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1 Introduction

All cells have a membrane made of phospholipids which separates the interior of the cell from the exterior
and helps transport the molecules in and out of the cell. Cell organelles like the endoplasmic reticulum,
nucleus, and Golgi complex also contain cell membranes. These cell membranes are usually a few nanometres
thick. Phospholipids are amphipathic. Therefore, the hydrophilic phosphate group lies on the surface, and the
hydrophobic lipid lies inside. They form a bilayer structure, as shown in Fig. 1.

These membranes are flexible and undergo bending deformations upon applying weak forces by external
agents or internal structures such as cytoskeleton and proteins. However, the cell’s surface area and volume
remain constant even during the large deformation. Calculating the membrane shape is, therefore, a significant
biological problem. Some examples of different membrane shapes for bacteria are shown in Fig. 2. The
spirochetes have a corkscrew shape, which favors penetration and packing in the host cells. The biconcave
disc-like shape of the RBC gives it a large surface area to volume ratio and thus helps it undergo large
deformation while traveling through narrow blood vessels. The cell organelles like the endoplasmic reticulum
and Golgi apparatus are a system of interconnected tubules, cylinders, and discs.

The qualitative relationship between liquid crystals and biological membranes has been recognized as early
as the 1850s. However, the first quantitative theory for the shape of the membranes was given by Prof. W.
Helfrich in 1973 using the curvature elasticity theory of liquid crystals.

2 Helfrich’s Shape equation

The biconcave-disc-like shape of the RBC was always a puzzle for researchers. In 1970, Canham proposed that
the shape of the RBC can be determined solely by the bending energy. However, the resultant shape from the
model was more like a dumbell than the original discocyte shape of the RBC. Another approach proposed was
based on the shell theory, which failed to define the state of zero stress and the caterpillar motion of the RBC.
Helfrich proposed that the phospholipid is analogous to the director of the uniaxial liquid crystal. Hence, the

bilayer membrane can be treated like a homeotropic nematic liquid crystal cell with twice the thickness of a



single lipid molecule. He used the frank energy density function for uniaxial liquid crystals to write the bending

energy in the form
1 _
Fy, = §I€c 7{(01 + ey —co)?dA + K%ClchA (1)

where k. is the bending rigidity, K is the Gaussian curvature modulus, ¢; and cg are the two principal curvatures
and ¢g is the spontaneous curvature. The volume and the surface area of the vesicle remain constant, and hence
these two constraints should be considered while finding the first variation. The last term in the bending energy
is neglected due to the Gauss-Bonnet theorem, which says that the integration should be a constant for a given

topology. Ou-Yang and Helfrich [3] derived a general shape equation by considering the variation of the form
or = ym, (2)

where 7 is the positon vector and n is the normal vector to the surface. The shape equations are obtained

from the first variation,
§(Fy + AMA+ APV) =0, (3)

where A is the total area, V is the total volume, A and AP are corresponding Lagrange multipliers. Substituting
(1) and (2) in (3), [4] obtained the shape equation

AP — 20\H + k.(2H + ¢9)(2H? — 2K — coH) + 2k.V*H =0 (4)

Note that there is a typo in the shape equation given in the [1] where “+2K” is written instead of “—2K”.

3 Axisymmetric Vesicles

[1] described three ways of deriving shape equations for the axisymmetric vesicles. These are:
1. Use (4) directly for the axisymmetric case

2. Writing energy functional for the axisymmetric case and then deriving the Euler-Lagrange equation using

the contour arc length s as the parameter

3. Similar to the second except that we use distance from the symmetry axis p as the parameter (see Fig.
3).

3.1 Mean and Gaussian curvatures

The mean and Gaussian curvatures appear in the bending energy (1) and in the shape equation (4). The
second method uses the parameter space (¢, s) while the third method uses the parameter space (¢, p), where
¢ is the azimuthal angle. Therefore to simplify the shape equations, we need to find the mean and Gaussian
curvature as a function of both p and s. From the Fig. 3, we can write the position vector in these parameter

spaces as

(¢, s) = p(s) cos pey + p(s)sin pes + z(s)es
and (¢, p) = pcos per + psin ey + z(p)es. (5)

Also, from the Fig. 3, we find that

dz =dssiny and dp = dscosy
dz = dptant. (6)



Using (5) and (6), we can get the tangent to the surface as

ri0.5) = P30 —p(s) s e + pls) cos e
r1(6,p) = a’“éq;’ 2 _ _psinger + peos des
ro(d, s) = a"(;: %) _ di’éj) cos ey + dfl—f) sin ges + sin 1 (s)es
= cos(s) cos der + cos ¥(s) sin dey + sin(s)es
ro(, p) = a’"(ai’ P) _ cos ger -+ sin des -+ tan t(p)es. (7)

Using the above relations we find the components of metric tensor

gui(s) =ri-ri = p(s)?, gi2(s) =r1-r2 =0 and gaa(s) =1,

gi(p)=ri-r1=0p> gi2(p)=7r1-72=0 and ga(p) = sec’>¥(p),

and hence the components of inverse of metric tensor becomes

g'(s) = g22(5) _ 922(5) _ b1 g (p) = 922(p) _ 922(p) _ 1
9(s)  gu(s)gaa(s)  guls)  p(s)*’ 9(p)  g1u(p)g2(p)  gulp)  p*
12 g12(s) 12 gi2(p)
= =0 = =0
9 (s) s "9 (r) 90)
220 _9uls) _guls) 1 o v _gul) __ gulp 1
O =00 T m@em® e 0 Y T 0 T an ) e
and  g(s) = g11ga2 = p(s)?, 9(p) = p* cos® P(p). (8)
Using (7), we obtain the derivatives of the tangent vectors
r11(¢,8) = 37’18(;/;73) = —p(s) cos pe; — p(s) sin pes,
r11(Y,p) = W = —pcos ¢ge; — psin ges,
r12(, 8) = 87‘1;15,8) = _dz(ss) sin ¢e; + d;;is) cos ¢es,
= —cos(s) sin pe; + cosy(s) cos peq,
r12(Y, p) = 87’1{(;[/)),/)) = —sin ¢e; + cos gea,
oo, s) = W = —sin1(s) cos ¢d1228) e; —siny(s) sin d)%gs)eg + cosw%((:)eg,
d
raa(v.p) = P20 oty e, o)
The normal to the surface at any point can be expressed as
o 71 X To
o x|’
which upon using (7) simplifies to
n(p, s) = sin(s) cos pe; + sin(s) sin pey — cosp(s)es
n(¢, p) = sinp(p) cos pe; + sin(p) sin pes — cosp(p)es. (10)



Now using (9) and (10), we obtain

Lii(s) =n-rin = —p(s)sing(s)  Lii(p) =n-ri = —psiny(p),
Lis(s)=m-r12=0 Lia(p)=mn-r12=0

dip(s)

dy(p)
ds '

and LQQ(S) =N Ty = — dp

Laa(p) = m-ra2 = —secy(p) (11)

The mean curvature, H,and the Gaussian curvature, K, can now be obtained using (8) and (11)

H(s) = 507 (5)Lis(5) = 5 (6 ()i (5) + 97(5) () = — [“E"g L )}
H(p) = ;mm) = % (9" () L1 (p) + g72(p) Las(p)) = —% [COMM )d%f;p P, f;ﬂ
& — L(s) _ Lii(s)Laa(s) _ sintp(s) dip(s)
K(s) g(s) 911(8)g22(s) p(s) ds
_ Llp) _ Lu(p)Laalp) _ siny(p) dy(p)
KO =50 = o ~ =0 @ (12)

3.2 Shape equation from Helfrich’s equation

Substitution of H and K in (4) will give the required shape equation for the angle . Equation (4) contains
Laplacian of the mean curvature, which needs to be evaluated. The Laplacian in the parameter space (¢, p)
can be expressed as

V? =
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>
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N
Qs,
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N———

which upon using (8) becomes

V2 = pbecl¢( )6a¢ Kgll(p);; +g' (M;) psecw(p)] + pseclw(p)aap Kgm(p)g; +922(p)88) psecib(p )]

_ COSZJ( )% {Secf(/’) 8(;5} 4 COS;Z’( )6p Kpcos1/)( )gpﬂ ’

cos(p) O [sec(p) O 0 ] 9
T p 09 { ) 96 Bp (pCObw(p)ap)] ' 13)
Since, H(p) is independent of the azimuthal angle ¢, the Laplacian of H(p) becomes
| cost(p) & o
ver() = U0 D (peos i) ) (o)
2 dH d dH d’H
= wsjj(p)dﬁ()p) — cos(p) sinw(p)lgi)p)d;p) + cos” 9 (p) dpip).

Using H(p) from (12), we derive the following relations

2
dH (p) _ 1 [—Sinw (céiﬁ) +Coswd2w sin . COS’Q/Jd’l/J‘| ’

dp 2 p? p dp
d>H (p) 1 dp\? C i d* d% sing _costwdy sing [dip\®  cost i
. ) - ki 2749 ) kA it il
dp? g | <d0> Ssmwd dp? e dp? * p? p? dp P (dp * p dp?

(14)



where ) = 9(p). By substituting the above expressions, we get the final form of the Laplacian of H(p)

2
V2H(p):_1coi’¢) [—Sind) (?ﬁ) +Cos¢d2w smw_’_coswdi/)‘|

2 p? p dp
2 2

+1coswsinw@ —siny @ +cos¢dw sm1/)+cosw@

2 dp dp p? p dp

1, dip\® o dy d? By _sing  _cosypdip  sinty (dp\®  costp d*p
_Z _ ik B ver ¥ 49 _9 °r oY bl

2cos 1/1[ cos1/1(dp) 381n1/)d 02 +c 0 + = 2 dp P dp + 0 dp?
1 3 2 : 2 2

=—| —cos wdw+4slnwc05 ¢d—¢d—¢—cos¢(sm Y — cos? 1) i —&—w i

2 dp? dp dp p dp

2cos? 1 d?yp  sin® ) — cos? dyp  sintp cos?
- —————cosYp— — ————|. (15)

p  dp? p? dp p?
The Helfrich’s shape equation (4), can be simplified as
AP —2\H + k.(2H + ¢o)(2H? — 2K — coH) + 2k, V*H = 0
AP —2\H + k. (4H?® —AKH — 2coK — c2H) + 2k.V*H = 0. (16)
From (12), we have
1 dy sin® 1) cos? 1) sin 1) dz/J sin2 cos 1 dip
H3(p) = —= |cos w( )—l— +3 +3———,
(h) =3 l dp p? p dp p? dp
1 | cos®>ysiny [ dy 2 sin? 1 cosy dy

KpH(p)=— | ——— | == RS S it 1

(0)H () = 5 [ np () 4 St (7)

Finally, substituting (12),(15) and (17) in (16), we get the final equation of the shape

03 2 0 2 .
AP+ {cosw(p)dw(p) +sm1/1] ‘L 1 os ¢( 1/)) +Sln3¢+3cos ) sin ) (dd)) 4+ g5t 77020051/1@
dp p 2 p p dp p dp
Ly cos®1) sin ) (di/})2+sin2w2cos1/)d1/1 9egco wsmwdl/)+{ 08 (p )d%//( )+Sini//}
p dp p dp p dp dp P
1/) A2 do L o o (dp\®  3sintpcos?ey [dy\?
_ 4 erey _ &y il el ol ek
cos w + 4sin 1) cos? ¢ 07 dp cos ¢ (sin” ¢ — cos® ¢) ap + 5 ap
2 cos® dzw sin i) — cos? ) dy  sint cos?
- costp— — ————— | =0,
p  dp? p? dp p?
which upon rearranging becomes
w , 5 d*) dip w ®  Tsintpcos?y [dy\?
cos 7,/1 - =4sinicos”p——F— — costp(sin? ¢ — cos Z4h) 1 =
dp? dp 2p dp
3 2cos’ ¢ d*y N i _ 2cosingp N sm21/1 LA szqpfcos%/) coszb@
p  dp? 2 P 2p? kc p? dp
AP N Asing sin3‘1/) N cgsing  sintcos® 1 . (18)
ke kep 2p3 2p p?

The term in the red doesn’t match with [1]. Instead of sin® the equation 7 in [1] contains sin® ). However,

the term matches with equation 4.30 of [2].



3.3 Shape equation using s parameter

The second way to find the shape equation is to find Lagrangian for the axisymmetric shape shown in Fig. 3.
From the Fig. 3, we can write the surface area by considering it is made of rings of infinitesimal width ds and
calculate volume by considering discs of infinitesimal thickness dz. This will give us the following relations

upon using (6)

dA = 27p(s)ds,
dV = 7p?(s)dz = mp*(s) sin)(s)ds. (19)

Using the above relations and (12), the energy functional becomes

FS:Fb+>\A+APV:%kcjg(cl+02—c0)2dA+>\j§dA+APj1§dV

= ke / p(s) (dﬁfj) | sinvs) —c0>2ds+27r)\/5:1 o )ds+7rAP/ s) sin gh(s)ds

p(s)
_ o p(s) (dyp(s) | sini(s) > apls) AP,
27rkc/80 lQ( s + 05) co> + e + ch p~(s)siny(s )] . (20)
The equation (6) also gives the following relation between 1 (s) and p(s)
dp(s) _
s = cos(s). (21)

The modified Lagrangian for the functional incorporating the above non-holonomic constraint becomes

L <p<s>, PL) (s, 220 ’,ws)) _ ) (‘“fl‘j) ; ffg) _ ) + 200 D8 26y sin () +2(6) (jp - cosw<s>) ,
(22)

and energy functional becomes
~ 81 .
B =2k, [ L (p(5):5(5): 0(6). 9()2())
S0
where () = d()/ds. The term in the red color is not matching with equation 9 of [1]. There is a factor of 1/2
missing in [1]. However, it is matching with equation 4.93 of [2].
To find the extremal, let us consider the variation of the form
Ye(8) = P(s) + ea(s),
p=(s) = p(s) + €B(s),
(

Ye(s) = 7(s) + er(s),
S0e = So + o,
81 = 81+ (1 (23)
Calculating the first variation of the functional F,
d .
" (ws,%pe,pavg */ (s), ¥=(s), %(8)7%(8)) ds -
e=

which upon using the Taylor’s series expansion becomes

d d [* . : oL oL OL
&2 e (Ve esp o) ‘:=d/ 2 (o 00) e (Grote) + 526(0) + 52800 + 5o A(e) + 5or(e) ) s

2oL oL oL L
. / <8wa< )+ ) B+ 675(5) + 677(5)> ds + [@L

e=0
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Using integral by parts, the above equation simplifies to

d = : . 1 oL d (0L oL d (OL oL
IEFS (wsa’@[]evpsapeaﬁ)%) ‘ _O = /s0 |:{aw - % (a’(/))}a(S) + {6/) - % (6/))}/8(8) + 8’77—(8):| ds

[gen] = o] <ol ol

Making the first variation zero gives the equation of the shape of the axisymmetric vesicles. The last four terms

give the natural boundary condition. Since a(s), 5(s), and 7(s) are independent variations, the integral going

to zero means all terms multiplying these variations should go to zero. This gives these three shape equations
oL _d (0L _
o ds\oyp)
oL d (0L _o
Op p ’
oL
— =0. 24
5 (24

Substitute L from (22) to obtain the final form of the shape equation. To derive the final form of the shape
equation we need following relations

oL o(s) <d7,/}(3) N sin

) _ ) vty

( :
oy = o) (= S S5 008Ul +(5) s ()
oL . di(s) sinw(s)_c
o0 = (S )
OLY _dp(s) (dls) | simvls) Y, o (d(s)  cosi(s) dids) _ sini(s) dp(s)
i (50) =2 (a0 5 o) oo (0 + S50 T %)
OL 1 (di(s)  sini(s) 2 di(s)  sin(s) sin(s) P .
5 =3 (M T ) (TR T ) T e s
oL
%27(5)
d (OL\ _ dy(s)
s<8p> ds
oL dp
o ds cos (s). (25)

Using above relations, we can simplify the shape equations (24) as

oL d (o1\_,
01/J_d5(81/}>_

o(s) (dw(s) N sint(s) co) cos i (s)

P T 2L 2P () cosls) +2(s) s )
_dZS) (dqflis) n bmzﬁg s) ) o(s) <d2;igs) N co;gi; s) qfi(ss) B bmlps )
?,j:p(s) cos(s) + V(S)pséz)w(s) + Sin;;’/;( s) Cosf( 5)d ds) - fﬁ ) )
2 2)-
(L) () 3
(B0 ) ) 2 A s = T )



a—’y = —cosy(s) =0
dp
o = Cos P(s). (28)

To compare with the solution of Helfrich’s equation (18), we change the parameter from s to p and combine

these equations into one equation. For this purpose we use the following relations

dy(s) _ dy(p) dp(s) _ COSw(p)dL(p)
ds dp ds dp
d (dvs)\ _ d dip(p) ) dp(s) _ d dib(p)
ds ( ds > n dip (Coszb(p)dp> “ds COSw(P)dfp (Cosdz(p)dp)

= cos ¢(p) [— siny(p) (dqfi;p)) +Cosw(p)dd¢p(2p)]

4 (d;/;(;)) = cosili(p)dillo {COSQ/J(P) [— sin¥(p) <dl§£}p)) +cosw(p)dj;(2p)] }

ds
2
- cosw<p>{  sinw(p) 257 [— sint(p) (1520) -+ cos i) dzj,’)ip)]
’ d>y(p) d 43
+ cos(p) l— cosh(p) (12(:)) — 3siny(p) dz/;(f) qz(pp) + cos(p) j;(f)] }
d ° d*y(p) d &
- coswp){(sm? 5(0) — o5t i) (52 )~ tcon (o) s ) LI 1 oy L }
(29)
To combine these equations, first rewrite (26) in the form
o dAp dip  cosvp APp?
v = pCbcw@ —l—cotwg — T T cot
and take derivative w.r.t s, which results in
d ) ) dy d* dy\* @y singdy  cos’y
d—z :cotw@ - pcscwcotwﬁg + pcscw@ —csc? (ds) + Cotw@ + SH; Is + co;
— Aka cos cot ) + L;;pz csc? w%,

where v, p and ¢ are function of s. Finally, use (27),(28) and (29) in the above equation and rearrange to get

the second shape equation

cos2 1\ d* dip o (dv\® (24 5sin? ) cos? e [dv\?
sin¢>_COS¢8m 1/)( > + <>

d31
3,8°% _ . 2 ay
cos® 0 <3 sin ¢ cos” Y + p Spsin dp

3.0 72 . .2
_ 008 wM_ cosmw+81n @/}+ A]?p coszb@
p dp? P p? 2k, sinp dp
AP Asing  cEsing sinep(1 4+ cos? )
- . 30
" ( ke kep * 2p 2p? (30)

3.4 Shape equation using p as parameter

We can redo the derivation of the shape equation done in previous section by replacing s with p. To avoid the
repetition, I have omitted some intermediate steps. The area element dA and the volume element dV using

(6) becomes

dA = 2mpdp/ cos(p),
dV = mp?(s)dz = mp* tan(p)dp. (31)



Using the above relations and (12), the energy functional becomes

_ . di(p)
Fp - 27ch /po L (p’w([’)7 dp) dP> (32)
where
dv(p)\ _  p dy(p) | sin(p) ’ Ap AP,
L <p,¢<p>, dp ) e <cos¢<p> X0+ - ) b o s s )
(33)
Similar to (23), let us consider the variation of the form

be(p) = ¥ (p) + ealp),

Poe = pPo + &G0,
p1e = p1 +€C1 (34)

Calculating the first variation of the functional F}, and using the Taylor series expansion and integration by

P0:| '
Making variation go to zero results in the shape equation

oL d (0L

parts as in the previous section, we obtain

/pp {gi - d% <gsz) } a(p))dp + Bza(p)} "k [QL

Po

L () - L

Using the following relations

. 2 .
a—L :7ptanwsecz/) <cos w@ + SH;w — co> + psec <cos w% + sn;z/; — co) ( sind;% + COS¢)

e, 2 dp P
4 ACLIIRID 2 2(s)sec® U(p)
dip (gi) _ <cos¢‘j;ﬁ n Sir;w - co> +p|—sine (?ﬁ)Q + coswccl;;f + CO;¢% - Si;f] . (36)

in (35), we obtain the third shape equation

. 2 .
ptani sec (coswdw N sing) Co) + psectp (cosz/)dw N sing) Co) (—Sin’(/)dw N cosz/;) N Asec 1) tanp
2 dp p dp p dp ke

AP dip  si dip\* 4 sy dip s
+ o P2 (s) sec? i (p) — (cos wdiﬁ + SH;¢ - co) —p l— sin ¢ (d;/)}) + cosz/)dipzf + CO;¢(T;¢ - Sl;;b] =0,

which upon rearranging becomes

&y _sinpcosy (dY\* costy (dy\ sin2p AP Asiny  sing (sing )’
dp? 2 dp P dp 2p2 2k.cosyp  kecosty  2costp o) -

cos? 1

4 Shape equations for special cases

The equations (18),(30) and (37) are three shape equations derived from three different approaches. These
equations are different for the general case. The equation (4) is derived using the variation of the form dr = ¥mn,
which is not guaranteed for the case of variation considered in section 3.3 and 3.4. However, these equations

come out to be the same for special cases.



4.1 Sphere

For the sphere

d
p=rosiny = ipzsecw’ (38)
dp )

where r( is the radius of the sphere. The above relations can be used to obtain the following results

&y d (secw) _ secyptandpdy sec? ¢ tan

dp®  dp \ 7o To dp 3 ’
d3 d (sec?ytany) sec®?)  2sec? 1) tan?
3 7 2 =—>=+t 3 : (39)
dp dp U Ty L

Substituting, (38) and (39), in (18), (30) and (37) and after applying trigonometric identities, we obtain the

same shape equation for all three cases
APry + 208 + kecord — 2kecorg = 0. (40)
This a cubic equation in ry and has three solutions

(2 + kec2) £ 1/(2) + kecd)? + 8k.APcy

ro=0, 7ro=— SAD (41)
4.2 Cylinder
For the cylinder
p=r9 and w:g:?ﬁ:igzijﬁ:& (42)
Substituting the above relations in the (18) and (30), results in the same equation
APry + Arg + %(cgrg -1)=0. (43)
However, substituting (42) in (37) gives
APr3 +2)r2 + ko(coro — 1)2 = 0. (44)

[1] and[2] gives the above equation for the cylinder and claims that it is different from the shape equation
derived from other methods (equation (43) and (44) are different). However, the equation (37), which results
from variation in p is not valid for a given cylinder for which p = rg is constant. It can also be observed from
(37) where cost = 0 appears in the denominator. Furthermore, dA and dV in (31) is undefined for ¢ = 7/2.
We can derive the shape equation for the cylinder by restarting from equation (12). From (12), we get

He L

2p

using which

1
FI):F})—F)\A—FAPV:5]{,'0%(614—62—CO)QdA—F)\%dA—FAPde

k 1 2
:;]{(p—co> dA+/APdV+%/\dA
ke

2

1

=3 < - CO) 21pL + APyp?L + \2r L.
p

For the Fj, to be minimum,
dF ke
d—b =0 = APrj+ g+ ?(cgrg —-1) =0, (45)
»
which is exactly equal to (43).
Solving the three shape equations for the torus gives the same ratio of generating radii equal to 1/4/2 which

is a Clifford torus. However A\, and AP comes out to be different for all these three equations.
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5 Shape equation with different parameters

For the parameter p, the functional is of the form given in (32). Now change the parameter from p to s. Then

the functional modifies to

F, = 2k, / Y (p(s% W) () dlg?) s, (46)
where
2 (o). 2 0 ) = 1 (o) ) (47)

The Euler-Lagrange equation can be obtained by replacing L by L’ and p by s in (35). Now, substituting L’
from (47), we obtain the final form of Euler-Lagrange equation

dp dp
d 6(Lds> 8<Lds> —0

ds 8(@()) 90(s)

ds
dp dp
i o (f{(s)) i a?ggfj)) Ry 88&?;) hen (48)

In cases where dp/ds is independent of 1, the equation reduces to

d oL dp oL dp
ds (dw(s)>ds S oY(s)ds
o &2
ds
5 (W)
al or ay )apldo oL dp_
dp a<d¢(p))a<dw(s)> ds| ds Oy(s)ds
dp ds
P di(s) ds T
d oL <ds dp>dp dp  OL dp _
dp 5 dy(p) 9 dy(s)\ ds| ds Oy(s)ds
dp ds ]
d | on dsdp|dp oL dp_
dp a<d¢(p)>dpds ds  OP(p)ds
dp
d oL oL
it — =0 49
o (2| e )
dp

which is exactly equal to the Euler-Lagrange equation (35) for the parameter p. However, in our case dp/ds =
cos 1) and hence dp/ds depends on . This results in different Euler-Lagrange equations for parameters s and
p-

The Lagrangian L’ given in (47) is from equation (25) from [1]. However, when p(s) and 1(s) are not
independent, it will result in a modified Lagrangian, which should incorporate the relation between p(s) and
¥ (s) as in (22). Therefore the above analysis should not be valid when the variation in p(s) and ¥(s) are not

independent.
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6 Variation in the tangent plane

Any general variation of the position vector, 7 can be decomposed into three directions as

0 0
(57’(87 (b) = 7/’(57 ¢)n + al(sa ¢)&T(Sa ¢) + CYQ(S, d))ai(ér(sa ¢))
If we consider variation only in the tangent plane then the above relation can be expressed as

P (5,8) = 7(5,0) + a1(s, 6) Lor(s,8) + (s, ) (s, ). (50)

0s

Now if we choose a second set of parameters
s'=s+ai(s,0) and ¢ = ¢+ as(s, 9),
and express r in this new parameter space using Taylor series then we obtain

L -

s'=s 09’ s=s
¢ =¢ =0

a !/ / 8 a !/ / a
=r(s,¢)+ (s —s) (r(gs,gﬁ ) £ + r(;¢;¢ ) 8?’)

() = r(s,0) + (4 — ) T 0)

+ o(aq, as)

/ or(s',¢') Os
g T _qb)(@séw’

¢/
or(s',¢') 0
¢ =
O L [P
o =
a2(8,¢)[_ o) Bonlond) | HEA) (1 Dol d)))] L +olarax)
o =
= r(s:0) + a1(5,6) 22D 4 as(5,0) 72D 4 o). 61)

From comparing (50) and (51), we get
’I’/(S, ¢) = ’I"(S/, ¢/) + 0(a17 042),

when variation is considered only in the tangent plane. Therefore, any variation in the tangent plane is
equivalent to the reparameterization of the surface (up to the linear order in variation). This happens because
of the fluid nature of the membrane. The phospholipid molecules are allowed to move along the surface. Hence

variations only along the normal direction play a role in deriving the shape equation.

7 Axisymmetric energy functional

Helfrich’s equation is derived using the general energy functional with the variation of the form §r = yYmn. To
find the shape equation for the axisymmetric vesicles, we later substituted the Gaussian and mean curvatures
of the axisymmetric vesicles. A simpler way to derive the shape equation for the axisymmetric vesicles is to
use axisymmetric energy functional instead of general energy functional as done in 3.3 and3.4 and then use the

variation of the form ér = fn.
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Figure 4 shows the original curve and the curve after the variation J f in the normal direction. The figure
shows the normal at the arc length s, which intersects the new curve at arc length s’ = s+ds. The coordinates
of points A, B, C and D are

ra=[p(s)2(s)], 7B =I[p(s) + cosp(s)ds, 2(s) —siny(s)ds], re=[p(s) +3f(s)sine(s), 2(s) + f(s) cos P(s)]
and rp = [p(s+ds)+f(s+ds)siny(s +ds), z(s + ds) + I f(s + ds) cosyp(s + ds)] (52)

If o’ is the distance from z axis for new curve then

(5 +ds) = p(s) + 6 simp(s).
Therefore the variation of p becomes
dp(s+ds) = p'(s+ds) — p(s+ds) = p(s) + 6 f(s)siny(s) — p(s) — costp(s)ds + o(ds)
=0 f(s)sine(s) — cosp(s)ds + o(ds).

For ds — 0, the above equation becomes

5p(s) = 6f(s) simi(s). (53)
Similarly, from Fig. 4

z(s) + 0 f(s)cost(s) —z(s+ds) — df(s + ds) cos(s + ds)

tan(p(s) +9v(s)) = p(s+ds) +6f(s+ds)sint(s +ds) — p(s) — df(s)sine(s)’

which upon using Taylor series reduces to

sin(s)ds 4+ 6 f(s) sin(s)d(s) — cos(s)d(df(s)

tan (s) + sec §(s)30(s) = cos(s)ds + 6 f(s) cos(s)dp(s) + sinh(s)d(df(s)

+ o(dsd f(s)) + o(ds),

which simplifies to

s = - 2010

The variation in the infinitesimal arc length ds is given by

+ h.ot. (54)

§(ds)=+/(rc —rp)-(roc —rp) —\/(ra—7rp) - (ra—7p),

= \/(T‘C_’I'D)-(’l“c—’l“p)—ds,

which upon using (52) and Taylor series expansion becomes

5(ds) = ¢ [sin<(s)ds + 6f(s) sin (1)) — cos v(s)d(8f(s))]* + [cos v (s)ds + 6 f(s) cos (1) + sinth(s)d(3 f(s))]”
—ds + h.o.t

dip(s)
ds

=ds (1 +3f(s) > —ds+ h.o.t =dy(s)df(s) + h.o.t. (55)

To find the first variation of axisymmetric energy functional, we introduce a parameter ¢ such that the energy
functional becomes

B=2nh, [ L(6(s).006), D(5)) s,
=2k [ Lo, (s). () G

— onk, / CL(p(t), (1), (1), 3(1))dt (56)
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where dot represents derivative w.r.t argument of the function and

p(t) (d‘/’(t) 4 Sl —CO> 1+ 220 AP ) sinpte )]

L(p(t),’lb(t)ﬂb(t),é(t)) = [ 9 (t)

ds(t) p(t) ke ch dt
. 2
e (e smew N e AP L
= [ 5 (s(t) + o0 co> + " + 2kcp (t) smz/;(t)] 5(t). (57)
Setting the first variation of F to zero, we get
t )
6 [ Lo(t) vin), d(0), s0))dt = 0
t )
/ SL(p(t), (), (1), 3(0)dt + (St:L|,_,, —btoL|,_, ) =0
oL
/to {5 + —waw + @w + —5 } at+ (StiL|,_, = dtoL],_, ) =0 (58)
From the equations (53),(54) and (55), we have
o _dof  dofdt  5f . dey  of of o

Substituting the above relations in (58) and neglecting the boundary conditions we obtain

“lo oLSsf oL (—of 6f\  OL_,..| .
/tU [5f1 wa’gb8+¢< + S)‘F&f?ﬂ]dt
bl oL 10L 5f SfoL" 5f
[ o s (338 o () (%) v [452] - [(55) (%))
oL 16L d (1d (0L oL Sf oL\ OL 5f
/to e i Gae) —a G (57)) + oo ora 5 (3 (w)wﬂ (a¢)< )1

Therefore, the shape equation becomes

oL oL oL oL
g a3 (5 ()]~ oo &

Finally, using the following relations

g = (45 ) S S

()

[ (5rma) (S ) b ]

% = _*p <f+ Sh;w Co> ;éﬂ; <f+ Sir;d) CO>2+/Z+ ﬁkljpzsinw] : (61)
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in (60) and rearranging, we get the final shape equation

kep

SQ

2p 2 3 i

VETE VT e vt T Ve

oo Bkep - 2kep | kesing o, kep o <k6(2 —3sin2%))  kep  keps  3keps?

kc . zkc . kc . 2 . .
3 .ps — cokesin + 0 p+Ap |+ | APpcosipp — Mp+00kc£700kcp—fg
53 2 22 5 5
. ke Sin21/J cgkc . .
+$ —T—FT—i—)\—l—APpsmw sin 4. (62)

The above equation is true for any parameter ¢t. By substituting p as ¢t and using the following relations

ds

p=1, é:d—p:secw, (63)

we obtain the original shape equation (18) from Helfrich’s model. Therefore, the equations are the same
whether we use the axisymmetric energy or use energy for general shape and put axisymmetric conditions
later.

8 Conclusion

Deriving shape equations using different variations and parameters results in different equations for the ax-
isymmetric case. For the sphere, all these equations come out to be the same. For cylinders, two equations are
the same. Finally, we also arrive at the same equation using the axisymmetric energy functional instead of the

general energy functional in Helfrich’s model.
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Figure 2: Different shapes of the bacteria. Source: Google
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Figure 3: Schematic of axisymmetric vesicle
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Figure 4: Schematic of axisymmetric vesicle with variation only in normal direction
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