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Abstract

Recently the progressive censoring scheme has been extended for two or more pop-
ulations. In this article we consider the joint Type-II progressive censoring (JPC)
scheme for two populations when the lifetime distributions of the experimental units
of the two populations follow two-parameter generalized exponential distributions with
the same scale parameter but different shape parameters. The maximum likelihood es-
timators of the unknown parameters cannot be obtained in explicit forms. We propose
to use the expectation maximization (EM) algorithm to compute the maximum likeli-
hood estimators. The observed information matrix based on missing value principles
is derived. We study the Bayesian inference of the unknown parameters based on a
beta-gamma prior for the shape parameters, and an independent gamma prior for the
common scale parameter. The Bayes estimators with respect to the squared error loss
function cannot be obtained in explicit form. We propose to use the importance sam-
pling technique to compute the Bayes estimates and the associated credible intervals
of the unknown parameters. Extensive simulation experiments have been performed
to study the performances of the different methods. Finally a real data set has been
analyzed for illustrative purposes.
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1 Introduction

The progressive censoring scheme has received a considerable amount of attention during

the last ten to fifteen years. Briefly we describe the progressive Type-II censoring scheme as

follows. Suppose n units are put on a life testing experiment and k < n be the number of

failures to be observed in the experiment. Let R1, . . . , Rk be non-negative integers satisfying
k∑
i

(Ri+1) = n. In the progressive Type-II censoring scheme, at the time of the first failure,

we withdraw R1 units randomly from the remaining n − 1 surviving units. Next at the

time of the second failure, R2 units are withdrawn randomly from the remaining n− 2−R1

surviving units. The test is continued until the k-th failure takes place and at the k-th failure

the test stops with removal of the remaining Rk surviving units. An exhaustive collection of

work on progressive censoring schemes can be found in Balakrishnan and Cramer (2014).

Recently Rasouli and Balakrishnan (2010) introduced the joint progressive censoring

(JPC) scheme for a comparative study of two populations. It can be briefly described as

follows. Suppose m units are drawn from Population-A (Pop-A) and n units are drawn from

Population-B (Pop-B). Under the JPC scheme two samples are combined and put on a life

testing experiment. Let k be the total number of failures to be observed in the experiment

and R1, . . . , Rk be the non-negative integers satisfying
k∑
i=1

(Ri + 1) = m + n. From the

combined sample, at the time of the first failure W1, R1 units are randomly withdrawn

from the remaining m + n − 1 surviving units. These R1 units consist of S1 units from

the sample of Pop-A and T1 units from the sample of Pop-B, where S1, T1 are random

and S1 + T1 = R1. Similarly, at the second failure time point W2, R2 units are withdrawn

randomly from the remaining m+ n− 2−R1 surviving units which consist of S2 units from

the sample of Pop-A and T2 units from the sample of Pop-B where S2 + T2 = R2. The test

is terminated at the k-th failure time point Wk with removal of all the reaming surviving

units from both the samples. Here we introduce another set of random variables Z1, . . . , Zk,
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where Zi = 1 or 0 if i-th failure comes from the sample of Pop-A or Pop-B, respectively.

Therefore, the censored sample is of the form ((W1, Z1, S1), . . . , (Wk, Zk, Sk)). Let us denote

K1 =
k∑
i=1

Zi and K2 =
k∑
i=1

(1 − Zi) = k −K1, the total number of failures from Pop-A and

Pop-B, respectively, out of total k observed failures.

Rasouli and Balakrishnan (2010) provided the likelihood and Bayesian inference of two

exponential distributions for the JPC scheme. Balakrishnan, Su and Liu (2015) extended

the JPC scheme for more than two exponential populations and provided the likelihood

and Bayesian inference. Parsi, Ganjali and Sanjari (2011) studied conditional maximum

likelihood and interval estimation of the unknown parameters of two Weibull populations

under the JPC scheme. Mondal and Kundu (2017) addressed the problem of point and in-

terval estimation of the unknown parameters of two Weibull populations under the Bayesian

frame-work. Doostparast, Ahmadi and Ahmadi (2013) obtained the Bayesian estimates of

the parameters for a general class of distributions with respect to the squared error and the

LINEX loss functions under the JPC scheme. Parsi and Bairamov (2009) determined the

expected number of failures in life testing experiment under the JPC scheme for different

parametric families of distributions.

In this paper we analyze the joint progressively censored data when the lifetime distri-

butions of the experimental units of the two populations follow two-parameter generalized

exponential distributions with the same scale parameter but different shape parameters. We

study the likelihood as well as the Bayesian inference of the unknown model parameters. It

is observed that the maximum likelihood estimators (MLEs) of the unknown parameters can

be obtained by solving a three dimensional optimization problem. The standard Newton-

Raphson method may be used to solve this problem. In this case one needs to compute

the Hessian matrix, which may not be in a very convenient form. Moreover, it is also ob-

served that for small effective sample size, the standard Newton-Raphson method may not
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converge. Nelder-Mead simplex algorithm can provide the MLEs. But in this method if the

initial guesses are not so close to the MLEs, it may enter a region of local optimum. Due to

this reason, we propose to use the Expectation Maximization (EM) algorithm based on miss-

ing value principle to compute the MLEs of the unknown parameters. In the proposed EM

algorithm, at each ‘E’-step the corresponding ‘M’-step can be performed by solving a single

one dimensional optimization problem. It is verified through extensive grid search that EM

estimates indeed maximize the corresponding likelihood function. Also in these context EM

algorithm is very robust to the initial guesses. We further compute the observed information

matrix based on missing value principle and it can be used to compute the approximate

confidence intervals of the unknown parameters.

To compute the Bayes estimates we have assumed a very flexible beta-gamma prior on

the shape parameters, and an independent gamma prior on the common scale parameter.

The beta-gamma distribution is a very flexible bivariate absolute continuous distribution,

and it incorporates different dependency structure between the marginals, depending on

the hyper-parameters. It can produce both positive and negative dependence among the

marginals. It is observed that the Bayes estimates of the unknown parameters based on the

squared error loss function cannot be obtained in closed form. We propose to use importance

sampling technique to compute the Bayes estimates and the associated credible intervals. A

rigorous Monte Carlo simulation experiment is performed to check the performance of the

different methods. One real data set has been analyzed for illustrative purpose.

The rest of the paper is arranged as follows. In section 2 we provide the notations and

derive the likelihood function. We present the EM algorithm in section 3. In section 4 we

compute the observed information matrix based on missing value principle. The Bayesian

analysis is performed in section 5. The simulation results and the analysis of a real data set

are presented in section 6. Finally, in section 7 we conclude the paper.



5

2 Notation and Likelihood function

2.1 Notations

CRI : Credible Interval

MLE : Maximum likelihood estimator

EM : Expectation Maximization

HPD : Highest Posterior Density

i.i.d. : Independent and identically distributed.

PDF : Probability density function.

Beta(a, b) : Beta distribution with PDF:

fBeta(x, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 < x < 1, a, b > 0.

GA(a, b) : Gamma distribution with PDF:

fGA(x, a, b) =
ba

Γ(a)
xa−1e−bx, x > 0, a, b > 0.

GE(α, λ) : Generalized exponential distribution with PDF:
fGE(x, α, λ) = αλe−λx(1− e−λx)α−1, x > 0, α, λ > 0
and the distribution function, FGE(x, α, λ) = (1− e−λx)α.

2.2 Likelihood Function

Suppose m items from Pop-A say X1, . . . , Xm are i.i.d. GE(α1, λ) and n items from Pop-B

say Y1, . . . , Yn are i.i.d. GE(α2, λ). For a given JPC scheme (R1, . . . , Rk), the observed data

are of the form {(w1, z1, s1), . . . , (wk, zk, sk)}. Therefore, the likelihood function without the
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normalizing constant can be written as

L(α1, α2, λ|data) = αk11 α
k2
2 λ

ke
−λ

k∑
i=1

wi
×

k∏
i=1

((1− e−λwi)α1−1)zi((1− e−λwi)α2−1)1−zi

×
k∏
i=1

(1− (1− e−λwi)α1
)si(1− (1− e−λwi)α2)ti , (1)

where k1 =
k∑
i=1

zi , k2 =
k∑
i=1

(1− zi) = k − k1 and ti = Ri − si for i = 1, . . . k. When k1 = 0,

we have k2 = k, zi = 0 for all 1 ≤ i ≤ k. Thus, the likelihood function (1) becomes,

L(α1, α2, λ|data) = αk2λ
ke−λ

∑k
i=1 wi

k∏
i=1

(1− e−λ
∑k
i=1 wi)α2−1

×
k∏
i=1

(1− (1− e−λ
∑k
i=1 wi)α1)si(1− (1− e−λ

∑k
i=1 wi)α2)ti .

For si = 0, (1− (1− e−λ
∑k
i=1 wi)α1)si = 1 and for si 6= 0, (1− (1− e−λ

∑k
i=1 wi)α1)si is a strictly

increasing function of α1 for fixed λ, and it increases to 1. Therefore, when k1 = 0, for fixed

λ and α2, L(α1, α2, λ|data) is a strictly increasing function of α1 on the parameter space

(0,∞). Similarly when k2 = 0, for fixed λ and α1, L(α1, α2, λ|data) is a strictly increasing

function of α2 on the parameter space (0,∞). Therefore, the MLEs do not exist when k1 = 0

or k2 = 0. For existence of the MLEs, it is assumed that k1, k2 > 0.

Note that, the MLEs can be obtained by maximizing the likelihood equation (1). It

involves solving a three dimensional optimization problem. The standard Newton-Raphson

algorithm may be used for that purpose. It has its own difficulties. To avoid that we propose

to use EM algorithm to compute the MLEs, and it will be explained in the next section.

3 Expectation Maximization (EM) Algorithm

In this section we apply the EM algorithm by treating the problem as a missing value

problem. The missing values in this case are the lifetimes of the censored units at each

failure time point.
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We denote Uij as the lifetime of the j-th censored unit from Pop-A at the i-th failure

time-point Wi, for j = 1, . . . , Si and Vij′ as the lifetime of j
′
-th censored unit from Pop-B at

i-th failure time point Wi, for j
′

= 1, . . . , Ti = Ri − Si and i = 1, . . . , k. The observed data

are ((w1, z1, s1), . . . , (wk, zk, sk)) and the missing data are

U =
(

(u11, . . . , u1s1), . . . , (uk1, . . . uksk)
)

and V = ((v11, . . . , v1t1), . . . , (vk1, . . . , vktk)).

Combining the observed and missing data forms the complete data,(
(w1, z1, s1), . . . , (wk, zk, sk),U ,V

)
= data∗ (say). Based on the complete data the log-

likelihood function without the normalizing constant can be obtained as

lnLc(α1, α2, λ|data∗) = m lnα1 + n lnα2 + (m+ n) lnλ

−λ
( k∑
i=1

wi +
k∑
i=1

si∑
j=1

uij +
k∑
i=1

ti∑
j′=1

vij′
)

+(α1 − 1)
( k∑
i=1

zi ln(1− e−λwi) +
k∑
i=1

si∑
j=1

ln(1− eλuij)
)

+(α2 − 1)
( k∑
i=1

(1− zi) ln(1− e−λwi) +
k∑
i=1

ti∑
j′=1

ln(1− eλvij′ )
)
.

At the ‘E’-step of the EM algorithm the pseudo log-likelihood function can be obtained as

ls(α1, α2, λ) = m lnα1 + n lnα2 + (m+ n) lnλ

−λ
( k∑
i=1

wi +
k∑
i=1

si∑
j=1

E(Uij|Uij > wi) +
k∑
i=1

ti∑
j′=1

E(Vij′ |Vij′ > wi)
)

+(α1 − 1)
( k∑
i=1

zi ln(1− e−λwi) +
k∑
i=1

si∑
j=1

E(ln(1− eλUij)|Uij > wi)
)

+(α2 − 1)
( k∑
i=1

(1− zi) ln(1− e−λwi) +
k∑
i=1

ti∑
j′=1

E(ln(1− eλVij′ )|Vij′ > wi)
)
.

(2)

The following result is needed to compute the necessary conditional expectations as required

in (2).
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Result 1: Given (W1 = w1, Z1 = z1, S1 = s1), . . . , (Wi = wi, Zi = zi, Si = si) the condi-

tional PDF of Uij is given by

fUij |(W1,Z1,S1),...,(Wi,Zi,Si)(uij|(w1, z1, s1), . . . , (wi, zi, si)) = fUij |Wi
(uij|wi) =

fGE(uij, α1, λ)

1− FGE(wi, α1, λ)
,

and the conditional PDF of Vij′ is given by

fV
ij
′ |(W1,Z1,S1),...,(Wi,Zi,Si)(vij′ |(w1, z1, s1), . . . , (wi, zi, si)) = fV

ij
′ |Wi

(vij′ |wi) =
fGE(vij′ , α2, λ)

1− FGE(wi, α2, λ)
,

for i = 1, . . . , k.

Proof: It can be obtained similar as in the progressive Type-II censoring case discussed

in Chapter 9 of Balakrishnan and Cramer (2014).

In the ‘M’-step, we need to maximize the pseudo log-likelihood function with respect to

α1, α2 and λ. If at the r-th stage of the iteration the estimate of (α1, α2, λ) is denoted by

(α
(r)
1 , α

(r)
2 , λ(r)), then (α

(r+1)
1 , α

(r+1)
2 , λ(r+1)) can be obtained by maximizing g(α1, α2, λ) with

respect to α1, α2, λ, where

g(α1, α2, λ) = m lnα1 + n lnα2 + (m+ n) lnλ

−λ
( k∑
i=1

wi +
k∑
i=1

siE(α
(r)
1 ,λ(r))

(U |U > wi) +
k∑
i=1

tiE(α
(r)
2 ,λ(r))

(V |V > wi)
)

+(α1 − 1)
( k∑
i=1

zi ln(1− e−λwi) +
k∑
i=1

siE(α
(r)
1 ,λ(r))

(ln(1− e−λU)|U > wi)
)

+(α2 − 1)
( k∑
i=1

(1− zi) ln(1− e−λwi) +
k∑
i=1

tiE(α
(r)
2 ,λ(r))

(ln(1− e−λV )|V > wi)
)
.

(3)

Here for any function h(·, α1, α2, λ),

E
(α

(r)
1 ,λ(r))

(h(U, α1, α2, λ)|U > wi) =

∫ ∞
wi

h(u, α1, α2, λ)
fGE(u, α

(r)
1 , λ(r))

1− FGE(wi, α
(r)
1 , λ(r))

du

E
(α

(r)
2 ,λ(r))

(h(V, α1, α2, λ)|V > wi) =

∫ ∞
wi

h(v, α1, α2, λ)
fGE(v, α

(r)
2 , λ(r))

1− FGE(wi, α
(r)
2 , λ(r))

dv.
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For any fixed λ, α1 = α̂1(λ) and α2 = α̂2(λ) maximize g(α1, α2, λ), where,

α̂1(λ) = − m
k∑
i=1

zi ln(1− e−λwi) +
k∑
i=1

siE(α
(r)
1 ,λ(r))

(ln(1− e−λU)|U > wi)

,

α̂2(λ) = − n
k∑
i=1

(1− zi) ln(1− e−λwi) +
k∑
i=1

tiE(α
(r)
2 ,λ(r))

(ln(1− e−λV )|V > wi)

.

Therefore, at the (r + 1)-th stage, λ(r+1) can be obtained by maximizing g(α̂1(λ), α̂2(λ), λ)

with respect to λ. Once λ(r+1) is obtained, we compute α
(r+1)
1 and α

(r+1)
2 as α̂1(λ

(r+1)), α̂2(λ
(r+1)),

respectively. We stop the iteration when the convergence takes place.

Therefore, it has been observed that at the ‘M’-step of the EM algorithm, the optimization

becomes a one dimensional optimization problem. Moreover, in our extensive simulation

experiments the EM algorithm has always converged.

4 Observed Information Matrix

In this section following the idea of Louis (1982), we compute the observed information

matrix based on the missing value principles. The observed information can be obtained

as: Observed Information = Complete Information - Missing Information. We denote the

observed information matrix by Iobs(α1, α2, λ), complete information matrix by Ic(α1, α2, λ)

and missing information matrix by Imissing(α1, α2, λ). They are presented below.

Ic(α1, α2, λ) = mI1(α1, α2, λ) + nI2(α1, α2, λ),

where

I1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 and I2 =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 .
Here, a11 = −E

(
∂2 ln fGE(x,α1,λ)

∂α2
1

)
, a12 = a21 = a22 = a23 = a32 = 0,

a13 = a31 = −E
(
∂2 ln fGE(x,α1,λ)

∂α1∂λ

)
, a33 = −E

(
∂2 ln fGE(x,α1,λ)

∂λ2

)
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and b11 = b12 = b13 = b21 = b31 = 0, b22 = −E
(
∂2 ln fGE(x,α2,λ)

∂α2
2

)
,

b23 = b32 = −E
(
∂2 ln fGE(x,α2,λ)

∂α2∂λ

)
, b33 = −E

(
∂2 ln fGE(x,α2,λ)

∂λ2

)
.

The missing observation matrix can be obtained as follows.

Imissing(α1, α2, λ) =
k∑
i=1

si∑
j=1

IUij |Wi
(α1, α2, λ) +

k∑
i=1

ti∑
j′=1

IV
ij
′ |Wi

(α1, α2, λ),

where

IUij |Wi
(α1, α2, λ) =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 and IV
ij
′ |Wi

(α1, α2, λ) =

d11 d12 d13
d21 d22 d23
d31 d32 d33

 .
Here, c11 = −E(

∂2 ln fUi1|Wi (uij |wi)
∂α2

1
), c12 = c21 = c22 = c23 = c32 = 0,

c13 = c31 = −E(
∂2 ln fUi1|Wi (uij |wi)

∂α1∂λ
), c33 = −E(

∂2 ln fUi1|Wi (uij |wi)
∂λ2

),

and d11 = d12 = d13 = d21 = d31 = 0, d22 = −E(
∂2 ln fVi1|Wi (vij |wi)

∂α2
2

),

d23 = d32 = −E(
∂2 ln fVi1|Wi (vij |wi)

∂α2λ
), d33 = −E(

∂2 ln fVi1|Wi (vij |wi)
∂λ2

).

Expressions of all the expectations are given in Appendix.

5 Bayesian Inference

In this section we provide the Bayesian inference of the unknown parameters. To provide the

Bayesian inference we need to assume some priors on the unknown parameters. In this case

for unknown α1, α2 and λ, no conjugate prior exists. It is assumed that α1 and α2 jointly

follow a beta-gamma (BG) distribution. It is well known that four-parameter bivariate beta-

gamma distribution is a very flexible absolute continuous distribution. For a0, b0, a, b > 0,

the joint PDF of α1, α2 can be written as

π(α1, α2|a0, b0, a, b) =
Γ(a+ b)

Γ(a0)Γ(a)Γ(b)
ba00 α

a−1
1 αb−12 (α1 + α2)

a0−a−be−b0(α1+α2); (4)

for 0 < α1, α2 <∞ and zero, otherwise. A beta-gamma distribution with the joint PDF (4)

will be denoted by BG(a0, b0, a, b). The following results will be used to generate samples
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from a beta-gamma distribution.

Result: (X, Y ) ∼ BG(a0, b0, a, b) if and only if U ∼ GA(a0, b0), V ∼ Beta(a, b) and U , V

are independently distributed. Here ∼ means follows, U = (X + Y ) and V =
X

X + Y
.

Proof: Using the transformation of variable it can be shown easily.

Also

E(α1) =
a0
b0

a

(a+ b)
, E(α2) =

a0
b0

b

(a+ b)
,

E(α2
1) =

a0(a0 + 1)

b20

a(a+ 1)

(a+ b)(a+ b+ 1)
, E(α2

2) =
a0(a0 + 1)

b20

b(b+ 1)

(a+ b)(a+ b+ 1)
,

E(α1α2) =
a0(a0 + 1)

b20

ab

(a+ b)(a+ b+ 1)
, Cov(α1, α2) =

a0ab(a+ b− a0)
b20(a+ b)2(a+ b+ 1)

.

The beta-gamma prior incorporates different dependency structure between the two shape

parameters. When a0 > a + b, α1, α2 are positively correlated. For a0 < a + b they are

negatively correlated and independent when a0 = a+ b.

As in Raqab and Madi (2005) it is assumed that for c > 0, d > 0, the scale parameter λ ∼

GA(c, d). It is further assumed that (α1, α2) and λ are independently distributed. Based on

the observed data the joint posterior density can be obtained as

π(α1, α2, λ|data) ∝ αa+k1−11 αb+k2−12 λc+k−1 e
−λ(d+

k∑
i=1

wi)
e−b0(α1+α2)(α1 + α2)

a0−a−b

×
k∏
i=1

((1− e−λwi)α1−1
)
zi

((1− e−λwi)α2−1
)
1−zi

×
k∏
i=1

(1− (1− e−λwi)α1
)
si

(1− (1− e−λwi)α2
)
ti
. (5)

The Bayes estimator of any function of α1, α2, λ, say g(α1, α2, λ) with respect to the squared

error loss function can be obtained as

E(g(α1, α2, λ)|data) =

∞∫
0

∞∫
0

∞∫
0

g(α1, α2, λ)π(α1, α2, λ) dα1 dα2 dλ, (6)
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provided it exists. It is immediate that the Bayes estimators cannot be obtained in explicit

forms. We would like to use the importance sampling technique for that purpose.

For further development, (5) can be re-written as

π(α1, α2, λ|data) ∝ αa+k1−11 αb+k2−12 λc+k−1e
−λ(d+

k∑
i=1

wi)

×(α1 + α2)
a0−a−be−(α1+α2)(b0−A(λ))e−α1(A(λ)−A1(λ))e−α2(A(λ)−A2(λ))

×e

(
k∑
i=1

si ln(1−(1−e−λwi )α1 )+
k∑
i=1

ti ln(1−(1−e−λwi )α2 )−
k∑
i=1

ln(1−eλwi )
)
,

where

A1(λ) =
k∑
i=1

zi ln(1− e−λwi),

A2(λ) =
k∑
i=1

(1− zi) ln(1− e−λwi), and

A(λ) = min(A1(λ), A2(λ)).

We rewrite π(α1, α2, λ|data) as

π(α1, α2, λ|data) ∝ π∗1(α1, α2|λ, data)× π∗2(λ|data)× h(α1, α2, λ),

where

π∗1(α1, α2|λ, data) ∼ BG(a0 + k, b0 − A(λ), a+ k1, b+ k2),

π∗2(λ|data) ∼ GA(c+ k, d+
k∑
i=1

wi),

h(α1, α2, λ) = e−α1(A(λ)−A1(λ))e−α2(A(λ)−A2(λ))

×e

(
k∑
i=1

si ln(1−(1−e−λwi )α1 )+
k∑
i=1

ti ln(1−(1−e−λwi )α2 )−
k∑
i=1

ln(1−eλwi )
)

× 1

(b0 − A(λ))a0+k
.

The following algorithm can be used to compute a simulation consistent estimate of (6).
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Algorithm:

Step 1: Given data, generated λ from π∗2(λ|data).

Step 2: For a given λ, generate α1, α2 from π∗1(α1, α2|λ, data) .

Step 3: Repeat the process say N times to generate ((α11, α21, λ1), . . . , (α1N , α2N , λN)).

Step 4: To compute Bayes estimate of g(α1, α2, λ) compute (g1, . . . , gN) and (h1, . . . , hN),

where gi = g(α1i, α2i, λi) and hi = h(α1i, α2i, λi).

Step 5: A simulation consistent estimate of g(α1, α2, λ) can be obtained∑N
i=1 higi∑N
j=1 hj

=
N∑
i=1

vigi, where vi =
hi∑N
j=1 hj

.

Step 6 To compute 100(1−γ)% CRI of g(α1, α2, λ) , arrange gi’s in ascending order to obtain

(g(1), . . . g(N)) and record the corresponding vi’s as (v(1), . . . , v(N)). A 100(1 − γ)% CRI can

be obtained as (g(j1), g(j2)) where j1, j2 such that

j1 < j2, j1, j2 ∈ {1, . . . , N} and

j2∑
i=j1

vi ≤ 1− γ <
j2+1∑
i=j1

vi. (7)

The 100(1 − γ)% symmetric credible interval is obtained as (g([N γ
2
]), g([N(1− γ

2
)])). The

100(1 − γ)% highest posterior density (HPD) CRI can be obtained as (g(j∗1 ), g(j∗2 )), where

j∗1 , j
∗
2 such that g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1) and j∗1 , j

∗
2 satisfying (7) for all j1, j2 satisfying (7).

Here [x] is the greatest integer less than or equal to x.

6 Simulation results and Data Analysis

6.1 Simulation results

In this section we perform some simulation experiments to study the performances of the

different methods. The simulation study is conducted for different JPC schemes. We have
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considered m = 25, n = 20, effective sample sizes k = 20 and 25, and α1 = 1.5, α2 = 2, λ =

2. The MLEs are calculated using the EM algorithm as discussed before. In simulation

experiments we set the real values of the parameters as the initial guesses in EM algorithm. In

all the cases considered here, it is observed that the estimators obtained using EM algorithm

maximize the likelihood function. The Bayes estimates with respect to the squared error

loss function are computed based on both informative and non-informative priors. For the

informative prior, we have considered the hyper parameters as a0 = 3.5, b0 = 1, a = 1, b =

1.3, c = 2, d = 1. These hyper parameters are chosen so that the prior expectations of the

two populations match with the corresponding true expected values. Following the idea of

Congdon (2014) for the non-informative prior we have taken the hyper parameters as a0 =

b0 = a = b = c = d = 10−5, which are close to zero. Based on maximum likelihood estimates

computed by EM algorithm we compute percentile bootstrap confidence intervals. Bayesian

symmetric credible intervals are constructed for comparison purposes.

In Table 1 we report average estimates (AE) and the associated mean squared errors

(MSE) of the MLEs for different JPC schemes. All these results are obtained based on 1000

replications. In Table 2 we record the average Bayes estimates (BE) and associated MSE

both for the informative and non-informative priors. In this case also all the results are

based on 1000 replications. Here the notation R=(0(2),25,0(17)) indicates R1 = R2 = 0, R3 =

25, R4 = · · · = R20 = 0. In Table 3 we record 90% percentile bootstrap confidence intervals

along with 90% symmetric credible intervals based on informative and non-informative priors.

The average length (AL) and the coverage percentage (CP) of these intervals are computed

based on 1000 replications. In bootstrap confidence intervals, in each replication, intervals

are computed based on 1000 bootstrap samples.

From Table 1 it is clear that as the effective sample size increases the MLEs are performing

better in terms of the MSEs. In all the cases considered the MLEs over-estimate the true
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parameter values. Another point is evident that the MSEs associated with α2 are always

much bigger compared to the other two MSEs associated with α1 and λ. From Table 2 it

is observed that similarly as the MLEs, the Bayes estimates perform better as the effective

sample size k increases, for both the priors. As expected the Bayes estimates perform

better for the informative prior than the non-informative prior. For both the priors, the

Bayes estimators always over-estimate λ and α1, while under-estimate α2. Comparing the

MLEs and Bayes estimators it is clear that the Bayes estimators with non-informative priors

perform better than the MLEs. Hence, we recommend to use the Bayes estimators with non-

informative priors in this case if we do not have any prior information, otherwise informative

priors should be preferred. From Table 3, it is clear that the symmetric credible intervals

are providing shorter average length the the bootstrap CI. Again the symmetric confidence

intervals based on informative prior is performing better than the other two methods.
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Table 1: AE and MSE of maximum likelihood estimates based on 1000 simulations with
m = 25, n = 20, α1 = 1.5, α2 = 2, λ = 2 for different JPC schemes

Censoring Scheme Parameter AE MSE

k=20,R=(25,0(19)) α1 1.781 0.572
α2 2.885 4.851
λ 2.291 0.491

k=20,R=(0(5),25,0(14)) α1 1.776 0.475
α2 2.569 2.481
λ 2.294 0.527

k=20,R=(0(10),25,0(9)) α1 1.817 0.578
α2 2.539 1.546
λ 2.355 0.639

k=20,R=(0(14),25,0(5)) α1 1.812 0.590
α2 2.559 1.574
λ 2.335 0.637

k=20,R=(0(19),25) α1 1.843 0.626
α2 2.559 1.574
λ 2.384 0.726

k=20,R=(10,0(18),15) α1 1.850 0.626
α2 2.617 1.902
λ 2.356 0.610

k=20,R=(2(12),1,0(7)) α1 1.772 0.448
α2 2.510 1.605
λ 2.292 0.515

k=20,R=(0(7),2(12),1) α1 1.866 0.670
α2 2.614 2.139
λ 2.388 0.760

k=25,R=(20,0(24)) α1 1.767 0.531
α2 2.509 1.608
λ 2.213 0.341

k=25,R=(0(5),20,0(19)) α1 1.700 0.312
α2 2.469 1.396
λ 2.205 0.320

k=25,R=(0(10),20,0(14)) α1 1.748 0.401
α2 2.405 1.124
λ 2.244 0.387

k=25,R=(0(15),20,0(9)) α1 1.805 0.498
α2 2.419 1.087
λ 2.268 0.442

k=25,R=(0(20),20,0(4)) α1 1.773 0.441
α2 2.444 1.238
λ 2.258 0.436

k=25,R=(0(24),20) α1 1.836 0.561
α2 2.535 1.400
λ 2.330 0.502

k=25,R=(10,0(23),10) α1 1.790 0.546
α2 2.560 1.750
λ 2.292 0.453

k=25,R=(2(10),0(15)) α1 1.756 0.471
α2 2.546 3.339
λ 2.246 0.384

k=25,R=(0(15),2(10)) α1 1.789 0.471
α2 2.515 1.315
λ 2.320 0.496
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Table 2: BE and MSE of Bayes estimates for informative and non-informative prior based
on 1000 simulations with m = 25, n = 20, α1 = 1.5, α2 = 2, λ = 2 for different JPC schemes

Censoring Scheme Parameter IP NIP
BE MSE BE MSE

k=20,R=(25,0(19)) α1 1.615 0.208 1.662 0.392
α2 1.928 0.214 1.927 0.319
λ 2.068 0.199 2.078 0.266

k=20,R=(0(5),25,0(14)) α1 1.562 0.191 1.588 0.290
α2 1.723 0.246 1.736 0.324
λ 2.070 0.189 2.071 0.300

k=20,R=(0(10),25,0(9)) α1 1.552 0.207 1.574 0.309
α2 1.679 0.285 1.668 0.406
λ 2.067 0.221 2.162 0.387

k=20,R=(0(14),25,0(5)) α1 1.563 0.214 1.606 0.371
α2 1.661 0.313 1.656 0.456
λ 2.200 0.311 2.282 0.487

k=20,R=(0(19),25) α1 1.589 0.238 1.686 0.457
α2 1.614 0.373 1.622 0.507
λ 2.433 0.452 2.607 0.824

k=20,R=(2(12),1,0(7)) α1 1.555 0.198 1.569 0.305
α2 1.741 0.244 1.706 0.365
λ 2.038 0.213 2.089 0.338

k=20,R=(0(7),2(14),1) α1 1.576 0.211 1.645 0.377
α2 1.652 0.335 1.650 0.460
λ 2.259 0.321 2.390 0.551

k=20,R=(10,0(18),15) α1 1.620 0.238 1.727 0.459
α2 1.758 0.291 1.797 0.446
λ 2.227 0.295 2.344 0.469

k=25,R=(20,0(24)) α1 1.591 0.203 1.620 0.309
α2 1.921 0.210 1.887 0.270
λ 2.026 0.154 2.007 0.189

k=25,R=(0(5),20,0(19)) α1 1.550 0.196 1.560 0.246
α2 1.778 0.196 1.752 0.270
λ 2.003 0.177 2.012 0.219

k=25,R=(0(10),20,0(14)) α1 1.533 0.197 1.551 0.291
α2 1.734 0.226 1.689 0.317
λ 2.020 0.182 2.014 0.248

k=25,R=(0(15),20,0(9)) α1 1.529 0.174 1.569 0.298
α2 1.694 0.245 1.675 0.337
λ 2.049 0.184 2.070 0.289

k=25,R=(0(20),20,0(4)) α1 1.538 0.175 1.609 0.309
α2 1.659 0.263 1.664 0.396
λ 2.106 0.183 2.222 0.325

k=25,R=(0(24),20) α1 1.582 0.191 1.688 0.374
α2 1.669 0.301 1.714 0.409
λ 2.267 0.274 2.355 0.425

k=25,R=(2(10),0(15)) α1 1.555 0.176 1.582 0.294
α2 1.817 0.195 1.797 0.284
λ 2.006 0.147 2.020 0.229

k=25,R=(0(15),2(10)) α1 1.570 0.175 1.673 0.374
α2 1.688 0.277 1.711 0.395
λ 2.216 0.242 2.305 0.393

k=25,R=(10,0(23),10) α1 1.628 0.215 1.671 0.391
α2 1.822 0.238 1.848 0.372
λ 2.131 0.190 2.169 0.320
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Table 3: AL and CP of 90% Bootstrap CI and Bayesian 90% symmetric CRI for informative
and non-informative prior based on 1000 simulations with m = 25, n = 20, α1 = 1.5, α2 =
2, λ = 2 for different JPC schemes

Censoring Scheme Parameter Bootstrap CI Symmetric CRI (IP) Symmetric CRI (NIP)
AL CP AL CP AL CP

k=20,R=(25,0(19)) α1 2.783 82.3% 1.370 87.1% 1.474 83.9%
α2 7.864 77.5% 1.493 83.0% 1.552 77.2%
λ 2.155 81.6% 1.318 86.5% 1.386 83.0%

k=20,R=(0(5),25,0(14)) α1 2.351 82.1% 1.142 80.2% 1.197 75.5%
α2 5.796 79.4% 1.118 65.7% 1.157 58.6%
λ 2.303 79.2% 1.310 84.3% 1.391 79.3%

k=20,R=(0(10),25,0(9)) α1 2.581 79.7% 1.094 76.5% 1.140 70.4%
α2 5.100 78.8% 1.071 58.2% 1.100 50.3%
λ 2.503 77.2% 1.314 82.6% 1.393 77.2%

k=20,R=(0(14),25,0(5)) α1 2.728 78.5% 1.052 71.6% 1.150 68.1%
α2 4.832 78.7% 1.020 53.0% 1.089 48.0%
λ 2.600 77.9% 1.265 78.1% 1.376 72.5%

k=20,R=(0(19),25) α1 3.002 74.7% 0.990 71.1% 1.157 63.0%
α2 5.436 76.9% 0.979 50.4% 1.062 48.0%
λ 2.870 74.3% 1.164 60.1% 1.243 50.0%

k=25,R=(20,0(24)) α1 2.436 82.8% 1.300 89.2% 1.366 83.2%
α2 5.548 78.0% 1.382 85.4% 1.408 78.8%
λ 1.864 77.0% 1.167 88.4% 1.204 85.2%

k=25,R=(0(5),20,0(19)) α1 2.077 83.6% 1.112 80.7% 1.197 79.5%
α2 4.509 78.9% 1.112 68.5% 1.141 60.7%
λ 1.888 82.2% 1.162 85.4% 1.237 82.1%

k=25,R=(0(10),20,0(14)) α1 2.149 80.5% 1.070 78.6% 1.131 73.7%
α2 3.885 82.2% 1.044 61.5% 1.073 55.6%
λ 1.968 81.9% 1.197 84.3% 1.238 79.4%

k=25,R=(0(15),20,0(9)) α1 2.310 80.2% 1.076 78.4% 1.147 74.9%
α2 4.020 79.8% 1.043 59.3% 1.113 57.0%
λ 2.108 78.1% 1.194 83.5% 1.263 77.9%

k=25,R=(0(20),20,0(4)) α1 2.408 79.6% 1.080 77.2% 1.173 73.1%
α2 4.272 77.9% 1.052 58.2% 1.129 55.1%
λ 2.172 78.9% 1.175 80.2% 1.267 76.8%

k=25,R=(0(24),20) α1 2.560 76.1% 1.009 77.4% 1.177 71.9%
α2 4.556 76.5% 1.030 57.0% 1.170 56.7%
λ 2.237 75.5% 1.112 70.9% 1.221 66.0%

6.2 Data Analysis

The real data sets have been taken from Xia et al. (2009) which represent the breaking

strength of jute fiber of gauge length 10 mm and 20 mm. Each group of fibers contains 30

similar fibers. The data are presented for easy references.
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Data set 1 (Gauge length 10 mm.): 43.93, 50.16, 101.15 ,108.94, 123.06, 141.38, 151.48,

163.40, 177.25, 183.16, 212.13, 257.44, 262.90, 291.27, 303.90, 323.83, 353.24, 376.42, 383.43,

422.11, 506.60, 530.55, 590.48, 637.66, 671.49, 693.73, 700.74, 704.66, 727.23, 778.17.

Data set 2 (Gauge length 20 mm.): 36.75, 45.58, 48.01, 71.46, 83.55, 99.72, 113.85, 116.99,

119.86, 145.96, 166.49, 187.13, 187.85, 200.16, 244.53, 284.64, 350.70, 375.81, 419.02, 456.60,

547.44, 578.62, 581.60, 585.57, 594.29, 662.66, 688.16, 707.36, 756.70, 765.14.

We divide both the data sets by 1000, and it will not affect the inference procedure. For

each data set we fit a two parameter generalized exponential distribution. The MLEs and

the Kolmogorov-Smirnov (K-S) distance between empirical distribution functions and fitted

distributions along with the corresponding p values are provided in Table 4 for both the data

sets.

Table 4: MLEs and K-S distance

Data set MLE from complete sample K-S distance p value
shape parameter scale parameter

Data Set 1 α1 = 2.224 λ1 = 4.311 0.100 0.921

Data Set 2 α2 = 1.605 λ2 = 3.893 0.149 0.514

To test H0 : λ1 = λ2, we have performed a likelihood-ratio test and the corresponding p

value is 0.722. Hence, we cannot reject the null hypothesis. Based on this assumptions we

have obtained the MLEs of the unknown parameters as; α̂1 = 2.112, α̂2 = 1.680 and λ̂ =

4.103. From the above data sets we have generated two data sets based on two JPC schemes;

Scheme 1: k = 25 with R=(2(17),1,0(7)) and Scheme 2: k = 30 with R=(2(15),0(15)).

Scheme 1: The generated data applying Scheme 1 are presented as:
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(36.75,0,1), (43.93,1,1), (45.58,0,1) , (48.01,0,2), (50.16,1,1), (83.55,1,2), (99.72,1,0), (101.15,1,2),

(108.94,1,2), (116.99,0,1), (119.86,0,1), (151.48,1,1), (183.16,1,0), (187.13,0,0), (187.85,0,0),

(200.16,0,2), (257.44,1,0), (291.27,1,0), (376.42,1,0), (383.43,1,0), (422.11,1,0), (530.55,1,0),

(578.62,0,0), (671.49,1,0), (765.14,0,0).

To find out the initial guesses of the EM algorithm, it is assumed that we have two

independent complete samples of size k1 and k2. i.e. the first sample consists of those wi’s

for which zi’s are 1 and the other sample consists of those wi’s for which zi’s are 0. Here

k1 = 15, k2 = 10 and the samples are

(0.04393, 0.05016, 0.10894, 0.12306, 0.15148, 0.16340, 0.18316, 0.32383, 0.35324, 0.37581,

0.50660, 0.67149, 0.69373, 0.70074, 0.77817)

and

(0.03675, 0.04558, 0.04801, 0.08355, 0.09972, 0.11385, 0.11699, 0.16649, 0.18785, 0.20016,

0.24453, 0.37581, 0.54744, 0.58160, 0.68816, 0.70736).

Based on these two samples we compute the MLEs of the parameters λ, α1, α2 and

consider these estimates as the initial guesses in the EM algorithm. For Scheme 1 the initial

guesses are 1.771, 1.333, 5.484 for α1, α2 and λ, respectively.

In Table 5 we record the maximum likelihood estimates and the Bayes estimates based

on the above data sets. The maximum likelihood estimates are calculated using the EM

algorithm and in this case the number of iterations to converge the EM algorithm is 21. As

theoretically it is difficult to prove the pseudo profile log likelihood function g(α̂1(λ), α̂2(λ), λ)

in EM algorithm is uni-modal, we plot g(α̂1(λ), α̂2(λ), λ) for different iterations of EM algo-

rithm. In Fig 1 we plot g(α̂1(λ), α̂2(λ), λ) for the first four iterations of the EM algorithm

for Scheme 1 and it is observed that each time it is uni-modal. The Bayes estimates are

computed based on non-informative priors. Both the maximum likelihood estimates and the

Bayes are slightly higher than the MLEs based on complete data sets. In Table 6 we compute
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the 90% percentile bootstrap confidence intervals along with the 90% Bayesian symmetric

credible intervals. The bootstrap confidence intervals are wider than the symmetric credible

intervals for all the parameters.

Table 5: Maximum likelihood estimate and Bayes estimate for Scheme 1

Parameter maximum likelihood estimate Bayes estimate

α1 2.184 2.291
α2 1.824 1.769
λ 4.516 4.412

Table 6: 90% Bootstrap CI and Bayesian 90% symmetric CRI for Scheme 1

Parameter Bootstrap CI symmetric CRI
Lower Bound Upper Bound Lower Bound Upper Bound

α1 1.415 3.746 1.072 3.394
α2 1.435 3.843 1.312 2.455
λ 3.412 7.447 2.783 5.768

Scheme 2: The data generated applying Scheme 2 are presented as:

(36.75, 0, 1),( 43.93, 1, 0),(45.58, 0, 1), (48.01, 0 ,1),(50.16 , 1, 2),(83.55, 0 ,2), (99.72 , 0,

1),(108.94, 1 ,2),( 113.85, 0, 1),(116.99 , 0, 2), (123.06 , 1, 1),(151.48 , 1, 2),(163.40 , 1, 0),

(166.49 , 0, 0),(183.16 ,1, 0),(187.85 , 0, 0), (200.16 , 0 ,0),(244.53 , 0 ,0),(323.83 , 1 ,0),

(353.24 , 1, 0),(375.81 , 0 ,0),(506.60 , 1, 0, (547.44 , 0 ,0),( 581.60, 0, 0),(671.49 , 1, 0),

(688.16, 0, 0),( 693.73 , 1, 0),(700.74 , 1, 0),(707.36 , 0, 0), (778.17, 1 ,0).

The initial guesses of EM algorithm are computed as described in Scheme 1. The maxi-

mum likelihood estimates and the Bayes estimates are recorded in Table 7. Here the number

of iterations for EM algorithm to converge is 14. In Fig 2 we plot g(α̂1(λ), α̂2(λ), λ) for

different iterations of EM algorithm for Scheme 2. Also EM algorithm produces estimates

very close to the estimates based on complete data sets. The Bayes estimates are performing
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quite well. In Table 8 we compute the 90% bootstrap confidence intervals along with the 90%

symmetric Bayesian credible intervals. In this scheme also bootstrap confidence intervals are

wider than the symmetric credible intervals.

Table 7: Maximum likelihood estimate and Bayes estimate for Scheme 2

Parameter maximum likelihood estimate Bayes estimate

α1 2.080 2.113
α2 1.660 1.637
λ 4.071 4.192

Table 8: 90% Bootstrap CI and Bayesian 90% symmetric CRI for Scheme 2

Parameter Bootstrap CI symmetric CRI
Lower Bound Upper Bound Lower Bound Upper Bound

α1 1.499 3.797 1.290 2.508
α2 1.199 2.976 1.061 2.334
λ 3.083 6.385 2.891 5.557

Comparing Scheme 1 and Scheme 2 we can conclude that as effective sample size increases

the EM algorithm produces estimates very close to the estimates based on complete data

and the number of iteration to converge is reducing. Similar conclusion will go with Bayes

estimates too.

7 Conclusion

In this article we study the joint progressive censoring scheme (JPC) applied on two general-

ized exponential populations with same scale parameter and different shape parameters. In

likelihood inference the maximum likelihood estimators cannot be obtained in closed form.

We apply expectation maximization (EM) algorithm based on missing value principle to
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derive maximum likelihood estimates of unknown parameters. EM method reduces the like-

lihood inference into a one dimensional optimization problem. In this context EM algorithm

always converge to maximum likelihood estimates. Observed information matrix is derived

using missing value principle. Bayesian analysis is performed assuming a beta-Gamma prior

for shape parameters and a gamma prior for scale parameter. Beta-gamma prior incorpo-

rates different dependency structure between two shape parameters. As the joint prior is

not coming out as a conjugate prior, the Bayes estimator out of squared error loss function

can not be obtained in closed form. We reply on importance sampling technique to compute

the Bayes estimates and the associated credible intervals. In this article we study two gen-

eralized exponential populations which can be extended to general number of populations.

More work is needed along this direction.
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Appendix

E
(∂2 ln fGE(x, α, λ)

∂α2

)
= − 1

α2
,

E
(∂2 ln fGE(x, α, λ)

∂α∂λ

)
=

{
1
λ
[ α
α−1(Ψ(α)−Ψ(1))− (Ψ(α + 1)−Ψ(1))], if α > 2,

α
λ

∫∞
0
xe−2x(1− e−x)α−2 dx, if 0 < α ≤ 2.

E
(∂2 ln fGE(x, α, λ)

∂λ2

)
=


− 1
λ2

[1 + α(α−1)
α−2 (Ψ

′
(1)−Ψ

′
(α− 1) + (Ψ(α− 1)−Ψ(1))2)]

− α
λ2

[Ψ
′
(1)−Ψ(α) + (Ψ(α)−Ψ(1))2], if α > 2,

− 1
λ2
− α(α−1)

λ2

∫∞
0
x2e−2x(1− e−x)α−3 dx if 0 < α ≤ 2.

Here Ψ() and Ψ
′
() are digamma and trigamma functions. Readers may refer to Abramowitz

and Stegun (1964).



24

Let q(x, α, λ|x > c) = fGE(x,α,λ)
1−FGE(c,α,λ)

.

E(
∂2 ln q(x, α, λ|x > c)

∂α2
) = − 1

α2
+ [ln(1− e−λc)]2 (1− e−λc)α

(1− (1− e−λc)α)2
,

E(
∂2 ln q(x, α, λ|x > c)

∂α∂λ
) = h2(c, α, λ)− ce−λc(1− e−λc)α−1

(1− (1− e−λc)α)2

[
1 + α ln(1− e−λc)− (1− e−λc)α

]
,

E(
∂2 ln q(x, α, λ|x > c)

∂λ2
) = − 1

λ2
− (α− 1)h1(c, α, λ) +

αc2e−λc(1− e−λc)α−2

(1− (1− e−λc)α)2

[
αe−λc − 1

+(1− e−λc)α
]
,

where h1(c, α, λ) =
1

λ2(1− (1− e−λc)α)

1∫
(1−e−λc)α

(ln(1− x
1
α ))2(1− x

1
α )x−

2
αdx,

h2(c, α, λ) =
1

λ(1− (1− e−λc)α)

1∫
(1−e−λc)α

(− ln(1− x
1
α ))(1− x

1
α )x−

1
αdx.
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Figure 1: Plot of pseudo profile log likelihood function g(α̂1(λ), α̂2(λ), λ) for different itera-
tion in EM algorithm for Scheme 1.
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Figure 2: Plot of pseudo profile log likelihood function g(α̂1(λ), α̂2(λ), λ) for different itera-
tion in EM algorithm for Scheme 2.


