since M is

maximal, 1 ∈ N which means φ ∈ G - a contradiction as G was assumed to be proper.

Finally note that since M is free, for every x ∈ R there is a function f ∈ M such that

f(x) 6= 0. Hence for sufficiently small ε > 0, the set Zf,ε is in F and x /∈ Zf,ε. Hence F

is a free Z-ultrafilter and we can proceed as before. K
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