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1 Introduction

External forces when applied on a vesicle can result in the formation of microtubes also known as tethers. This

formation of tether can be studied as deformation of vesicles under axial loading. The deformed shape under

the axial loading depends on the elastic properties of the membrane and hence the theoretical results can be

compared with the experimental observations to obtain elastic properties of the membrane. Because of the

small radius, the effects of the bending is significant in the tethers and can be used to estimate both local and

non-local membrane bending modulus.

In this report, I will discuss the shape change due to application of equal and opposite point forces on a

vesicle with known equilibrium shapes. The nature of forces can be both pushing or pulling. Owing to the fluid

nature of its membrane, initially the vesicle only changes its orientation such that the point forces acts along

the largest possible distance possible for any two points of the membrane. This reorientation doesn’t cost any

energy. For a prolate spheroid,the forces will act along its poles and hence the symmetry of the shape is not

broken. However, for an oblate spheroid, the forces acts along the longer axis (on the equator) and hence the

symmetry is broken.

2 Shape equations for the axially strained vesicles

The elastic energy of the membrane using Area Difference Elasticity (ADE) can be written as

E =WRE +Wb (1)

where WRE is the relative expansivity term and Wb is the bending energy term. The area expansivity term is

written as

WRE =
kr

2Ah2
(∆A−∆A0)

2, (2)
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where kr is the non-local bending modulus, ∆A and ∆A0 are the differences between the areas of the outer

and the inner monolayers at the deformed and reference state, respectively. Furthermore,

∆A = h

∫
(c1 + c2)dA, (3)

where c1 and c2 are the principal curvatures and h is the distance between the monolayers. The bending energy

is expressed as

Wb =
1

2
kc

∫
(c1 + c2)

2dA, (4)

where kc is the bending modulus.The spontaneous curvature c0 is taken to be zero because we are taking a

symmetrical bilayer membrane and also the Gaussian bending term is ignored because it is constant for a given

topology. The energy functional of an axially strained vesicle can be written as

G =WRE +Wb − µV − λA− fZ0, (5)

where µ and λ are Lagrange multiplier for volume and area constraints and f is the Lagrange multiplier

corresponding to the distance between the poles Z0. The above Lagrangian can be non-dimensionalized using

a length scale R0 such that the area of the sphere with the radius R0 is equal to the area of the vesicle. In

other words R0 =
√
A/4π. The non-dimensionalized quantities are

a =
A

4πR2
0

, v =
V

4πR3
0

3

, ∆a =
∆A

4π(R0 + h)2 − 4π(R0)2
=

∆A

8πhR0
, ∆a0 =

∆A0

8πhR0

z0 =
Z0

R0
, wb =

Wb

kc
2

∫ (
2

R

)2

dA

=
Wb

8πkc
, wRE =

WRE

8πkc
=
kr
kc

(∆a−∆a0)
2, and g =

G

8πkc
.

(6)

Using (6) in (5), we obtain the non-dimensionalized form of the energy functional

g = wRE + wb −Mv − La− Fz0, (7)

where

M =
R3

0

6kc
µ, L =

R2
0

2kc
λ and F =

R0

8πkc
f (8)

are non-dimensionalized Lagrange multipliers.

The axisymmetric surface is shown in Fig. 1. r(s) is the distance from the symmetry axis, s is the arc

length, z(s) is the distance along the symmetry axis and ψ(s) is the angle of the contour. From the Fig. 1, we

have the following relations

dr(s)

ds
= cosψ(s),

dz(s)

ds
= sinψ(s),

da =
dA

4πR2
0

=
2πr(s)ds

4πR2
0

=
r̂(ŝ)dŝ

2

dv =
dV

4πR3
0

3

=
πr2(s)dz

4πR3
0

3

=
3

4
r̂2(ŝ) sinψ(ŝ)dŝ, (9)

where r̂ and ŝ are non-dimensionalized value of r and s, respectively. The mean curvature for the axisymmetric

vesicles has been derived in project 2 equation 12 [2]. Using the above relations and expressions for the mean
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curvature, the energy functional (7) becomes

g =
1

16πkc
kc

∮
(2H(s))2dA+

kr
kc

(∆a−∆a0)
2 − L

∮
da−M

∮
dv − F

∮
dz

=

∫ ŝ1

ŝ0

r̂(ŝ)

8

(
dψ(ŝ)

dŝ
+

sinψ(ŝ)

r(ŝ)

)2

dŝ+
kr
kc

(∆a−∆a0)
2 − L

∫ ŝ1

ŝ0

r̂(ŝ)dŝ−M

∫ ŝ1

ŝ0

3r̂2(s) sinψ(ŝ)

4
dŝ− F

∫ ŝ1

ŝ0

sinψ(ŝ)dŝ

The contour angle ψ(ŝ) and distance r(ŝ) are related by the relation given in (9). Therefore, the minimization

problem will contain an extra term

g =

∫ ŝ1

ŝ0

r̂(ŝ)

8

(
dψ(ŝ)

dŝ
+

sinψ(ŝ)

r(ŝ)

)2

dŝ+
kr
kc

(∆a−∆a0)
2 − L

∫ ŝ1

ŝ0

r̂(ŝ)dŝ−M

∫ ŝ1

ŝ0

3r̂2(s) sinψ(ŝ)

4
dŝ

− F

∫ ŝ1

ŝ0

sinψ(ŝ)dŝ+

∫ ŝ1

ŝ0

Γ(ŝ)

(
dr̂(ŝ)

dŝ
− cosψ(ŝ)

)
dŝ

Finding minima of g w.r.t ∆a gives the equilibrium condition

∂g

∂∆a

∣∣∣∣
eq

=
∂(wb + wRE)

∂∆a

∣∣∣∣
eq

=⇒ ∂wb

∂∆a

∣∣∣∣
eq

= −∂wRE

∂∆a

∣∣∣∣
eq

= −2
kr
kc

(∆a−∆a0) = N (10)

The variation of the relative expansivity term can be written as

δwRE = δ(∆a)
dwRE

d∆a

∣∣∣∣
eq

= −Nδ(∆a) = −Nδ
∫ ŝ1

ŝ0

r̂(ŝ)

4

(
dψ(ŝ)

dŝ
+

sinψ(ŝ)

r(ŝ)

)
dŝ (11)

The variation of the energy functional become

δg = δ

∫ ŝ1

ŝ0

r̂(ŝ)

8

(
dψ(ŝ)

dŝ
+

sinψ(ŝ)

r(ŝ)

)2

dŝ+ δ
kr
kc

(∆a−∆a0)
2 − Lδ

∫ ŝ1

ŝ0

r̂(ŝ)

2
dŝ−Mδ

∫ ŝ1

ŝ0

3r̂2(s) sinψ(ŝ)

4
dŝ

− Fδ

∫ ŝ1

ŝ0

sinψ(ŝ)dŝ+ δ

∫ ŝ1

ŝ0

Γ(ŝ)

(
dr̂(ŝ)

dŝ
− cosψ(ŝ)

)
dŝ

= δ

∫ ŝ1

ŝ0

{
r̂(ŝ)

8

(
dψ(ŝ)

dŝ
+

sinψ(ŝ)

r(ŝ)

)2

− N

4

(
dψ(ŝ)

dŝ
r̂(ŝ) + sinψ(ŝ)

)
− L

r̂(ŝ)

2
−M

3r̂2(s) sinψ(ŝ)

4

− F sinψ(ŝ) + Γ(ŝ)

(
dr̂(ŝ)

dŝ
− cosψ(ŝ)

)}
dŝ

= δ

∫ ŝ1

ŝ0

Ldŝ, (12)

The minima is achieved where the first variation is zero. Let us consider the variation of the form

ψε(s) = ψ(s) + ϵα(s),

rε(s) = ρ(s) + ϵβ(s),

s0ε = s0 + εζ0, ψ0ε = ψ0 + εη0, r0ε = r0 + εγ0

s1ε = s1 + εζ1, ψ1ε = ψ1 + εη1, r1ε = r1 + εγ1, (13)

where ψ0 = ψ(s0), r0 = r(s0), ψ1 = ψ(s1) and r1 = r(s1).We have removedˆfor the simplicity of notation and

will continue to do so in further equations. Also at the end points these variations satisfy following relations

ψ̇(s0)ζ0 + α(s0) = η(s0), ṙ(s0)ζ0 + β(s0) = γ(s0)

ψ̇(s1)ζ1 + α(s1) = η(s1), ṙ(s1)ζ1 + β(s1) = γ(s1) (14)
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where (̇) represents derivative w.r.t s. Calculating the first variation of the functional g,

d

dε
g
(
ψε, ψ̇ε, rε, ṙε,

) ∣∣∣∣∣
ε=0

=
d

dε

∫ s1

s0

L
(
rε, ṙε, ψε, ψ̇ε,

)
ds

∣∣∣∣∣
ε=0

,

Upon using the Taylor’s series expansion and integral by parts (described in Project 2 [2]), the above expansion

becomes

d

dε
g
(
ψε, ψ̇ε, rε, ṙε

) ∣∣∣∣∣
ε=0

=

∫ s1

s0

[{
∂L
∂ψ

− d

ds

(
∂L
∂ψ̇

)}
α(s) +

{
∂L
∂r

− d

ds

(
∂L
∂ṙ

)}
β(s)

]
ds

+

[
∂L
∂ψ̇

α(s)

]s1
s0

+

[
∂L
∂ṙ
β(s)

]s1
s0

+

[
ζ1L
∣∣∣
s1

− ζ0L
∣∣∣
s0

]
.

Making the first variation go to zero and since α(s) and β(s) are independent variations, gives the following

equations

∂L
∂ψ

− d

ds

(
∂L
∂ψ̇

)
= 0,

∂L
∂r

− d

ds

(
∂L
∂ṙ

)
= 0, (15)

The boundary conditions upon using the relation (14) gives [
∂L
∂ψ̇

η

]s1
s0

= 0[
∂L
∂ṙ
γ

]s1
s0

= 0[(
L − ∂L

∂ψ̇
ψ̇ − ∂L

∂ṙ
ṙ

)
ζ

]s1
s0

= [Hζ]
s1
s0

= 0, (16)

where H is the Hamiltonian of the functional g. Since L doesn’t depend explicitly on the arc length parameter,

H remains constant on the curve. Also, ζ1 and ζ2 are arbitrary and hence from the boundary conditions (16),

we get an extra condition

H = L − ∂L
∂ψ̇

ψ̇ − ∂L
∂ṙ
ṙ = 0. (17)

To derive the final form of the shape equations from (15) and (17), we need the following relations

∂L
∂ψ

=
r

4

(
ψ̇ +

sinψ

r

)
cosψ

r
−M

3r2 cosψ

4
−N

cosψ

4
− F cosψ + Γ sinψ

∂L
∂ψ̇

=
r

4

(
ψ̇ +

sinψ

r

)
− Nr

4

d

ds

(
∂L
∂ψ̇

)
=
ṙ

4

(
ψ̇ +

sinψ

r

)
+
r

4

(
ψ̈ +

cosψψ̇

r
− sinψ

r2
ṙ

)
− Nṙ

4

∂L
∂r

=
1

8

(
ψ̇ +

sinψ

r

)2

− 1

4

(
ψ̇ +

sinψ

r

)
sinψ

r
−M

3r cosψ

2
− L

2
−N

ψ̇

4

∂L
∂ṙ

= Γ

d

ds

(
∂L
∂ṙ

)
= Γ̇. (18)
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Using above relations, the Hamiltonian becomes

H =
r

8

(
ψ̇2 − sin2 ψ

r2

)
+

3Mr2 sinψ

4
+
Lr

2
+
N sinψ

4
+ Γ cosψ + F sinψ = 0 (19)

and shape equations (15) simplifies to

ψ̈r =
ṙ sinψ

r
− ψ̇ṙ − 3Mr2 cosψ − 4F cosψ + 4Γ sinψ

Γ̇ =
1

8

(
ψ̇2 − sin2 ψ

r2

)
− 3Mr sinψ

2
− L

2
− Nψ̇

4
. (20)

By substituting Γ from (20)1 in (19) , we can write the final form of the shape equations. Finally eliminating

s from the above equations, we can write the shape equations in terms of parameter r. The procedure is

explained in detail in Project 2 [2]. I will skip the steps and directly use the important results. From equation

29 of Project 2, we have

ψ̇ = cosψψ′, ψ̈ = cosψ
[
− sinψψ′2 + cosψψ′′] . (21)

Upon using the above equations, the final shape equation becomes

ψ′′ cosψ − ψ′2 sinψ =
r

2 cos2 ψ

[
sinψ

r

(
sin2 ψ

r2
− ψ′2 cos2 ψ

)
− 6M − 4L

sinψ

r
− 2N

sin2 ψ

r2
− 8F

1

r2

]

−
(
ψ′ cosψ

r
− sinψ

r2

)
, (22)

where the (’) denotes the derivative w.r.t r.

3 Near pole contour angle

At the pole, r −→ 0 and the equation (22) can be expanded in terms of r. Multiplying (22) by r2,we get

r2ψ′′ cosψ − r2ψ′2 sinψ − sin3 ψ

2 cos2 ψ
+

sinψ

2
r2ψ′2 + 3Mr3 + 2Lr2

sinψ

cos2 ψ
+Nr

sin2 ψ

cos2 ψ
+ 4Fr

1

cos2 ψ

+rψ′ cosψ − sinψ = 0 (23)

At the leading order the equation reduces to

sin3 ψ

2 cos2 ψ
+ sinψ = O(r)

sinψ

(
1 +

sin2 ψ

2 cos2 ψ

)
= O(r) =⇒ sinψ = O(r) =⇒ ψ = O(r)

Since ψ −→ 0 as r −→ 0, we can expand (23) in terms of ψ also. Dividing (23) by r and expanding in terms of

ψ, we obtain

rψ′′ − r2ψ′2cp +
cP
2
r2ψ′2 + 3Mr + 2Lr2cp +Nr2c2p + 4F + ψ′ − cp = O(ψ2)

rψ′′ + 4F + ψ′ − cp = O(ψ2, r2),

where cp = sinψ/r ≈ ψ/r is a principal curvature. Multiplying the above equation by r, we obtain a non-

homogeneous Euler-Bernoulli equation at the leading order

r2ψ′′ + rψ′ − ψ = −4Fr.
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The homogeneous solution is given by xm, which upon substitution in the above equation gives m = ±1. Since

we know that the ψ is of order O(r), we discard m = −1 solution. Then the homogeneous solution becomes

ψh = Br, where B is a constant. For finding the non-homogeneous solution, we first substitute r = et which

transforms the above equation to a constant coefficient equation

d2ψ

dt2
− ψ = Fet. (24)

The homogeneous part of the equation has solutions ψ = et, e−t. Therefore, we guess the non-homogeneous

solution of the form ψ = Kt exp t. Substituting the guess in the above equation we get K = −2F . Therefore

the particular solution becomes ψp = −2Ftet = −2Fr ln r. hence, the final form of the solution becomes

ψ = ψh + ψp = (−2F ln r +B)r. (25)

This contour angle ψ at pole can now be used as an initial condition for solving the shape equation (22). The

parameters M , L, N , F and B are chosen according to the given values v, a, ∆a0 and z0 and to fulfill the

condition that the transverse shear force Γ at the equator equals zero due to mirror symmetry.

4 Limiting Shapes

We can find the maximal length (z0) of a vesicle with given volume (v), area (a = 1) and the area difference

(∆a) by considering the dimensionless functional

g̃ = z0 − M̃v − L̃a− Ñ∆a, (26)

where M̃ , L̃ and Ñ are Lagrange multipliers. At equilibrium,

∂g̃

∂v
= 0 =⇒ M̃ =

dz0
dv

,

∂g̃

∂a
= 0 =⇒ L̃ =

dz0
da

,

∂g̃

∂∆a
= 0 =⇒ Ñ =

dz0
d∆a

. (27)

Using the Fig. 1, we can express g̃ as

g̃ =

∫ s1

s0

L̃ds,

where L̃ is the Lagrangian. Doing calculations similar to that shown in equation (12), we arrive at the result

L̃ = sinψ − M̃
3r2 sinψ

4
− L̃

r

2
− Ñ

sinψ + ψ̇r

4
+ Γ̃(ṙ − cosψ), (28)

where the last term is due to the relation (9)1. Making the first variation go to zero, we will arrive at the

equations (15) and boundary conditions (16) where L is replaced by L̃. Using the following results

∂L̃
∂ψ

= cosψ − M̃
3r2 cosψ

4
− Ñ

cosψ

4
+ Γ̃ sinψ

∂L̃
∂ψ̇

= −Ñr
4
,

d

ds

(
∂L̃
∂ψ̇

)
= −Ñ ṙ

4

∂L̃
∂r

= −M̃ 3r cosψ

2
− L̃

2
− Ñ

ψ̇

4

∂L̃
∂ṙ

= Γ̃,
d

ds

(
∂L̃
∂ṙ

)
= ˙̃Γ. (29)
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in equations (15) (where L is replaced by L̃), we arrive at the following Euler-lagrange equations

cosψ − 3

4
M̃r2 cosψ + Γ̃ sinψ = 0,

˙̃Γ +
3M̃r sinψ

2
+
L̃

2
+
Ñψ̇

4
= 0 (30)

and Hamiltonian becomes

H̃ = − sinψ +
3M̃r2 sinψ

4
+
L̃r

2
+
Ñ sinψ

4
+ Γ̃ cosψ = 0. (31)

Finally, eliminating Γ̃, as done in the last section, we arrive at the equation for the limiting shape

3M̃r2 + 2L̃r sinψ + Ñ sin2 ψ − 4 = 0. (32)

These limiting shapes are achieved at infinitely large axial forces. At the poles r = 0, we obtain

sin2 ψ =
4

Ñ
.

Therefore, the contour angles at both the poles are same and Ñ > 4 for any solution to exist. Also since ψ ̸= 0

at the pole, the vesicles are not smooth at the pole. The slopes on the two sides of the poles are given by

ψ = ± sin−1

(√
4

Ñ

)
.

Also, from (27)1, we find that Γ̃ = 0 at the equator (ψ = π/2).

5 Prolate shapes with equatorial symmetry

We can obtain the equilibrium shapes of the vesicles by either directly using equation (22) or by using the set

of equations (19), (20) and (9)1. Equation (22) contains singularity at ψ = π/2 due to the presence of cos(ψ)

in the denominator. Using ode45 or ode15s in MatLab fails to solve for all r. The solution stops at the point

where ψ = π/2. Therefore, we will use the set of equations (19), (20) and (9)1 which contains singularity only

at r = 0. The initial condition can be obtained from (25) and (19) as

ψ0 = (−2F ln(r0) +B)r0

ψ̇0 = (−2F ln(r0) +B)− 2F

Γ0 =
−1

cosψ0

(
r

8

(
ψ̇2
0 −

sin2 ψ0

r20

)
+

3Mr20 sinψ0

4
+
Lr0
2

+
N sinψ0

4
+ F sinψ0

)
r0 = s0 cosψ0 (33)

where s0, r0, ψ0, ψ̇0 and Γ0 are initial values of s, r, ψ, ψ̇ and Γ. The final arc length sf is not known and

hence we iterate for different values of sf such that the relative area a equals one.

To validate the code, it should be tested against the simplest cases. The simplest cases include the case

where N = 0 and F = 0. This corresponds to the case when there is no non-local bending modulus and no

axial force. This case has been studied extensively in literature. To generate the shape we also need parameters

L, M and B. One such set of parameters is available in Table I of [1] for the relative volume v = 0.95. Also

the values of pole to pole distance z0 and the radius at the equator re is provided. We can check our results

with the z0 and re output of our code. The final shape is shown in Fig. 2b. Also the parameters of the vesicle

is given in Table 1. The shape from [1] is shown in Fig. 2a. We can see that both the shapes are same. The

pole to pole distance z0 = 2.593 and equatorial radius re = 0.829 matches exactly with that given in Table I

of [1].
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The second check is done for the case when there is no axial force but non-local bending modulus (N) is

present. A sample parameters for this case is also present in Table I of [1] for v = 0.95. The shape found from

our code doesn’t form a closed shape as shown in Fig. 3. Also the volume v = 1.0742 shows that there is some

inconsistency in the parameters we are using. Also, the shape is not symmetric about the equator. The shape

reported in the [1] is shown in Fig. 4a. However, if we solve only till the equator, i.e. we stop the iteration

when a = 0.5 and take mirror image about the equator for reconstructing the full picture then we get exactly

the shape shown in Fig. 4a. The final shape is shown in Fig. 4b. The values z0 = 2.902 and re = 0.975 from

our result are closely matching with the values z0 = 2.901 and re = 0.973 from [1].

From the shape shown in Fig. 3 it is clear that there doesn’t exist equatorial mirror symmetry in the shape

equation even when we imposed Γ = 0 at the equator. The symmetry has to be artificially imposed in the

problem. However, in the absence of non-local bending modulus N , we saw from Fig. 2b that the equatorial

symmetry exists.

Interestingly, we tried a second case with N ̸= 0 and F = 0. The parameters are shown in Table 1 and are

again borrowed from [1]. The shape obtained by us is shown in Fig. 5 and the shape from [1] is shown in Fig.

6a. In our case, we find an interesting heart like shape at the equator. The values z0 = 2.032 and re = 0.893

varies significantly from the values z0 = 2.507 and re = 0.981 given in [1]. Also, the relative volume v = 0.63

instead of v = 0.95 for which these parameters were given in the [1]. This is a significant mismatch. To attain

the shape similar to Fig. 6a, we change our initial conditions. Originally, the initial condition is obtained from

(33). Equations (33)1 and (33)4 are solved first using Newton-Raphson’s method for r0 and ψ0. These values

are substituted in (33)2 and (33)3 for ψ̇0 and Γ0, respectively. In (33)4, we assume some small value of s0

because taking s0 = 0 gives r0 = 0 which leads to singularity in (33)1. However, we will now discard equation

(33)4 and guess a value of r0. Substituting this guessed values of r0 in first three equations of (33), we will

obtain the initial conditions. We will now implement the shooting method by changing r0 such that v becomes

0.5. The increment in r0 is done as follows

δv = g ∗ (v − 0.5), (34)

where g is the learning rate such that the required speed of convergence and accuracy is achieved. Increase

g will increase the convergence speed but decrease the convergence radius. Therefore, for higher accuracy we

require smaller g. The result with the shooting method is shown in Fig. 6b. We find that the shape now

matches quite closely with that given in [1]. For Fig. 6b, z0 = 2.5157 and re = 0.962 are quite close to that

given in [1].

Finally, we tried to solve for the case when there is presence of axial force using the parameters given in

[1]. Following the similar procedure of shooting method, we were able to obtain a shape shown in Fig. 7b with

z0 = 3.382 and re = 0.927 which matches with values z0 = 3.387 and 0.926 of Fig. 7a reported in [1]. However,

in this case we found that the shape is much more sensitive to the initial conditions. The value of initial radius

for which we obtained this shape is r0 = 1.74812023e − 7 because of this the convergence rate of the code is

very slow. Figure. 8 shows the shape of vesicle for r0 = 1.74812083e − 7. We can see that even a change in

eighth significant digit can change the shape significantly.

6 Generating the parameters

Parameters L,M , N and B are reported in [1] for v = 0.9 and some given values of ∆a and z0. However, regen-

erating shapes using these parameters requires time consuming shooting method for guessing initial condition.

Therefore, we tried to estimate our own parameters for a given value of z0 and ∆a. To find the parameters we

used the gradient descent method. For a given function f(x), the x is updated as

xn+1 = xn −G∇f(xn). (35)
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where n is the number of iteration G is the diagonal matrix that contains the learning rate of each parameter.

By iterating sufficient number of times, the method will give a x0 such that f(x0) = 0. The function f(x) is

called the loss function. We assumed the loss function as

f(x) = w1

∣∣vn − V
∣∣+ w2

∣∣an −A
∣∣+ w3

∣∣∆an −∆A
∣∣+ w4

∣∣zn − Z
∣∣, (36)

where vn is the volume, an is the area, ∆an is the area difference and zn is the distance between the poles.

The subscript n represents the values at nth iteration. V is the desired volume, A is the desired area, Z is the

desired pole distance and ∆A is the desired area difference. w1, w2, w3 and w4 are weight functions. Weight

functions can be adjusted to optimize our results. For example, increasing w1 will give volume closer to V .

Another tuning parameter is the learning rate. For parameters that vary significantly the learning rates should

be small otherwise the required accuracy will not be achieved. The parameters for which we solve are

x =



M

L

N

B

F

s


, (37)

where s is the arc length of the axi-symmetric curve. The gradient of f(x) is found by approximating the

partial differentiation as follows

∂f

∂M
=
f(M + δM,L, F,N,B, s)− f(M − δM,L, F,N,B, s)

2δM
. (38)

To find gradient for any given value of M , the equations (33) is solved for both parameters M + δM and

M − δM . Then the change in loss function is computed. δM is again a parameter to adjust the accuracy. This

procedure is repeated for all parameters. In the start of the iteration we guess initial values of the parameters

and then it is allowed to evolve until value of loss function goes below a minimum value i.e. 1e− 3.

The convergence of this gradient descent method is again a challenging task. There are two ways to speed

up the convergence. First method is dynamic learning rates such that it is big when error is more but small

at smaller errors. We implement this by reducing the learning rates by 1/2 when error becomes 1/2 of the

original. Second method is by adjusting weight functions. We usually keep big values for w1 and w2 such that

the required area and the volume of the vesicle is attained. The deviation in pole height and area difference

doesn’t matter a lot since the vesicle shape obtained is valid. Also, now we don’t require shooting method for

initial condition. As, we are not assuming any symmetry at the equator, we can also generate shapes without

equatorial symmetry.

To check the results of the gradient descent method, we first generated the shapes for reduced volume

v = 0.95 when F = 0 and N = 0 . Figure 9 shows the shape when w3 = w4 = 0. The values z0 = 2.501

and ∆a = 0.513 are close to that reported in [1]. Only significant difference is in the value of parameter B.

For our case B = 1.423 while [1] reports B = 1.490. Therefore, without guessing the initial condition, we are

able to generate the shape using parameters obtained by gradient descent method. Since we now have our on

parameters we can generate shape with different v. For v = 0.99, we have nearly circular shape with z0 = 1.999

and re = 0.98. The shape is shown in 10. Figure 11 shows the shape when v = 0.5 and Fig. 12 shows the

shape when v = 0.3. We can see that the equator is elongated.

Changing parameters also changes the results significantly. Changing the value of M from -1.882 to -3.882

changes the shape as shown in Fig. 13. We find that the radius at the equator is reduced to 0.2778. Figure 14

shows the shape when L is changed from 2.682 to 6.682. The equator is further stretched and re = 1.349.

Figure 15 and 16 shows the shape when N ̸= 0. There is stretching at the poles even in the absence of axial

force. Figure 17 represents the shape when v = 0.7. The equator starts to shrink as v increases.
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Finally, we generate parameters when F ̸= 0. When F ̸= 0, the convergence is very slow. So, we initialize

it very close to the parameters given in [1]. The shape obtained is shown in 18. The convergence is fast when

we reduce the value of v. Figure 19 shows the shape when v = 0.7. The shape has sharp edges at the equator.

7 Shapes with no mirror symmetry

We tried to find the shapes without assuming mirror symmetry about the equator. Initially, we assumed N = 0

and F = 0. Forv = 0.95 and the parameters used for Fig. 2b. We arrived at the shape similar to Fig. 2b .

For v = 0.9 and v = 0.7 the shapes were not closed as shown in Fig. 20 and 21. . To find the closed shape we

modified our loss function as follows

f(x) = w1

∣∣vn − V
∣∣+ w2

∣∣an −A
∣∣+ w3

∣∣∆an −∆A
∣∣+ w4

∣∣zn − Z
∣∣+ ∣∣r0|, (39)

where r0 is the radius at the other end of the pole. Using this form of loss function for v = 0.95 changed the

shape of vesicle from Fig. 2b to 22. For v = 0.79,we obtained the shape shown in Fig. 23. We can see that

the shape is not symmetric about the equator.

8 Limiting shapes

Equation (32) gives the limiting shapes of the vesicles. The equation is quadratic in sinψ. Solving the quadratic

equation gives

sinψ =
−2L̃r ±

√
(2L̃r)2 − 4Ñ(3M̃r2 − 4)

2Ñ
(40)

The limiting shape of the vesicle for L̃ = 8.444, M̃ = −6.486 and Ñ = 4.463 is shown in Fig. 24. For Ñ = 4,

the angle at pole becomes π/2. Figure 25 shows the limiting shape when ψ0 = π/2.

9 Conclusion

We have derived the Euler-Lagrange equation for deriving the shape equations when axial force and non-local

bending modulus is present. We obtained shapes for different parameters given in [1] using shooting method.

We also obtained our own parameters using gradient descent method and showed that the shape may have no

mirror symmetry about the equator. Convergence of the gradient descent method is bad for the cases when

axial force F is present. Finally, we obtained the limiting shapes for the vesicles.
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Figures

Figure 1: Schematic diagram of axisymmetric vesicle . Source: [3]

(a) (b)

Figure 2: Vesicle shape when there is no non-local bending effects and no axial force. (a) shape from our code

(b) shape as reported in [1]

.
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Figure 3: Vesicle shape when there is non-local bending effect present but in the absence of axial force

(a)

(b)

Figure 4: Vesicle shape when there is non-local bending effects present but in the absence of axial force. (a)

shape as reported in [1] (b)shape from our code.

Figure 5: Vesicle shape when there is non-local bending effect and but no axial force
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(a)

(b)

Figure 6: Vesicle shape when there is non-local bending effects present but in the absence of axial force. (a)

shape as reported in [1] (b) shape from our code.

(a)
(b)

Figure 7: Vesicle shape when there is both non-local bending effects and axial force present. (a) shape as

reported in [1] (b) shape from our code

.
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Figure 8: Vesicle shape when there is both non-local bending effects and axial force present but initial condition

is changed slightly.

Figure 9: Vesicle shapes generated with new parameters when N = 0 and F = 0 (v = 0.95).

Figure 10: Vesicle shapes generated with new parameters when N = 0 and F = 0 (v = 0.99).
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Figure 11: Vesicle shapes generated with new parameters when N = 0 and F = 0 (v = 0.50).

Figure 12: Vesicle shapes generated with new parameters when N = 0 and F = 0 (v = 0.30).

Figure 13: Vesicle shapes generated with new parameters when N = 0 and F = 0 (M = −1.882).
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Figure 14: Vesicle shapes generated with new parameters when N = 0 and F = 0 (L = 6.682).

Figure 15: Vesicle shapes generated with new parameters when N ̸= 0 and F = 0 (N = 7.629).

Figure 16: Vesicle shapes generated with new parameters when N ̸= 0 and F = 0 (N = 8.629).
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Figure 17: Vesicle shapes generated with new parameters when N ̸= 0 and F = 0 (v = 0.7).

Figure 18: Vesicle shapes generated with new parameters when N ̸= 0 and F ̸= 0 (v = 0.95).

Figure 19: Vesicle shapes generated with new parameters when N ̸= 0 and F ̸= 0 (v = 0.7).
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Figure 20: Vesicle shapes generated without equatorial symmetry when N = 0 and F = 0 (v = 0.9).

Figure 21: Vesicle shapes generated without equatorial symmetry when N = 0 and F = 0 (v = 0.7).

Figure 22: Vesicle shapes generated without equatorial symmetry when N = 0 and F = 0 (v = 0.95).
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Figure 23: Vesicle shapes generated without equatorial symmetry when N = 0 and F = 0 (v = 0.79).

Figure 24: Limiting shapes for N = 4.463 .

Figure 25: Limiting shapes for N = 4.463.
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Tables

Figure B M L N F

2 1.490 -1.882 2.682 0 0

3 9.078 9.558 -17.866 7.629 0

4 9.078 9.558 -17.866 7.629 0

5 7.348 20.7 -34.9 8.35 0

6 7.348 20.7 -34.9 8.35 0

7 -9.565 65.539 -101.497 -1.158 5.184

8 -9.565 65.539 -101.497 -1.158 5.184

9 1.423 -1.882 2.682 0 0

10 1.223 -1.882 2.682 0 0

11 2.423 -1.882 2.682 0 0

12 2.9133 -1.882 2.682 0 0

13 0.5157 -3.882 2.682 0 0

14 1.5868 -1.882 6.682 0 0

15 9.085 9.558 -17.866 7.629 0

16 9.615 7.558 -17.866 8.629 0

17 9.546 7.558 -17.866 8.629 0

18 -9.565 65.539 -101.497 -1.158 5.184

19 -9.565 65.539 -101.497 -1.158 5.184

20 1.490 -1.882 2.682 0 0

21 1.490 -1.882 2.682 0 0

23 0.1874 -1.882 1.597 0
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