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Abstract. We show that it is relatively consistent with ZFC that there is a

non-meager set of reals X such that for every non-meager Y ⊆ X, there exist

distinct x, y, z ∈ Y such that z is computable from the Turing join of x and y.

1. Introduction

Many natural questions about the global structure of Turing degrees (D,≤T )
are undecidable in ZFC. For example, in [2] Groszek and Slaman showed that the
statement “Every maximal Turing independent set of reals has size continuum” is
independent of ZFC. Another such result due to Slaman and Woodin in [5] says
that the statement “(D,≤T ) is ω-homogeneous” is independent of ZFC. For more
examples, see Chapter 9 in [1].

Definition 1.1. We say that X ⊆ 2ω is n-Turing independent iff for every F ⊆ X
of size |F | ≤ n, the Turing join of F does not compute any real in X \ F . X is
Turing independent iff it is n-Turing independent for every n ≥ 1.

In [4], we investigated some Ramsey-type problems about Turing independent
sets of the following type: Does every large set of reals have a large n-Turing
independent subset? In this work, we will deal with this question when large =
non-meager. It turns out that when n = 1, the answer is yes in ZFC: Every non-
meager set of reals has a non-meager 1-Turing independent subset (Theorem 1.4
in [4]). However, the situation is more complicated when n ≥ 2. Under Martin’s
axiom, every non-meager set of reals has a non-meager Turing independent subset
(Lemma 4.2 in [4]). On the other hand, assuming the consistency of a measurable
cardinal, it is consistent that there is a non-meager set of reals all of whose 2-
Turing independent subsets are meager (Theorem 1.5 in [4]). The proof given there
was based on the following result of Komjáth [3]: Assuming the consistency of a
measurable cardinal, it is consistent that there exists a non-meager Y ⊆ 2ω such
that the graph of every function from Y to Y is meager in 2ω×2ω. The consistency
of this latter fact requires some large cardinals since Komjáth [3] also showed that
the existence of such a Y implies that there is an inner model with an inaccessible
cardinal. It follows that this approach cannot avoid the use of large cardinals.

Nevertheless, using a new forcing notion, we show the following.

Theorem 1.2. It is consistent relative to ZFC that there is a non-meager set
X ⊆ 2ω such that every 2-Turing independent Y ⊆ X is meager.

This answers Question 4.9 from [4] in the case of Baire category. We expect that
the techniques used in the proof of this theorem will be useful for similar problems.

S. Shelah’s research was partially supported by Israel Science Foundation grant no. 1838/19
and NSF grant no. DMS 1833363. Publication no. 1235.
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On Notation: If J is an ideal on a set X, then J + = P(X) \ J denotes the
family of all J -positive subsets of X. ω<ω is the set of all finite sequences in ω. For
σ, τ ∈ ω<ω, we write σ_τ to denote the concatenation of σ and τ . For σ ∈ ω<ω,
define [σ] = {x ∈ ωω : σ � x}. We say that T ⊆ ω<ω is a nowhere dense subtree iff
T is a subtree of ω<ω without terminal nodes and [T ] = {x ∈ ωω : (∀n)(x � n ∈ T )}
is nowhere dense in ωω. For F = {x0, x1, . . . , xn−1} ⊆ ωω, the join of F , denoted⊕

k<n xk, is the real y ∈ ωω satisfying y(nj + k) = xk(j) for every k < n and

j < ω. For a set of ordinals X and a function F with dom(F ) ⊆ [X]2, we will
sometimes write F (α, β) instead of F ({α, β}). Recall that (∀∞k) abbreviates “For
all but finitely many k”.

Acknowledgment: We thank the referee for Remark 4.8 below and for pointing
out several corrections in the first draft of the paper.

2. Ingredients of the forcing

To simplify the presentation of our forcing, we will work in ωω (Baire space)
instead of 2ω (Cantor space). It is easy to lift our result to the Cantor space in
view of the following fact.

Fact 2.1. There exist a countable D ⊆ 2ω and a homeomorphism H : ωω → 2ω \D
such that for every x ∈ ωω, x and H(x) have the same Turing degree.

Proof. Let D = {x ∈ 2ω : (∀∞k)(x(k) = 0)} and define H : ωω → 2ω \D by

H(x) = 0x(0)_1_0x(1)_1_0x(2)_1_ · · ·
�

Fact 2.2. Let E ⊆ ωω. Suppose there exists y ∈ ωω such that

E ⊆ {x ∈ ωω : (∀∞k)(x(k) 6= y(k))}
Then E is meager.

Proof. For each n < ω, define Dn,y = {x ∈ ωω : (∀k ≥ n)(x(k) 6= y(k))}. Note that
for every σ ∈ ω<ω, there exists τ ∈ ω<ω such that σ � τ and [τ ] ∩ Dn,y = ∅. So
each Dn,y is nowhere dense in ωω and therefore

E ⊆
⋃
n<ω

Dn,y = {x ∈ ωω : (∀∞k)(x(k) 6= y(k))}

is meager. �

2.1. Strong colorings. For an infinite cardinal µ, the negative square bracket
partition relation µ9 [µ]2µ means the following: There exists a coloring F : [µ]2 →
µ such that for every X ∈ [µ]µ, range(F � [X]2) = µ. Todorčević [6] showed that
ω1 9 [ω1]2ω1

. In the same paper (see Section 5), he also generalized this to larger
cardinals as follows.

Fact 2.3 ([6]). Suppose µ is a regular uncountable cardinal that has a non-reflecting
stationary subset. Then µ9 [µ]2µ.

It follows, for example, that if µ = θ+ where θ is regular, then µ9 [µ]2µ.

Definition 2.4. Let µ, λ, F̄ , Jλ,µ and Ā be as follows.

(1) µ is a regular uncountable cardinal satisfying µ9 [µ]2µ and λ = µ+.
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(2) For each 1 ≤ ξ < λ, fix a function Fξ : [µ]2 → ξ × µ satisfying: For every
X ∈ [µ]µ, range(Fξ � [X]2) = ξ × µ. Such Fξ’s exist because µ 9 [µ]2µ.
Define

F̄ = 〈Fξ : 1 ≤ ξ < λ〉.
(3) Jλ,µ is the Fubini product of the ideals [λ]<λ and [µ]<µ on λ and µ respectively.

So Jλ,µ consists of those A ⊆ λ× µ that satisfy

|{ξ < λ : |{i < µ : (ξ, i) ∈ A}| = µ}| < λ.

Note that Jλ,µ is a µ-complete ideal on λ × µ and |Jλ,µ| = 2λ. Let Ā =
〈Aα : α < 2λ〉 be an injective enumeration of Jλ,µ.

Definition 2.5. We say that a subset U ⊆ λ × µ is F̄ -closed iff for every ξ ≥ 1
and i < j < µ, if (ξ, i) and (ξ, j) are in U , then Fξ(i, j) ∈ U . The F̄ -closure of
U ⊆ λ× µ, denoted clF̄ (U) is the intersection of all F̄ -closed sets that contain U .

Lemma 2.6. Let U ⊆ λ× µ be finite. Then clF̄ (U) is finite.

Proof. We can assume that U 6= ∅. By induction on γ = max(dom(U)), we will
show that clF̄ (U) ⊆ (γ + 1)×µ is finite. If γ = 0, then clF̄ (U) = U and the lemma
holds. So assume 1 ≤ γ < λ. Define

V = {Fγ(i, j) : (γ, i) ∈ U ∧ (γ, j) ∈ U ∧ i < j} .
Put U ′ = (U ∪V )∩(γ×µ) and U ′′ = ({γ}×µ)∩U . By the inductive hypothesis,

clF̄ (U ′) ⊆ γ × µ is finite. Since clF̄ (U) = clF̄ (U ′) ∪ U ′′, it follows that clF̄ (U) ⊆
(γ + 1)× µ is also finite. �

2.2. A sequence of highly surjective Turing functionals. Before describing
the final ingredient of our forcing Q, let us explain how Q will work.

Remark 2.7. Let µ, λ,Jλ,µ and F̄ be as in Definition 2.4.

(A) Q will add a (λ× µ)-indexed set of reals X = {xξ,i : (ξ, i) ∈ λ× µ} ⊆ ωω.
(B) In V Q, the meager ideal restricted to X is isomorphic to Jλ,µ. More

precisely, for every A ⊆ λ× µ,

A ∈ Jλ,µ ⇐⇒ {xξ,i : (ξ, i) ∈ A} is meager.

(C) If {(ξ, i), (ξ, j), (ζ, k)} ⊆ λ×µ and Fξ(i, j) = (ζ, k), then xζ,k is computable
from xξ,i ⊕ xξ,j.

Note that Clause (C) and the properties of the sequence of colorings F̄ imply
that for every Jλ,µ-positive set A ⊆ λ × µ, the set {xξ,i : (ξ, i) ∈ A} is not 2-
Turing independent. Together with Clause (B), this guarantees that every 2-Turing
independent subset of X will be meager. The Turing functionals witnessing Clause
(C) will be carefully chosen in order to ensure that Clause (B) is not violated. It
turns out that it is enough to ensure that each of these functionals be chosen from a
countable family {Φn : n < ω} of “highly surjective” Turing functionals in the sense
made precise by Clause (iii) in Definition 2.9. This will become clear in the proof
of Clause (B) (Lemma 4.3 below). The following lemma will be used to construct
such a family of Turing functionals.

Lemma 2.8. Let S = {(n, η0, η1) : n ∈ ω ∧ {η0, η1} ⊆ ω<ω ∧ |η0| = |η1|}. There
exists a computable function F : S → ω<ω such that the following hold.

(0) For every n < ω, F (n, 〈〉, 〈〉) = 〈〉 where 〈〉 is the empty sequence.
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(1) For every (n, η0, η1) ∈ S, |F (n, η0, η1)| ≥ |η0|.
(2) If (n, η0, η1), (n, σ0, σ1) ∈ S, η0 � σ0 and η1 � σ1, then F (n, η0, η1) �

F (n, σ0, σ1).
(3) For every η0, η1, ρ ∈ ω<ω, if |η0| = |η1| = |ρ| ≥ 1, then there exists n < ω

such that F (n, η0, η1) = ρ.
(4) If F (n, η0, η1) = ρ and |η0| = |η1| = |ρ| ≥ 1, then F (n, η0

_0, η1
_0) = ρ_0.

(5) Assume that Clauses (a)− (d) below hold.
(a) i?,m,K,N < ω and N ≥ 1.
(b) h : [N + 1]2 → ω.
(c) l̄ = 〈lj,k : j < k ≤ N〉 where each lj,k ∈ ω.
(d) η̄ = 〈ηj : j ≤ N〉 and ρ̄ = 〈ρj,k : j < k ≤ N〉 are sequences in mω.

Furthermore, suppose for every j < k ≤ N , F (h(j, k), ηj , ηk) = ρj,k.
Then there exists an injective sequence ī = 〈ij : j ≤ N〉 such that

(i) i0 = i?,
(ii) for every 1 ≤ j ≤ N , ij > K and
(iii) for every j < k ≤ N ,

F (h(j, k), ηj
_ij , ηk

_ik) = ρj,k
_lj,k.

Proof. Let T = {(η0, η1, ρ) : {η0, η1, ρ} ⊆ ω<ω ∧ |η0| = |η1| = |ρ| ≥ 1}. Let W be
the set of all tuples (i?,m,K,N, h, l̄, η̄, ρ̄) satisfying Clauses 5(a)-5(d) above. Fix
computable sequences d̄, t̄ and w̄ such that

(i) d̄ = 〈dk : k < ω〉 is an injective enumeration of S,
(ii) t̄ = 〈tk : k < ω〉 is a an injective enumeration of T and
(iii) w̄ = 〈wk : k < ω〉 lists each member of W infinitely often.

Inductively, construct F =
⋃
s<ω Fs as follows. Note that dom(Fs+1) \ dom(Fs)

will be finite for every stage s ≥ 0.

Stage s = 0. Define Fs(n, 〈〉, 〈〉) = 〈〉 for every n < ω where 〈〉 is the empty
sequence. This ensures Clause (0).

Stage s = 3k where k ≥ 1. Let dk = (n, η0, η1). If dk ∈ dom(Fs−1), define
Fs = Fs−1. Otherwise, fix the largest j < |η0| with (n, η0 � j, η1 � j) ∈ dom(Fs−1).
Put Fs−1(n, η0 � j, η1 � j) = ρ and define Fs(n, η0 � k, η1 � k) = ρ_0k−j for each
j < k ≤ |η0|. Note that Clauses (1)-(4) are preserved.

Stage s = 3k + 1 where k ≥ 0. Let tk = (η0, η1, ρ) and m = |η0| = |η1| = |ρ|. If
there exists n < ω such that Fs−1(n, η0, η1) = ρ, define Fs = Fs−1. Otherwise, we
must have m ≥ 1. Choose the least n satisfying

(∀σ0, σ1)[(n, σ0, σ1) ∈ dom(Fs−1) =⇒ σ0 = σ1 = 〈〉]

and define Fs(n, η0 � k, η1 � k) = ρ for every k ≤ m. Note that Clauses (1)-(4) are
again preserved.

Stage s = 3k + 2 where k ≥ 0. Let wk = (i?,m,K,N, h, l̄, η̄, ρ̄). If for some
j < k ≤ N , either (h(j, k), ηj , ηk) /∈ dom(Fs−1) or Fs−1((h(j, k), ηj , ηk)) 6= ρj,k,
then define Fs = Fs−1. Otherwise, choose the lexicographically least injective
sequence ī = 〈ij : j ≤ N〉 such that

(a) i0 = i?,
(b) for every 1 ≤ j ≤ N , K < ij < ω and
(c) for every j < k ≤ N , (h(j, k), ηj

_ij , ηk
_ik) /∈ dom(Fs−1).
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This is possible because dom(Fs−1)\dom(F0) is finite. Now for every j < k ≤ N ,
define

Fs(h(j, k), ηj
_ij , ηk

_ik) = ρj,k
_lj,k.

Since ī is injective, there is no ambiguity here and Clauses (1)-(4) continue to hold.
This concludes the description of F . It should be clear that F is computable since

in order to compute F (n, η0, η1), we just have to run the construction described
above for s = 3k stages where dk = (n, η0, η1). It is also easy to check that F
satisfies Clauses (0)-(4).

Finally, to see that Clause (5) also holds, suppose w = (i?,m,K,N, h, l̄, η̄, ρ̄)
satisfies Clauses (5)(a)-(d) and for every j < k ≤ N , F (h(j, k), ηj , ηk) = ρj,k.
Choose a stage s = 3k + 2 large enough so that wk = w and for every j < k ≤ N ,
(h(j, k), ηj , ηk) ∈ dom(Fs−1). Now observe that an ī witnessing Clauses (5)(i)-(iii)
must exist by the end of stage s. �

Definition 2.9. Let 〈Φn : n < ω〉 be a sequence of Turing functionals in two real
variables x, y ∈ ωω defined as follows:

Φn(x, y) =
⋃
k<ω

F (n, x � k, y � k).

Here, F : S → ω<ω is the computable function from Lemma 2.8. From now on,
we will write Φn(η0, η1) = ρ instead of F (n, η0, η1) = ρ. So 〈Φn : n < ω〉 satisfies
the following.

(i) For every η0, η1, ρ ∈ ω<ω, if |η0| = |η1| = |ρ| ≥ 1, then there exists n < ω
such that Φn(η0, η1) = ρ.

(ii) If Φn(η0, η1) = ρ and |η0| = |η1| = |ρ| ≥ 1, then Φn(η0
_0, η1

_0) = ρ_0.
(iii) Assume the following.

(a) i?,m,K,N < ω and N ≥ 1.
(b) h : [N + 1]2 → ω.
(c) l̄ = 〈lj,k : j < k ≤ N〉 where each lj,k ∈ ω.
(d) η̄ = 〈ηj : j ≤ N〉 and ρ̄ = 〈ρj,k : j < k ≤ N〉 are sequences in mω.
(e) For every j < k ≤ N , Φh(j,k)(ηj , ηk) = ρj,k.

Then there exists an injective sequence ī = 〈ij : j ≤ N〉 such that
(1) i0 = i?,
(2) for every 1 ≤ j ≤ N , ij > K and
(3) for every j < k ≤ N , Φh(j,k)(ηj

_ij , ηk
_ik) = ρj,k

_lj,k.

3. Forcing

From now on, we fix µ, λ, F̄ , Jλ,µ and Ā as in Definition 2.4 and 〈Φn : n < ω〉
as in Definition 2.9.

Definition 3.1. Define the forcing poset Q as follows. A condition p ∈ Q is a
tuple p = (mp, up, vp, η̄p, ρ̄p, n̄p) satisfying the following.

(i) mp < ω.
(ii) up ⊆ λ× µ is finite and F̄ -closed.
(iii) vp ⊆ 2λ is finite.
(iv) η̄p = 〈ηp,ξ,i : (ξ, i) ∈ up〉 where each ηp,ξ,i ∈ mpω.
(v) ρ̄p = 〈ρp,α : α ∈ vp〉 where each ρp,α ∈ mpω.
(vi) n̄p = 〈np,ξ,i,j : (ξ, i) ∈ up ∧ (ξ, j) ∈ up ∧ i < j〉 where each np,ξ,i,j < ω.
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(vii) If (ξ, i) ∈ up, (ξ, j) ∈ up and i < j, then Φn(ηp,ξ,i, ηp,ξ,j) = ηp,ζ,k where
n = np,ξ,i,j and (ζ, k) = Fξ(i, j).

For p, q ∈ Q, define p ≤ q iff the following hold.

(i) mq ≤ mp.
(ii) uq ⊆ up.

(iii) vq ⊆ vp.
(iv) For each (ξ, i) ∈ uq, ηq,ξ,i � ηp,ξ,i.
(v) For each α ∈ vq, ρq,α � ρp,α.
(vi) n̄q ⊆ n̄p.

(vii) If α ∈ vq and (ξ, i) ∈ uq ∩ Aα, then for every n ∈ [mq,mp), ρp,α(n) 6=
ηp,ξ,i(n).

Recall that, through Q, we are trying to add a set of reals {xξ,i : (ξ, i) ∈ λ× µ}
satisfying Clauses (A)-(C) in Remark 2.7. To ensure Clause (B), we would like to
add another sequence of reals 〈yα : α < 2λ〉 such that each yα is eventually different
from every real in {xξ,i : (ξ, i) ∈ Aα} (see Fact 2.2). So we can think of a condition
p ∈ Q to be promising the following.

(1) For each (ξ, i) ∈ up, ηp,ξ,i � xξ,i.
(2) For every α ∈ vp, ρα � yα and if (ξ, i) ∈ up ∩ Aα, then for every n ≥ mp,

xξ,i(n) 6= yα(n).
(3) Whenever {(ξ, i), (ξ, j), (ζ, k)} ⊆ up, Fξ(i, j) = (ζ, k) and n = np,ξ,i,j , we

have Φn(xξ,i, xξ,j) = xζ,k.

Note that in the definition of Q, the requirement that up be F̄ -closed is to ensure
that the choices of η̄p and n̄p are consistent with Definition 3.1 Clause (vii).

Lemma 3.2. The following sets are dense in Q.

(1) {p ∈ Q : mp ≥ m} for each m < ω.
(2) {p ∈ Q : (ξ, i) ∈ up} for each (ξ, i) ∈ λ× µ.
(3) {p ∈ Q : α ∈ vp} for each α < 2λ.

Proof. (1) Fix m < ω and q ∈ Q. We’ll construct p ∈ Q such that p ≤ q and
mp ≥ m. We can assume that mq < m. Define p as follows: mp = m, uq = up,
vq = vp, n̄p = n̄q, η̄p = 〈ηp,ξ,i : (ξ, i) ∈ up〉 where each ηp,ξ,i = ηq,ξ,i

_0m−mq ,
ρ̄p = 〈ρp,α : α ∈ vp〉 where each ρp,α = ρq,α

_1m−mq . To see that p ∈ Q, we invoke
Definition 2.9 Clause (ii). It is clear that p ≤ q.

(2) Suppose (ξ, i) ∈ λ × µ and q ∈ Q. We can assume that (ξ, i) /∈ uq. Let
u? ⊆ λ × µ be the F̄ -closure of uq ∪ {(ξ, i)}. Define p ∈ Q as follows: mp = mq,
up = u?, vp = vq, η̄p = 〈ηp,ξ,i : (ξ, i) ∈ u?〉 where ηp,ξ,i = ηq,ξ,i if (ξ, i) ∈ uq and
ηp,ξ,i = 0mq if (ξ, i) ∈ u? \ uq. Define n̄p = 〈np,ξ,i,j : (ξ, i) ∈ u? ∧ (ξ, j) ∈ u? ∧ i < j〉
where np,ξ,i,j = nq,ξ,i,j if both (ξ, i) and (ξ, j) are in uq; otherwise using Definition
2.9 Clause (i), choose np,ξ,i,j = n < ω such that Φn(ηp,ξ,i, ηp,ξ,j) = ηp,ζ,k where
(ζ, k) = Fξ(i, j). It is easy to see that p ∈ Q, p ≤ q and (ξ, i) ∈ u? = up.

(3) Fix α < 2λ, q ∈ Q and assume α /∈ vq. Choose p ∈ Q such that mp = mq,
up = uq, vp = vq ∪{α}, n̄p = n̄q, η̄p = η̄q and ρ̄p = 〈ρp,β : β ∈ vp〉 where ρp,β = ρq,β
if β ∈ vq and ρp,α : mq → ω is arbitrary. Then p ≤ q and α ∈ vp. �

The following lemma will be used to show that Q satisfies ccc (Lemma 3.4).
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Lemma 3.3. Suppose p, q ∈ Q. Assume the following.

(1) mp = mq = m.
(2) For every (ξ, i) ∈ up ∩ uq, ηp,ξ,i = ηq,ξ,i.
(3) For every α ∈ vp ∩ vq, ρp,α = ρq,α.
(4) If (ξ, i), (ξ, j) are in up ∩ uq and i < j, then np,ξ,i,j = nq,ξ,i,j.

Then there exists r ∈ Q such that r ≤ p and r ≤ q.

Proof. Let u? be the F̄ -closure of up ∪ uq. Define r ∈ Q as follows.

(i) mr = m, ur = u?, vr = vp ∪ vq.
(ii) ρ̄r = ρ̄p ∪ ρ̄q.

(iii) Put w = u? \ (up ∪ uq) and for each (ξ, i) ∈ w, define ηr,ξ,i = 0m. Define
η̄r = η̄p ∪ η̄q ∪ 〈ηr,ξ,i : (ξ, i) ∈ w〉.

(iv) Finally, define n̄r as follows. Suppose (ξ, i) ∈ ur, (ξ, j) ∈ ur and i < j. If
(ξ, i) and (ξ, j) are both in up, then nr,ξ,i,j = np,ξ,i,j and if (ξ, i) and (ξ, j) are
both in uq, then nr,ξ,i,j = nq,ξ,i,j . Otherwise, using Definition 2.9 Clause (i),
choose nr,ξ,i,j = n such that Φn(ηr,ξ,i, ηr,ξ,j) = ηr,ζ,k where (ζ, k) = Fξ(i, j).

It should be clear that r ∈ Q and it is a common extension of p, q. �

Lemma 3.4. Q satisfies ccc. Hence forcing with Q preserves all cofinalities.

Proof. Let A ⊆ Q be uncountable. Using the ∆-system lemma we can find {pγ :
γ < ω1} ⊆ A such that the following hold.

(1) mpγ = m? does not depend on γ < ω1.
(2) 〈upγ : γ < ω1〉 forms a ∆-system with root u?.
(3) 〈vpγ : γ < ω1〉 forms a ∆-system with root v?.
(4) For every (ξ, i) ∈ u?, ηpγ ,ξ,i = ηξ,i does not depend on γ < ω1.
(5) For every α ∈ v?, ρpγ ,α = ρα does not depend on γ < ω1.
(6) If (ξ, i), (ξ, j) are both in u? and i < j, then npγ ,ξ,i,j = nξ,i,j does not

depend on γ < ω1.

Now Lemma 3.3 implies that any two conditions in {pγ : γ < ω1} have a common
extension in Q. It follows that Q is ccc. �

A similar argument shows that Q has ω1 as a precaliber. We leave the details
for the reader as we won’t be needing this fact.

4. The model

Let G be a Q-generic filter over V . By Lemma 3.4, all cofinalities and therefore
cardinals are preserved in V [G]. Next, by Lemma 3.2 Clauses (2)+(3), we must
have

⋃
{up : p ∈ G} = λ×µ and

⋃
{vp : p ∈ G} = 2λ. In V [G], define the following.

(a) For each (ξ, i) ∈ λ× µ, xξ,i =
⋃
{ηp,ξ,i : p ∈ G ∧ (ξ, i) ∈ up}.

(b) For each α < 2λ, define yα =
⋃
{ρp,α : p ∈ G ∧ α ∈ vp}.

(c) For each {(ξ, i), (ξ, j)} ⊆ λ × µ with i < j, nξ,i,j = np,ξ,i,j where p ∈ G and
{(ξ, i), (ξ, j)} ⊆ up.

By Lemma 3.2 Clause (1), the empty condition forces that both x̊ξ,i and ẙα are
in ωω. Next, we would like to show that the meager subsets of {xξ,i : (ξ, i) ∈ λ×µ}
are indexed by members of Jλ,µ (Lemma 4.3 below). The following lemma will be
used in its proof.

Lemma 4.1. Suppose p, q ∈ P, (ξ?, i?) ∈ λ×µ and η : mq → ω satisfy the following.
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(a) mp ≤ mq.
(b) Let up ∩ uq = u?. For every (ξ, i) ∈ u?, ηp,ξ,i � ηq,ξ,i.
(c) Let vp ∩ vq = v?. For every α ∈ v?, ρp,α � ρq,α.
(d) If (ξ, i) ∈ up \ u? and (ξ′, j) ∈ uq, then ξ′ < ξ.
(e) If α ∈ v?, (ξ, i) ∈ u? ∩Aα and n ∈ [mp,mq), then ηq,ξ,i(n) 6= ρq,α(n).
(f) If (ξ, i), (ξ, j) ∈ u? and i < j, then np,ξ,i,j = nq,ξ,i,j.
(g) (ξ?, i?) ∈ up \ u? and ηp,ξ?,i? � η.
(h) If α ∈ v?, then (ξ?, i?) /∈ Aα.

Then there exists r ∈ Q such that r ≤ p, r ≤ q and ηr,ξ?,i? = η.

Proof. Let B =
⋃
{range(ρq,α) : α ∈ vq} and K = max(B) + 1. Define r ∈ Q as

follows.

(1) mr = mq, ur = up ∪uq and vr = vp ∪ vq. Note that Clause (d) implies that
ur is F̄ -closed.

(2) For each (ξ, i) ∈ uq, define ηr,ξ,i = ηq,ξ,i.
(3) Choosing 〈ηr,ξ,i : (ξ, i) ∈ up \ u?〉: The main constraint here is that we

have to satisfy Definition 3.1 (vii). This is where we use the fact that “Φn’s
are highly surjective”. Let 〈ξn : n ≤ n?〉 be an increasing enumeration of
{ξ : (∃i)[(ξ, i) ∈ (up \ u?)]}. For each n ≤ n?, let In = {i : (ξn, i) ∈ up}
be the nth “column” of up \ u?. We will extend ηp,ξ,i’s columnwise. More
precisely, we’ll define 〈ηr,ξn,i : i ∈ In〉 by induction on n ≤ n?. Assume
that 〈ηr,ξm,i : i ∈ Im〉 has been defined for every m < n and we would like
to define 〈ηr,ξn,i : i ∈ In〉. We have the following cases.

(i) If |In| = 1 and ξn = ξ? (so In = {i?}), then define ηr,ξn,i? = η.
(ii) If |In| = 1 and ξn 6= ξ?, then define ηr,ξn,i ∈ mqω (where In = {i})

by ηp,ξn,i � ηr,ξn,i and for every mp ≤ m < mq, ηr,ξn,i(m) = K.
(iii) Now assume |In| = N + 1 ≥ 2 (so N ≥ 1). By induction on

mp ≤ l < mq, define 〈ηr,ξn,i � l : i ∈ In〉 as follows. Start by defining
ηr,ξn,i � mp = ηp,ξn,i for each i ∈ In. Assume that 〈ηr,ξn,i � l : i ∈ In〉 has
been defined for some l ∈ [mp,mq) such that for every i < j in In,

Φnp,ξn,i,j (ηr,ξn,i � l, ηr,ξn,j � l) = ηr,ξ′,i′ � l (†)
where (ξ′, i′) = Fξn(i, j) (so ξ′ < ξn). Note that this condition is satisfied

at l = mp because p is a condition and therefore satisfies Definition 3.1 (vii).
We will now choose 〈ηr,ξn,i(l) : i ∈ In〉 while ensuring that the above

condition (†) continues to hold at l+ 1. This will be done using Definition
2.9 Clause (iii) as follows.

Let In = {ij : j ≤ N} be an injective enumeration of In where i0 =
i? if ξn = ξ? (and hence i? ∈ In). Recall that for every α ∈ v?, K >
max(range(ρq,α)). Let h : [N + 1]2 → ω be defined by h(j, k) = np,ξn,ij ,ik .

Define ρ̄ = 〈ρj,k : j < k ≤ N〉 and l̄ = 〈lj,k : j < k ≤ N〉 by ρj,k = ηr,ξ′,i′ � l
and lj,k = ηr,ξ′,i′(l) where (ξ′, i′) = Fξn(ij , ik).

Now observe that, by Definition 2.9 Clause (iii), we can choose an
injective sequence 〈mj : j ≤ N〉 such that

(α) ξn = ξ? =⇒ m0 = η(l),
(β) ξn 6= ξ? =⇒ m0 > K,
(γ) for every 1 ≤ j ≤ N , mj > K and
(δ) for every j < k ≤ N ,

Φh(j,k)((ηr,ξn,ij � l)
_mj , (ηr,ξn,ik � l)_mk) = ρj,k

_lj,k.
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Define ηr,ξn,ij (l) = mj for each j ≤ N . It is clear that (†) continues to
hold at l + 1. Together with (2), this concludes the description of η̄r =
〈ηr,ξ,i : (ξ, i) ∈ ur〉.

(4) Choosing 〈ρα : α ∈ vr〉: First define ρr,α = ρq,α for α ∈ vq. Next, choose
S ∈ [ω]<ω such that S contains the ranges of ηr,ξ,i for all (ξ, i) ∈ ur. Now
choose 〈ρr,α : α ∈ vp \ v?〉 such that ρp,α � ρr,α and ρr,α(l) ∈ ω \ S for
every l ∈ [mp,mq) and α ∈ vp \ v?.

(5) Choosing nr,ξ,i,j ’s: Suppose (ξ, i), (ξ, j) are in ur and i < j. Note that
Clause (d) implies that (ξ, i) and (ξ, j) are either both in uq or both in
up. Define nr,ξ,i,j = nq,ξ,i,j in the former case and nr,ξ,i,j = np,ξ,i,j in the
latter. There is no ambiguity by Clause (f).

Let us check that Definition 3.1 Clause (vii) holds for r. Suppose (ξ, i) and
(ξ, j) are both in ur and i < j. Put (ζ, k) = Fξ(i, j) and n = nr,ξ,i,j . We must
show that Φn(ηr,ξ,i, ηr,ξ,j) = ηr,ζ,k. If {(ξ, i), (ξ, j)} ⊆ uq, then this is clear as q
satisfies Definition 3.1 Clause (vii). By Clause (d), the only other possibility is that
{(ξ, i), (ξ, j)} ⊆ up \ u?. In this case, the construction of ηr,ξ,i and ηr,ξ,j in Clause
(3)(iii) guarantees this.

It follows that r ∈ Q. It should also be clear that r ≤ q and ηr,ξ?,i? = η. Finally,
to see that r ≤ p, it suffices to check the following: If α ∈ vp, (ξ, i) ∈ up ∩ Aα
and n ∈ [mp,mr), then ηr,ξ,i(n) 6= ρr,α(n). Fix α ∈ vp, (ξ, i) ∈ up ∩ Aα and
n ∈ [mp,mr). We have the following cases.

Case 1. α ∈ v?. By Clause (h), (ξ, i) 6= (ξ?, i?). Next, if (ξ, i) ∈ u?, then Clause
(e) ensures that ηr,ξ,i(n) 6= ρr,α(n). Finally, if (ξ, i) ∈ up \ (u? ∪ {(ξ?, i?)}), then
the choice of ηr,ξ,i(n) in Clauses 3(ii)-(iii) ensures that ηr,ξ,i(n) ≥ K > ρr,α(n).

Case 2. α ∈ vp \ v?. In this case, the choice of ρr,α in Clause (4) guarantees
that ηr,ξ,i(n) 6= ρr,α(n). �

Remark 4.2. With the possible exception of Clause (d), it should be clear that
all the hypotheses of Lemma 4.1 are necessary. To see why Clause (d) cannot be
dropped, consider the following situation.

(i) ζ3 < ζ2 < ζ1 < ξ < λ.
(ii) i1 < i2 < i3 < µ and j < µ.

(iii) Fξ(i1, i2) = (ζ1, j), Fξ(i1, i3) = (ζ2, j) and Fξ(i2, i3) = (ζ3, j).
(iv) {(ξ, i1), (ξ, i2), (ζ1, j), (ζ2, j), (ζ3, j)} ⊆ uq.
(v) {(ξ, i1), (ξ, i2), (ξ, i3), (ζ1, j), (ζ2, j), (ζ3, j)} ⊆ up.

(vi) np,ξ,i1,i3 = np,ξ,i2,i3 .
(vii) mq = mp + 1, ηq,ξ,i1 = ηq,ξ,i2 and ηq,ζ2,j 6= ηq,ζ3,j.

(viii) vq = vp = ∅.
Now use Clauses (vi)+(vii) to conclude that p, q must be incompatible. Note that

the (ξ?, i?) and η in Clauses (g) and (h) do not play a role here.

We are now ready to show the following.

Lemma 4.3. For every Å ∈ P(λ× µ) ∩ V P,

V P |= {x̊ξ,i : (ξ, i) ∈ Å} is meager iff Å ∈ Jλ,µ.

Proof. First suppose that p ∈ Q, Å ∈ V P ∩P(λ×µ) and p  Å ∈ Jλ,µ. We’ll show

that p  {x̊ξ,i : (ξ, i) ∈ Å} is meager. Recalling the definition of Jλ,µ, we have

p  |{ξ < λ : |{i < µ : (ξ, i) ∈ Å}| = µ}| < λ.
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Put W̊ = {ξ < λ : |{i < µ : (ξ, i) ∈ Å}| = µ}. Since λ is regular, p  sup(W̊ ) < λ.

Choose {(qn, ξn) : n < ω} such that (∀n)(qn  sup(W̊ ) = ξn) and {qn : n < ω}
is a maximal antichain below p. Put ξ? = sup({ξn : n < ω}). Then ξ? < λ and

p  sup(W̊ ) ≤ ξ?.
As µ is regular, for each ξ? < ξ < λ, p  sup({i < µ : (ξ, i) ∈ Å}) < µ. So

by repeating the previous argument, we can find j(ξ) < µ such that p  (∀i <
µ)((ξ, i) ∈ Å =⇒ i < j(ξ)). Define B = {(ξ, i) ∈ λ× µ : (ξ ≤ ξ?) or (ξ > ξ? ∧ i <
j(ξ))} and note that p  Å ⊆ B. Since B ∈ V ∩ Jλ,µ, we can choose α < 2λ such
that B = Aα. Now observe that for every (ξ, i) ∈ Aα, p  (∀∞n)(̊xξ,i(n) 6= ẙα(n))

and hence p  {x̊ξ,i : (ξ, i) ∈ Å} is meager (Fact 2.2).

For the other direction, towards a contradiction, assume that for some p′ ∈ Q
and S̊ ∈ V P ∩ P(λ× µ),

p′  S̊ ∈ J +
λ,µ and {x̊ξ,i : (ξ, i) ∈ S̊} is meager.

Choose a P-generic filter G over V with p′ ∈ G. Working in V [G], choose a
sequence 〈Cn : n < ω〉 such that each Cn is a closed nowhere dense subset of ωω

and {xξ,i : (ξ, i) ∈ S} ⊆
⋃
{Cn : n < ω}. Put Sn = {(ξ, i) : xξ,i ∈ Cn}. Since Jλ,µ

is a σ-ideal, S ∈ J +
λ,µ and S ⊆

⋃
{Sn : n < ω}, we can fix some n? < ω such that

Sn? ∈ J +
λ,µ. Define T = {y � n : (y ∈ Cn?) ∧ (n < ω)} and A = Sn? . It follows that

V [G] |= T ⊆ ω<ω is a nowhere dense subtree, A ∈ J +
λ,µ and (∀(ξ, i) ∈ A)(xξ,i ∈ [T ]).

Therefore we can choose a condition p ∈ G that forces

Å ∈ J +
λ,µ and T̊ ⊆ ω<ω is a nowhere dense subtree and (∀(ξ, i) ∈ Å)(̊xξ,i ∈ [T̊ ]).

Define W = {(ξ, i) ∈ λ× µ : (∃q ≤ p)(q  (ξ, i) ∈ Å)}. Since p  Å ⊆W , we get
W ∈ J +

λ,µ. Define B = {ξ < λ : |{i < µ : (ξ, i) ∈ W}| = µ}. Clearly, |B| = λ. For

each ξ ∈ B, let Cξ = {i < µ : (ξ, i) ∈W}. So |Cξ| = µ. For each ξ ∈ B and i ∈ Cξ,
fix pξ,i ≤ p such that pξ,i  (ξ, i) ∈ Å and (ξ, i) ∈ upξ,i .

Since µ is regular uncountable, for each ξ ∈ B, using the ∆-system lemma, we
can choose Dξ ∈ [Cξ]

µ such that the following hold.

(i) mpξ,i = mξ does not depend on i ∈ Dξ.

(ii) 〈upξ,i : i ∈ Dξ〉 forms a ∆-system with root uξ. Note that uξ is F̄ -closed.
(iii) 〈vpξ,i : i ∈ Dξ〉 forms a ∆-system with root vξ.
(iv) For every (ζ, j) ∈ uξ, ηpξ,i,ζ,j = ηξ,ζ,j does not depend on i ∈ Dξ.
(v) For every α ∈ vξ, ρpξ,i,α = ρξ,α does not depend on i ∈ Dξ.
(vi) If (ζ, j), (ζ, k) are both in uξ and j < k, then npξ,i,ζ,j,k = nξ,ζ,j,k does not

depend on i ∈ Dξ.
(vii) ηpξ,i,ξ,i = ηξ does not depend on i ∈ Dξ.

For each ξ ∈ B, define pξ ∈ Q as follows.

(a) mpξ = mξ, upξ = uξ and vpξ = vξ.
(b) For every (ζ, j) ∈ uξ, ηpξ,ζ,j = ηξ,ζ,j .
(c) For every α ∈ vξ, ρpξ,α = ρξ,α.
(d) If (ζ, j) and (ζ, k) are both in uξ and j < k, then npξ,ζ,j,k = nξ,ζ,j,k.

It is easy to check that pξ ≤ p and for every i ∈ Dξ, pξ,i ≤ pξ. Next, choose
B? ∈ [B]λ such that the following hold.

(i) mξ = m? does not depend on ξ ∈ B?.
(ii) 〈upξ : ξ ∈ B?〉 forms a ∆-system with root u?. Note that u? is F̄ -closed.
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(iii) 〈vpξ : ξ ∈ B?〉 forms a ∆-system with root v?.
(iv) For every (ζ, j) ∈ u?, ηpξ,ζ,j = ηζ,j does not depend on ξ ∈ B?.
(v) For every α ∈ v?, ρpξ,α = ρα does not depend on ξ ∈ B?.
(vi) If (ζ, j), (ζ, k) are both in u? and j < k, then npξ,ζ,j,k = nζ,j,k does not depend

on ξ ∈ B?.
(vii) ηξ = η? does not depend on ξ ∈ B?.

Define p? ∈ Q as follows.

(a) mp? = m?, up? = u? and vp? = v?.
(b) For every (ζ, j) ∈ u?, ηp?,ζ,j = ηζ,j .
(c) For every α ∈ v?, ρp?,α = ρα.
(d) If (ζ, j) and (ζ, k) are both in u? and j < k, then np?,ζ,j,k = nζ,j,k.

It is clear that for every ξ ∈ B? and i ∈ Dξ, pξ,i ≤ pξ ≤ p? ≤ p. Since p? ≤ p,

it follows that p?  T̊ ⊆ ω<ω is a nowhere dense subtree. So we can choose
〈(qn, ηn) : n < ω〉 such that the following hold.

(i) {qn : n < ω} is a maximal antichain below p?.
(ii) For every n < ω, ηn ∈ ω<ω and η? � ηn.

(iii) For every n < ω, qn  [ηn] ∩ [T̊ ] = ∅.
Put U? =

⋃
{uqn : n < ω} and V? =

⋃
{vqn : n < ω} and note that U? ∈

[λ × µ]<ω1 and V? ∈ [2λ]<ω1 . Define A? =
⋃
{Aα : α ∈ V?}. Since µ ≥ ω1 and

Jλ,µ is a µ-complete ideal, we must have A? ∈ Jλ,µ. So we can choose ξ1 < λ such
that for every ξ1 ≤ ξ < λ, |{i < µ : (ξ, i) ∈ A?}| < µ. Since 〈uξ \ u? : ξ ∈ B?〉
and 〈vξ \ v? : ξ ∈ B?〉 consist of pairwise disjoint sets and |B?| = λ is regular
uncountable, we can fix ξ? ∈ B? such that

(a) ξ? > ξ1,
(b) (ξ, i) ∈ U? =⇒ ξ? > ξ,
(c) (uξ? \ u?) ∩ U? = ∅ and
(d) (vξ? \ v?) ∩ V? = ∅.

As |{i < µ : (ξ?, i) ∈ A?}| < µ, we can choose i1 < µ such that for every i1 ≤ i <
µ, (ξ?, i) /∈ A?. Since the sequences 〈upξ?,i \uξ? : i ∈ Dξ?〉 and 〈vpξ?,i \vξ? : i ∈ Dξ?〉
consist of pairwise disjoint sets and |Dξ? | = µ is regular uncountable, we can fix
i? ∈ Dξ? such that

(a) i? > i1,
(b) (∀α ∈ V?)((ξ?, i?) /∈ Aα),
(c) (upξ?,i? \ uξ?) ∩ U? = ∅ and
(d) (vpξ?,i? \ vξ?) ∩ V? = ∅.

Note that clause (b) follows from clause (a) and the choice of i1. Furthermore,
U? ∩ upξ?,i? = u? and V? ∩ vpξ?,i? = v?. Since {qn : n < ω} is dense below p? and
pξ?,i? ≤ p?, one of the qn’s is compatible with pξ?,i? . By reindexing qn’s we can
assume that q0 and pξ?,i? are compatible. Now we come to our key claim.

Claim 4.4. There exists r ∈ Q such that r ≤ q0, r ≤ pξ?,i? and η0 � ηr,ξ?,i? .

Let us first see why this is enough to get a contradiction. Fix a common extension
r of q0 and pξ?,i? such that η0 � ηr,ξ?,i? . Since r ≤ pξ?,i? , it also forces that

(ξ?, i?) ∈ Å. Furthermore, r ≤ q0 ≤ p? ≤ p and p  (∀(ξ, i) ∈ Å)(̊xξ,i ∈ [T̊ ]). It

follows that r  η0 � x̊ξ?,i? ∈ [T̊ ] and therefore r  [η0] ∩ [T̊ ] 6= ∅. But r ≤ q0 and

q0  [η0] ∩ [T̊ ] = ∅. A contradiction.
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Proof of Claim 4.4: Fix a common extension r? of q0 and pξ?,i? . By possibly
extending η0 and r?, we can assume that η0 ∈ mr?ω. For if |η0| < mr? , then we

extend η0 to any η′0 ∈ mqω. This is okay because q0  [η′0] ∩ [T̊ ] = ∅. On the other
hand, if |η0| = m > mr? , then we extend r? to a condition in r′? ∈ Q such that
mr′?

= m (as in the proof of Lemma 3.2(1)). So we can assume |η0| = mr? .
Now there is no reason for ηr?,ξ?,i? to extend η0 but we are going to correct r?

using Lemma 4.1 as follows. First, shrink r? to a condition q ∈ Q defined as follows.

(1) mq = mr? , uq = ur? ∩ (ξ? × µ) and vq = vq0 .
(2) For each (ξ, i) ∈ uq, ηq,ξ,i = ηr?,ξ,i.
(3) For each α ∈ vq, ρq,α = ρr?,α.
(4) If (ξ, i), (ξ, j) are both in uq and i < j, then nq,ξ,i,j = nr?,ξ,i,j .

Now uq0 ⊆ U? ⊆ ξ? × µ and r? ≤ q0. So q ≤ q0. We claim that q, p = pξ?,i?
and η = η0 satisfy all the hypotheses of Lemma 4.1. To see this, note that Clauses
(a)-(c) and (e)-(f) follow from the fact that r? ≤ pξ?,i? . Clause (d) holds since
upξ?,i? ∩ (ξ? × µ) ⊆ uq ⊆ ξ? × µ. Clause (g) holds as (ξ?, i?) /∈ uq ∩ upξ?,i? and
ηpξ?,i? = η? � η0. Finally, Clause (h) follows from the fact that vq∩vpξ?,i? = v? ⊆ V?
and (∀α ∈ V?)(ξ?, i?) /∈ Aα. Therefore, we can apply Lemma 4.1 to get a common
extension r ∈ Q of q and pξ?,i? such that ηr,ξ?,i? = η0. This establishes Claim 4.4
and the proof of Lemma 4.3 is complete. �

Lemma 4.5. Suppose {(ξ, i), (ξ, j), (ζ, k)} ⊆ λ×µ where i < j and Fξ(i, j) = (ζ, k).
Then V P |= Φn̊ξ,i,j (̊xξ,i, x̊ξ,j) = x̊ζ,k.

Proof. Fix {(ξ, i), (ξ, j), (ζ, k)} ⊆ λ × µ such that i < j and Fξ(i, j) = (ζ, k). Let
p ∈ P. Choose q ≤ p such that {(ξ, i), (ξ, j)} ⊆ uq and hence (ζ, k) ∈ uq. Put n =
nq,ξ,i,j . By Definition 3.1 Clause (vii), q  n̊ξ,i,j = n and Φn(̊xξ,i, x̊ξ,j) = x̊η,k. �

Lemma 4.6. For every Å ∈ P(λ× µ) ∩ V P,

V P |= If {x̊ξ,i : (ξ, i) ∈ Å} is 2-Turing independent, then it is meager.

Proof. In view of Lemma 4.3, it suffices to show the following: If p ∈ Q, Å ∈
P(λ × µ) ∩ V Q and p  Å ∈ J +

λ,µ, then there exist r ≤ p and (ξ, i), (ξ, j) ∈ λ × µ
with i < j such that letting Fξ(i, j) = (ζ, k), we have that

r  {(ξ, i), (ξ, j), (ζ, k)} ⊆ Å
For then, Lemma 4.5 implies that xζ,k is computable from xξ,i ⊕ xξ,j via the

Turing functional Φnξ,i,j . Hence r  {x̊ξ,i : (ξ, i) ∈ Å} is not 2-Turing independent.

So fix p ∈ Q, and Å ∈ P(λ× µ) ∩ V Q such that p  Å ∈ J +
λ,µ. Then

p  |{ξ < λ : |{i < µ : (ξ, i) ∈ Å}| = µ}| = λ.

By repeating the ∆-system argument in the proof of Lemma 4.3, we can find B? ∈
[λ]λ, 〈Dξ : ξ ∈ B?〉, 〈pξ,i : ξ ∈ B? and i ∈ Dξ〉 such that pξ,i  (ξ, i) ∈ Å, mξ, uξ,
vξ, pξ, m?, u?, v? and p? are as there.

Fix any ζ ∈ B? and k ∈ Dζ . Recall that 〈uξ : ξ ∈ B?〉 and 〈vξ : ξ ∈ B?〉 form
∆-systems with roots u? and v? respectively. So we can choose ξ ∈ B? such that
ξ > ζ, uζ ∩ uξ = upζ,k ∩ uξ = u? and vζ ∩ vξ = vpζ,k ∩ vξ = v?. Next, recall that
〈upξ,i : i ∈ Dξ〉 and 〈vpξ,i : i ∈ Dξ〉 are ∆-systems with roots uξ and vξ respectively.
It follows that for all but finitely many i ∈ Dξ, we have uζ∩upξ,i = upζ,k∩upξ,i = u?
and vζ ∩ vpξ,i = vpζ,k ∩ vpξ,i = v?. Let Xξ be the set of all such i ∈ Dξ. Then
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|Xξ| = µ. As range(Fξ � [Xξ]
2) = ξ × µ, we can fix i < j in Xξ such that

Fξ(i, j) = (ζ, k).

Claim 4.7. There exists a common extension r ∈ Q of pξ,i, pξ,j and pζ,k.

Proof. Define r as follows.

(1) mr = m?, ur = clF̄ (upξ,i ∪ upξ,j ∪ upζ,k), vr = vpξ,i ∪ vpξ,j ∪ vpζ,k .
(2) ρ̄r = ρ̄pξ,i ∪ ρ̄pξ,j ∪ ρ̄pζ,k .
(3) Let w = ur \ (upξ,i ∪ upξ,j ∪ upζ,k) and for each (ε, l) ∈ w, put ηr,ε,l = 0m? .

Define η̄r = η̄pξ,i ∪ η̄pξ,j ∪ η̄pζ,k ∪ 〈ηr,ε,l : (ε, l) ∈ w〉.
(4) Finally, choose n̄r as follows. Suppose {(ε, i1), (ε, i2)} ⊆ ur and i1 < i2. If

(ε, i1) and (ε, i2) are both in uq for some q ∈ {pξ,i, pξ,j , pζ,k}, then define
nr,ε,i1,i2 = nq,ε,i1,i2 . Otherwise, using Definition 2.9 Clause (i), choose
nr,ε,i1,i2 = n such that Φn(ηr,ε,i1 , ηr,ε,i2) = ηr,γ,i3 where (γ, i3) = Fε(i1, i2).

It is easy to see that r ∈ Q and r extends each one of pξ,i, pξ,j and pζ,k. �

It follows now that r  {(ξ, i), (ξ, j), (ζ, k)} ⊆ Å. This completes the proof of
Lemma 4.6. �

Remark 4.8. The referee made the following observation. The standard colorings
witnessing µ 9 [µ]2µ are quite absolute in the sense that they remain so in any
forcing extension that preserves all stationary subsets of µ. Therefore, if we use
such colorings to obtain F̄ in Definition 2.4, then Lemma 4.6 easily follows. In
fact, we get the following: If {xξ,i : (ξ, i) ∈ A} is 2-Turing independent, then
|{ξ < λ : |{i < µ : (ξ, i) ∈ A}| = µ}| ≤ 2.

Now our proof of Lemma 4.6 does not depend of the choice of F̄ and one should
note here that not all witnesses to µ 9 [µ]2µ remain so in any ccc extension. For

example, let c : [µ]2 → µ satisfy range(c � [X]2) = µ for every X ∈ [µ]µ. Let Q be
the forcing for adding d : [µ]2 → 2 using finite conditions (so Q is the forcing for
adding µ Cohen reals). Observe that in V Q, the product cd : [µ]2 → µ continues to
satisfy range(cd � [X]2) = µ for every X ∈ [µ]µ. In V Q, let R be the forcing whose
conditions are finite s ⊆ µ satisfying range(cd � [s]2) = {0}, ordered by reverse
inclusion. In V Q?R, define H =

⋃
GR. Then Q ? R is ccc and V Q?R |= H ∈ [µ]µ

and range(cd � [H]2) = {0}. It follows that V Q?R is a ccc extension of V Q in which
cd is no longer a witness for µ9 [µ]2.

Proof of Theorem 1.2: Let G be a Q-generic filter over V where Q is as in
Definition 3.1. In V [G], define X = {xξ,i : (ξ, i) ∈ λ× µ}. By Lemma 4.3, X ⊆ ωω
is non-meager. By Lemma 4.6, for every non-meager Y ⊆ X, Y is not 2-Turing
independent. To obtain such a subset of 2ω, take the image X ′ = H[X] of X under
the map H in Fact 2.1. Since H is a homeomorphism from ωω to a co-countable
subspace of 2ω, X ′ must be a non-meager subset of 2ω. To see that every 2-Turing
independent subset of X ′ is meager, use the fact that x and H(x) are computable
from each other. �

5. Lebesgue measure

For n ≥ 1, let (?)n be the following statement: Every Lebesgue non-null set of
reals has a Lebesgue non-null n-Turing independent subset. In [4], the following
was shown. (?)1 is a theorem of ZFC, (?)2 is consistent relative to ZFC (as it follows
from Martin’s axiom) and ¬(?)2 is consistent relative to ZFC plus “there exists a
measurable cardinal”. So we ask the following.
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Question 5.1. Can we prove the consistency of the following statement without
assuming the consistency of any large cardinals: There is a non-null set of reals all
of whose 2-Turing independent subsets are null.

Another open question is the following. Its category analogue was proved in [4]
(Theorem 1.2).

Question 5.2. Can we prove the existence of a Lebesgue non-null Turing independent
set of reals in ZFC?
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