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1 Introduction

Type-I and Type-II censoring schemes are the two most popular censoring schemes used in

the reliability and life testing experiments. In this article we consider the conventional Type-

I censored lifetime data, when the lifetime of the experimental unit follows a two-parameter

Weibull distribution. A Type-I censoring sampling scheme can be described as follows.

Suppose n units, denoted by Y1, . . . , Yn, are placed on life testing experiment. The lifetimes

of the sample units are independent and identically distributed (i.i.d.) random variables.

The test is terminated when a pre-specified time point, T , on test has been reached. It is

also assumed that the failed items are not replaced.

Weibull distribution is one of the most popular distributions in analyzing skewed data.

Because of its various shapes of the probability density functions and due to monotonicity

property of the hazard function it has been used quite extensively in place of gamma dis-

tribution. Since it has a closed form cumulative distribution function, it can be used very

effectively for analyzing censored data. The Weibull distribution was originally proposed by

Waloddi Weibull, a Swedish mechanical engineer, way back in 1937, and it became widely

known in 1951. Extensive work has been done on Weibull distribution since then. Almost a

book length treatment on Weibull distribution can be found in Chapter 21 of Johnson, Kotz

and Balakrishnan [9].

It is well known that the maximum likelihood estimators (MLEs) of the unknown pa-

rameters of a Weibull distribution cannot be obtained in closed form. In this paper it is

observed that the MLEs can be obtained by a solving a fixed point type equation. We

propose a simple iterative scheme to compute the MLEs, and the proposed method works

quite well. Since the MLEs cannot be obtained in explicit forms, we propose approximate

maximum likelihood estimators (AMLEs), which can be obtained by expanding the normal
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equations using Taylor series. AMLEs have explicit forms, and therefore they can be com-

puted very easily. In case of two-parameter Weibull distribution, it is not possible to compute

the exact distributions of the MLEs. We have used the asymptotic distribution of the MLEs

to construct approximate confidence intervals of the unknown parameters, based on MLEs.

Since we are not able to obtain the exact and asymptotic distribution of the AMLEs, we use

the asymptotic distribution of the MLEs, and by replacing the MLEs with the AMLEs, we

construct the approximate confidence intervals based on AMLEs. We construct confidence

intervals of the unknown parameters, based on bootstrapping method also.

We further consider the Bayesian inference of the unknown parameters of a two-parameter

Weibull distribution. For the Bayesian inference, we need to assume some prior distributions

of the unknown parameters. If the shape parameter of the Weibull distribution is known,

the most natural choice of the prior of the scale parameter is the conjugate gamma prior.

If the shape parameter is also unknown, the continuous conjugate priors do not exist, see

for example Kaminsky and Krivstsov [10], although there exists a continuous-discrete prior

distribution, see Soland [14]. The continuous component of this distribution is related to

the scale parameter, and the discrete one is related to the shape parameter. This method

has been widely criticized in the literature because of its difficulty in applications to real life

problems, see Kaminsky and Krivtsov [10]. Another approach is to use the same conjugate

prior on the scale parameter, and use independent uniform prior on the shape parameter.

Some authors use independent uniform priors on both the shape and scale parameters, see

for example Smith and Naylor [13] or Dellaportas and Wright [5]. Clearly they have their

own limitations.

In this paper we have used the same gamma prior on the scale parameter, but we have

used fairly general prior on the shape parameter, and that will be explained in details in

section 6. The Bayes estimates of the unknown parameters cannot be obtained in explicit
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forms as expected. We have used Markov Chain Monte Carlo (MCMC) technique to compute

the Bayes estimates and also to construct the highest posterior density (HPD) credible

intervals. Extensive simulations are performed to compare the performances of the MLEs,

approximate MLEs and the Bayes estimators. One data set has been analyzed for illustrative

purposes.

It should be mentioned that in the frequentist set up the comparison of the different

estimators of the Weibull parameters can be found in Hossain and Zimmer [6]. Jeng and

Meeker [8] compared the performances of the different confidence intervals. But none of

them considered the AMLEs. Moreover, the comparison of the MLEs or AMLEs with the

Bayesian estimators and the comparison between the confidence intervals with the corre-

sponding credible intervals are not available in the literature. We believe that is the main

contribution of this paper.

The rest of the paper is organized as follows. In section 2, we describe the model and

notations. The MLEs and AMLEs are provided in sections 3 and 4 respectively. Bootstrap

confidence intervals and Bayesian inferences are provided in sections 5 and 6 respectively.

Simulation results are presented in section 7. One data set is analyzed and the results are

presented in section 8. Finally we conclude the paper in section 9.

2 Model Description and Notations

Suppose the lifetime random variable Y has a Weibull distribution with shape and scale

parameters α and λ respectively, i.e., the probability density function (PDF) of Y is;

fY (y;α, λ) =
α

λ

(
y

λ

)α−1

e−( y
λ
)α ; y > 0, (1)

4



where α > 0, λ > 0. If the random variable Y has density function (1), then X = ln Y has

the extreme value distribution with PDF;

fX(x;µ, σ) =
1

σ
e

(
x−µ
σ
−e

x−µ
σ

)
; -∞ < x <∞, (2)

where µ = lnλ, σ =
1

α
. The density function as described by (2) is known as the density

function of an extreme value distribution with location and scale parameters as µ and σ

respectively.

Models (1) and (2) are equivalent models in the sense, the procedure developed under

one model can be easily used for the other model. Although, they are equivalent models,

sometimes it is easier to work with model (2) than model (1), because in model (2), the two

parameters µ and σ appear as location and scale parameters. In fact it is observed that in

deriving the AMLEs, it is easier to work with model (2) than model (1). For µ = 0 and

σ = 1, model (2) is known as the standard extreme value distribution and it has the following

PDF;

fZ(z; 0, 1) = ez−e
z

; -∞ < z <∞. (3)

Now we describe the data available under Type-I censoring scheme. Note that under this

scheme, it is assumed that n identical items are put on a test and the lifetime random

variables of the n items are denoted by Y1, . . . , Yn and censoring time T is known in advance.

We denote the ordered lifetimes of these life testing items by Y1:n, . . . , Yn:n. Let d (≤ n) be

the number of units that fail up to and including the pre-fixed time point T . Therefore,

under this conventional Type-I censoring scheme, the observations are

{Y1:n, . . . , Yd:n} where 0 ≤ d ≤ n and Yd:n < T < Yd+1:n. (4)

It may be mentioned that although we do not observe Yd+1:n, but Yd:n < T < Yd+1:n means

that the d-th failure took place before T and no failure took place between Yd:n and T i.e.

Yd+1:n, . . . , Yn:n are not observed.
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3 Maximum Likelihood Estimation

In this section we provide the MLEs of the unknown parameters. Based on the observed

data, the likelihood function is

l(α, λ) =
n!

(n− d)!

(
α

λ

)d d∏

i=1

(
yi:n
λ

)α−1

e
−

[∑d

i=1
( yi:nλ )

α
+(n−d)(Tλ )

α
]

if d > 0, (5)

= e−n(
T
λ )

α

if d = 0. (6)

It is clear from (6) that if d = 0, the MLEs of α and λ do not exist. Therefore, from now on

we assume that d 6= 0. The logarithm of (5) without the constant term can be written as

L(α, λ) = d(lnα− lnλ) + (α− 1)

[
d∑

i=1

ln yi:n − d lnλ

]
−

d∑

i=1

(
yi:n
λ

)α
− (n− d)

(
T

λ

)α
. (7)

Taking derivatives with respect to α and λ of (7) and equating them to zero, we obtain

∂L(α, λ)

∂λ
= −αd

λ
+

α

λα+1

[
d∑

i=1

yαi:n + (n− d)T α

]
= 0 (8)

∂L(α, λ)

∂α
=

d

α
+

d∑

i=1

ln yi:n − d lnλ−
d∑

i=1

(
yi:n
λ

)α
(ln yi:n − lnλ)

−(n− d)
(
T

λ

)α
(lnT − lnλ) = 0. (9)

From (8), we obtain

λα =

∑d
i=1 y

α
i:n + (n− d)T α

d
= u(α) (say). (10)

Using (10), (9) can be re-written as

d

α
=

d

α
lnu(α)−

d∑

i=1

ln yi:n +
d∑

i=1

yαi:n
u(α)

(
ln yi:n −

1

α
ln u(α)

)

+(n− d)
T α

u(α)

(
lnT − 1

α
ln u(α)

)
(11)

or

1

α

[
d− d lnu(α) +

d∑

i=1

yαi:n
u(α)

× lnu(α) + (n− d)
T α

u(α)
× ln u(α)

]

= −
d∑

i=1

ln yi:n +
d∑

i=1

yαi:n
u(α)

× ln yi:n + (n− d)
T α

u(α)
× lnT. (12)
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Note that (12) can be written in the form:

α = h(α) (13)

where

h(α) =
d(1− lnu(α)) + lnu(α)

u(α)

(∑d
i=1 y

α
i:n + (n− d)T α

)

−∑d
i=1 ln yi:n +

1
u(α)

[∑d
i=1 y

α
i:n ln yi:n + (n− d)T α lnT

]

=
d

−∑d
i=1 ln yi:n +

1
u(α)

[∑d
i=1 y

α
i:n ln yi:n + (n− d)T α lnT

] .

We propose a simple iterative scheme to solve for α from (13). Start with an initial guess

of α, say α(0), obtain α(1) = h(α(0)) and proceeding in this way obtain α(n+1) = h(α(n)). Stop

the iterative procedure, when
∣∣∣α(n+1) − α(n)

∣∣∣ < ε, some pre-assigned tolerance limit.

Since the MLEs when they exist, are not in compact forms, we propose the following

approximate maximum likelihood estimators (AMLEs) which have explicit expressions.

4 Approximate Maximum Likelihood Estimators

Let us use the following notations; xi:n = ln yi:n and S = lnT . Therefore, the likelihood

equation of the observed data xi:n is

l(µ, σ) =
c

σd

d∏

i=1

g(zi:n)
(
Ḡ(V )

)n−d
, (14)

where zi:n =
(xi:n − µ)

σ
, i = 1, . . . , d, V =

S − µ

σ
, g(x) = ex−e

x

, Ḡ(x) = e−e
x

, µ = lnλ,

σ =
1

α
and c = constant.

Ignoring the constant term, we obtain, using (14), the log-likelihood equation as,

L(µ, σ) = ln [l(µ, σ)] = −d lnσ +
d∑

i=1

ln (g(zi:n)) + (n− d)ln
(
Ḡ(V )

)
. (15)
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Taking derivatives with respect to µ and σ of L(µ, σ), and equating them to zero, gives

∂L(µ, σ)

∂µ
= −

(
1

σ

) d∑

i=1

g
′

(zi:n)

g(zi:n)
+ (n− d)×

(
1

σ

)
× g(V )

Ḡ(V )
= 0 (16)

∂L(µ, σ)

∂σ
= −d

σ
−

d∑

i=1

g
′

(zi:n)

g(zi:n)
× zi:n

σ
+ (n− d)× g(V )

Ḡ(V )
× V

σ
= 0. (17)

Note that the above two equations (16) and (17) can be written equivalently as

−
d∑

i=1

g
′

(zi:n)

g(zi:n)
+ (n− d)× g(V )

Ḡ(V )
= 0, (18)

−d−
d∑

i=1

g
′

(zi:n)

g(zi:n)
× zi:n + (n− d)× V g(V )

Ḡ(V )
= 0. (19)

Clearly, (18) and (19) do not have explicit analytical solutions. We consider a first-order

Taylor approximation to g
′

(zi:n)/g(zi:n) and g(V )/Ḡ(V ) by expanding around the actual

mean µi, the means of standardized order statistic Zi:n and µ∗d respectively, where µi =

G−1(pi) = ln(− ln qi), pi =
i

n+ 1
, qi = 1−pi for i = 1, . . . , d, and µ∗d = G−1(p∗d) = ln(− ln q∗d),

p∗d =
(pd + pd+1)

2
, q∗d = 1 − p∗d similar as Balakrishnan and Varadan [1]. Note that for

i = 1, . . . , d

g
′

(zi:n)

g(zi:n)
≈ αi − βizi:n (20)

where

αi =
g
′

(µi)

g(µi)
− µi


g

′′

(µi)

g′(µi)
−
(
g
′

(µi)

g(µi)

)2

 = 1 + ln qi(1− ln(− ln qi)),

βi =


−g

′′

(µi)

g′(µi)
+

(
g
′

(µi)

g(µi)

)2

 = − ln qi

and

g(V )

Ḡ(V )
≈ 1− α∗d + β∗dV (21)

where

α∗d =
g
′

(µ∗d)

g(µ∗d)
− µ∗d


g

′′

(µ∗d)

g′(µ∗d)
−
(
g
′

(µ∗d)

g(µ∗d)

)2

 = 1 + ln q∗d(1− ln(− ln q∗d)),

β∗d =


−g

′′

(µ∗d)

g′(µ∗d)
+

(
g
′

(µ∗d)

g(µ∗d)

)2

 = − ln q∗d.
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Using the approximations (20) and (21) in (18) and (19), we obtain

[(
d∑

i=1

eµi +Deµ
∗
d

)
−
(

d∑

i=1

µie
µi +Dµ∗de

µ∗
d

)
− d

]
σ

+

[
d∑

i=1

Xi:ne
µi +DSeµ

∗
d

]
− µ

[
d∑

i=1

eµi +Deµ
∗
d

]
≈ 0 (22)

and

[
d

(
d∑

i=1

eµi +Deµ
∗
d

)]
σ2 +

[(
d∑

i=1

eµi +Deµ
∗
d

)(
d∑

i=1

µiXi:ne
µi +Dµ∗dSe

µ∗
d + dX̄

)]
σ

−
[(

d∑

i=1

Xi:ne
µi +DSeµ

∗
d

)(
d∑

i=1

µie
µi +Dµ∗de

µ∗
d + d

)]
σ +

[
d∑

i=1

Xi:ne
µi +DSeµ

∗
d

]2

−
[

d∑

i=1

eµi +Deµ
∗
d

] [
d∑

i=1

X2
i:ne

µi +DS2eµ
∗
d

]
≈ 0. (23)

The above two approximations (22) and (23) can be written as

(c1 − c2 − d)σ + d1 − µc1 ≈ 0 (24)

Aσ2 +Bσ + C ≈ 0 (25)

where c1 =
d∑

i=1

eµi + Deµ
∗
d , c2 =

d∑

i=1

µie
µi + Dµ∗de

µ∗
d , d1 =

d∑

i=1

Xi:ne
µi + DSeµ

∗
d , d2 =

∑d
i=1 X

2
i:ne

µi +DS2eµ
∗
d , d3 =

d∑

i=1

µiXi:ne
µi +Dµ∗dSe

µ∗
d , A = dc1, B = c1(d3 +dX̄)−d1(c2 +d),

C = d1
2 − c1d2 and D = n− d. The solution to the preceding equations yields the AMLEs

are

µ̂ =
(c1 − c2 − d)σ̂ + d1

c1
(26)

σ̂ =
−B +

√
B2 − 4AC

2A
. (27)

Here we consider only positive root of σ. It is easily seen that these approximate estimators

are equivalent but not unbiased. Unfortunately, it is not possible to compute the exact bias

of µ̂ and σ̂ theoretically because of intractability encountered in finding the expectation of
√
B2 − 4AC.
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5 Bootstrap Confidence Intervals

In this section we propose the confidence intervals based on the bootstrapping. The percentile

bootstrap (Boot-p) method, proposed by Efron [7], is widely used in practice. We have

mainly used the parametric bootstrap method. To estimate the Boot-p confidence interval,

we proceed as follows:

[1] Estimate α̂ and λ̂ from the sample generated, using (13) and (10).

[2] Generate bootstrap sample {Y ∗1:n, . . . , Y ∗d∗:n}, using α̂, λ̂ and T . Obtain the bootstrap

estimate of α and λ say, α̂∗ and λ̂∗ respectively, using the bootstrap sample.

[3] Repeat Step [2] NBOOT times.

[4] Let ĈDF (x) = P (α̂∗ ≤ x) and ĈDF (y) = P (λ̂∗ ≤ y), be the cumulative distribution

functions of α̂∗ and λ̂∗ respectively. Define α̂Boot−p(x) = ĈDF
−1
(x) for a given x. The

approximate 100(1-δ)% Boot-p confidence interval for α is given by

(
α̂Boot−p

(
δ

2

)
, α̂Boot−p

(
1− δ

2

))
.

Similarly, define λ̂Boot−p(y) = ĈDF
−1
(y) for a given y. The approximate 100(1-δ)%

confidence interval for λ is given by

(
λ̂Boot−p

(
δ

2

)
, λ̂Boot−p

(
1− δ

2

))
.

6 Bayesian Analysis

In this section we consider the Bayes estimation of the unknown parameters and also con-

struct the HPD credible intervals. We re-parameterize the model as follows θ =
1

λα
. Based
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on the new parameterization we consider the Bayes estimates of α and θ. In this case our

likelihood function is,

l(α, θ) = k1α
dθd

d∏

i=1

yα−1
i:n e

−θ

[∑d

i=1
yαi:n+(n−d)Tα

]
if d > 0 (28)

= k2e
−nθTα if d = 0 (29)

where k1 and k2 are constants.

6.1 Prior and Posterior Distributions

Following the approach of Berger and Sun [3], it is assumed that θ has a gamma prior,

Gamma(a, b), for a, b > 0 i.e.

π1(θ) ∝ θa−1e−bθ; θ > 0. (30)

Here a and b are the known hyper-parameters. No specific form of prior π2(α) on α is

assumed here. It is only assumed that the support of π2(α) on α is (0, ∞), it is independent

of θ, and π2(α) is log-concave. It may be mentioned that many well known distributions,

like normal, Weibull, gamma, log-normal etc. have log-concave density functions.

Based on the above prior assumptions, the joint density function of the data, α and θ

becomes:

l(data, α, θ) ∝ αdθa+d−1
d∏

i=1

yα−1
i:n e

−θ

[∑d

i=1
yαi:n+(n−d)Tα+b

]
π2(α) if d > 0 (31)

∝ θa−1e−θ[nT
α+b]π2(α) if d = 0 (32)

and we obtain the joint posterior density functions of α and θ given the data as

l(α, θ|data) = l(α, θ, data)
∫∞
0

∫∞
0 l(α, θ, data)dαdθ

. (33)

Suppose we compute the Bayes estimate of any function of α, θ, say g(α, θ) = γ, then the

Bayes estimate of γ with respect to squared error loss function becomes the posterior mean
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i.e.,
∫ ∞

0

∫ ∞

0
l(α, θ/data)g(α, θ)dαdθ. (34)

Note that even if we know π2(α) explicitly, (34) cannot be computed analytically most of

the times. We adopt the Gibbs sampling procedures to compute the Bayes estimates of α

and λ.

It can be easily observed that the conditional density function of θ given α and data is

π1(θ|α, data) =





Gamma
(
a+ d,

∑d
i=1 y

α
i:n + (n− d)T α + b

)
if d > 0

Gamma (a, nT α + b) if d = 0.

(35)

We need the following results for further development.

Theorem 1: The conditional density function of α given the data is log-concave

Proof: See in the Appendix.

It easily follows from the result of the appendix that if the prior distribution of α is

gamma (the shape parameter can be less than one or can be zero also) then the posterior

density function of α is log-concave if d ≥ 1. We use the method proposed by Devroye [4] to

generate sample from a log-concave density function for Gibbs sampling purposes and they

can be used to compute Bayes estimate and also to construct the HPD credible interval of γ.

We use the following algorithm to compute the Bayes estimate of γ, say γ̂B, and to construct

its HPD credible interval.

Algorithm:

• Step 1: Generate α1, from the log-concave density l(.|data), as given in (37) or (38)

depending on the value of d using the method proposed by Devroye [4].

• Step 2: Generate θ1 from π1(.|α, data) as provided in (35).
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• Step 3: Repeat Steps 1 and 2, M times and obtain αi, θi and γi = g(αi, θi), for

i = 1, . . . ,M .

• Step 4: γ̂B can be obtained as

1

M

M∑

i=1

g(αi, θi).

• Step 5: Arrange γi for i = 1, · · · ,M , say γ(1) < · · · < γ(M).

• Step 6: From the ordered γi’s a 100(1-2β)% credible interval can be obtained as

(γ(i), γ([M(1−2β)]+i)), i = 1, · · · , [M2β],

here [x] denotes the largest integer less than or equal to x. Now HPD credible interval

can be obtained by choosing that interval which has the shortest length.

7 Numerical Results and Discussions

Since the performance of the different methods cannot be compared theoretically, we perform

Monte Carlo simulations to compare the performances of the different estimators and also

different confidence/ credible intervals for different sampling schemes. The term different

sampling schemes means different n and T values. We mainly compare the performances of

the MLEs, AMLEs and Bayes estimators of the unknown parameters, in terms of their biases

and mean squared errors (MSEs). We also compare the average lengths of the asymptotic

confidence/ credible intervals and their coverage percentages. All the computations are

performed in the Pentium IV processor using FORTRAN-77 programs. In all cases we use

the random deviate generator RAN2 proposed in Press et al. [12].

Since λ is the scale parameter, we have taken in all cases λ = 1 without loss of generality.

For simulation purposes, we present the results when T is of the form (λT )
1

α . The reason

to choose T in that form is the following: if α̂ represents the MLE or AMLE of α, then the
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distributions of
α̂

α
and

λ̂

λ
become independent of α and λ. Moreover, if we have two sets of

parameters and T values say (α1, λ1, T1) and (α2, λ2, T2), so that (λ1T1)
1

α1 = (λ2T2)
1

α2 , then

the results associated with
α̂1

α1

and
λ̂1

α1

, will be same as those of
α̂2

α2

, and
λ̂2

λ2

respectively. For

that reason without loss of generality, we report the result only for α = 1 and λ = 1. But

these results can be used for any other α and λ also.

For a given n and T , we generate Y1, · · · , Yn, and consider only Y1:n, . . . , Yd:n such that

Yd:n ≤ T . We consider different n and T values. We have used three different choices of n

and for each n we have taken four different T values. In each case we compute the MLEs

and AMLEs of the unknown parameters. In computing the MLE, we use ε = 10−6, and we

have used the true value of α as the initial guess value of α. It is also observed that if we

use the AMLE of α as the initial guess value of α, then also we get the same results.

We compute the 95% confidence intervals based on the asymptotic distribution of the

MLEs and also obtained by replacing the MLEs with AMLEs. We replicate the process

1000 times and report the average estimates, the MSEs, the average confidence lengths and

coverage percentages. We also compute the 95% Boot-p confidence interval based on the

MLEs and AMLEs. All the results are reported in Tables 3 - 5.

For computing the Bayes estimators, it is assumed that α and θ have Gamma(a1, b1) and

Gamma(a2, b2) priors respectively. Moreover we use the non-informative priors of both α

and θ, i.e. a1 = b1 = a2 = b2 = 0. In this case also we obtain the average estimates over

1000 replications and the associated MSEs. We also compute the HPD credible intervals

in each replication and obtain the average length and the coverage percentages over 1000

replications. The results are reported in Table 6.

Now we compare different confidence intervals in terms of their average lengths and

coverage percentages. In general it is observed that most of the methods work well unless n
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and T are very small. For most of the methods, it is observed that the average confidence

lengths decrease as n increases for fixed T or the other way. Both MLEs and AMLEs,

behave very similarly although the confidence intervals for AMLEs are slightly shorter than

the confidence intervals for MLEs.

From the Tables 3 - 6, the following general observations can be made. For all the meth-

ods, it is observed that (a) for fixed n when T increases from 0.75 to 2.00, the MSEs decrease

and (b) for fixed T as n increases from 20 to 40 the MSEs decrease. The performances of

the MLEs and AMLEs are very similar in all aspects. The MSEs of the Boot-p estimators

and the Bayes estimators are marginally larger than those of the MLEs or AMLEs for small

n but for large n they are on the other way. The average lengths of the confidence interval

based on Boot-p approach are larger than the average lengths of other confidence/credible

intervals, but the coverage percentages are usually larger than the other confidence intervals

but smaller than the credible intervals. The average credible lengths are smaller than the

average confidence lengths in all the cases considered, but the coverage percentages of the

credible intervals are usually larger than the confidence intervals in most cases considered.

Finally, it should be mentioned that Boot-p and Bayes estimates are most computationally

expensive followed by MLEs and AMLEs.

8 Data Analysis

In this section we present a data analysis for illustrative purposes. The data set is available

in Bain and Engelhardt [2]. The data set represents the remission times of leukemia patients

due to administering a new drug. Forty patients were administered the new drug which

induces the remission in leukamia and the experiment was terminated after 7 months (210

days). The following 22 remission times were observed: 47, 56, 58, 64, 77, 79, 89, 128, 131,

142, 144, 149, 163, 166, 175, 176, 184, 184, 188, 190, 191, 204. Clearly, it is a Type-I censored
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sample with n = 40, and D = 22. Just for computational ease, we have divided all the data

points by 100. It does not affect in any inferential procedure.

Based on the observed sample we compute the AMLEs, MLEs, 95% asymptotic confidence

intervals (ACI) and 95% bootstrap confidence intervals (BCI) of both the parameters. The

results are reported in Table 1. To compute the MLE of α, we use the iterative process as

mentioned in (13). We use the initial guess of α same as the AMLE of α namely 2.3343,

and ε = 10−6. The iteration stops after 7 steps and it produces the MLE of α as provided

in Table 1. We have tried the iteration with initial guess of α as 1, and in that case the

Table 1: MLEs, AMLEs, 95% asymptotic and Bootstrap confidence intervals of α and λ.

Methods MLEs AMLEs
Parameters α θ α θ
Estimates 2.3539 0.1452 2.3343 0.1479

ACI (1.4416, 3.2662) (0.0412, 0.2493) (1.4220, 3.2466) (0.0439, 0.2519)
BCI (1.4219, 3.2811) (0.0387, 0.2518) (1.4198, 3.2812) (0.0379, 0.2610)

iteration stops after 10 steps, and it produces the same result as before. We provide the

profile log-likelihood function of α in Figure 1, and it clearly indicates that the MLE of α is

indeed maximizes the profile log-likelihood function.

Finally we compute the Bayes estimates of the unknown parameters based on the gamma

priors as mentioned in Section 6. Since we do not have any prior information of the unknown

parameters, we take the non-informative priors, namely a1 = b1 = a2 = b2 = 0.0. We generate

1000 MCMC samples as it has been suggested in Section 6. We provide the histogram plots of

generated α and λ in Figure 2. Based on the MCMC samples we obtain the Bayes estimates

of α and λ as 2.4215 and 0.1508 respectively. The associated 95% credible intervals of α and

λ are (1.5051, 3.6864) and (0.0597, 0.2734) respectively.

Now the natural question is whether Weibull provides a good fit or not. We compute the
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Figure 1: Profile log-likelihood function of α for Type-I censored sample.

Kolmogorov-Smirnov distances between the empirical distribution function and the fitted

distribution functions based on MLEs, AMLEs and Bayes estimates and they are 0.1629,

0.1631, 0.1611, and the associated p values are 0.603, 0.598, and 0.628 respectively. Therefore,

based on the p values we can say that Weibull distribution fits quite well to the above data

set.

9 Conclusions

In this paper we discuss the conventional Type-I censored data for the two parameters

Weibull distribution. It is observed that the MLE of the shape parameter can be obtained

by using an iterative procedure. The proposed AMLEs of the shape and scale parameters

can be obtained in explicit forms. Various approximate confidence/credible intervals can be

constructed along with coverage percentages. Bayes estimates of the unknown parameters

can be obtained using Gibbs sampling procedures and the performances of the Bayes estima-

tors under the assumption of the non-informative priors are quite similar to the MLEs or the
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Figure 2: Histogram plots: (a) MCMC samples of α (b) MCMC samples of λ

AMLEs. It is also observed that the Bayes estimates work quite well unless n and T are very

small or n is very large. One important point should be mentioned here that when d = 0

MLEs or approximate MLEs do not exist, but Bayes estimates or the corresponding credible

intervals can be constructed. This is definitely one major advantage of the Bayes estimates.

Considering all the points, we suggest that if we do not have any prior information of the

unknown parameters, the AMLEs and the associated proposed confidence intervals can be

used for all practical purposes. Finally, although here we have assumed that the lifetime

distributions are Weibull but most of the methods can be extended for other distributions

also, like Log-normal, Gamma, or GE distributions. Work is in progress, and they will be

reported later.

One of the referees had asked a very genuine question that why we had chosen the gamma

prior on the shape parameter, and not other log-concave priors like log-normal or Weibull

etc. Yes definitely it is an important question. Although gamma prior is a very flexible

prior, but theoretically any other log-concave priors can be chosen. Moreover, choosing a

proper prior is an important issue, which is beyond the scope of this paper. Definitely, it

needs separate attention.
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Appendix

To prove Theorem 1, we need the following Lemma.

Lemma: For xi ≥ 0 and b ≥ 0, define g(α) =
∑n

i=1 x
α
i + b. Then d2

dα2 ln g(α) ≥ 0.

Proof: Note that,

g′(α) =
n∑

i=1

xαi lnxi and g′′(α) =
n∑

i=1

xαi (lnxi)
2

Since
(

n∑

i=1

xαi (lnxi)
2

)
×
(

n∑

i=1

xαi

)
−
(

n∑

i=1

xαi ln xi

)2

=
∑

1≤i≤j≤n

xαi x
α
j (lnxi − ln xj)

2 ≥ 0,

therefore for b ≥ 0,

g′′(α)g(α) ≥ (g′(α))2 (36)

Proof of Theorem 2 : Here,considering our case, we get the conditional density function

of α given the data is

l(α|data) ∝ αdπ2(α)
∏d
i=1 y

α−1
i:n(∑d

i=1 y
α
i:n + (n− d)T α + b

)a+d , if d > 0 (37)

∝ π2(α)

(nT α + b)a
, if d = 0 (38)

Therefore, ignoring the additive constant, the log-likelihood function of the posterior

density function of α can be written as

19



ln(l(α|data)) = lnπ2(α) + d lnα + (α− 1)

(
d∑

i=1

ln yi:n

)

− (a+ d) ln

(
d∑

i=1

yαi:n + (n− d)T α + b

)
if d > 0 (39)

= lnπ2(α)− a ln (nT α + b) if d = 0 (40)

Therefore, using the above defined Lemma and the assumption on π2(α), it easily follows

that ln(l(α|data)) is log-concave.
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Table 2: The average estimates, the mean squared errors, average confidence interval based
on MLE.

N T = 0.75 T = 1.00
20 α 1.1032(0.1111),1.3574(92.7) 1.0843(0.0863),1.0912(96.2)

λ 1.1124(0.3603),1.6554(87.3) 1.0767(0.1756),1.2555(89.4)
30 α 1.0720(0.0709),1.0251(95.8) 1.0573(0.0553),0.8637(95.8)

λ 1.0525(0.1438),1.2377(89.7) 1.0391(0.0885),0.9903(90.5)
40 α 1.0456(0.0465),0.8643(95.6) 1.0370(0.0382),0.7327(95.0)

λ 1.0460(0.0857),1.0419(91.0) 1.0354(0.0544),0.8392(89.4)
N T = 1.50 T = 2.00
20 α 1.0665(0.0600),0.9142(96.2) 1.0613(0.0495),0.8431(96.4)

λ 1.0430(0.0779),1.0768(92.2) 1.0327(0.0635),1.0501(93.1)
30 α 1.0434(0.0401),0.7340(94.1) 1.0422(0.0326),0.6838(95.6)

λ 1.0275(0.0516),0.8589(92.9) 1.0185(0.0436),0.8437(94.4)
40 α 1.0286(0.0278),0.6271(94.9) 1.0293(0.0228),0.5803(96.1)

λ 1.0243(0.0374),0.7310(92.5) 1.0161(0.0320),0.7105(94.4)

Table 3: The average estimates, the mean squared errors, average confidence interval based
on AMLE.

N T = 0.75 T = 1.00
20 α 1.0915(0.1092),1.3160(92.4) 1.0735(0.0850),1.0808(95.9)

λ 1.1110(0.3737),1.6014(87.0) 1.0709(0.1783),1.2423(89.3)
30 α 1.0641(0.0700),1.0238(95.2) 1.0500(0.0548),0.8581(95.4)

λ 1.0508(0.1471),1.2352(89.7) 1.0350(0.0892),0.9831(90.6)
40 α 1.0398(0.0461),0.8581(95.3) 1.0316(0.0380),0.7291(94.8)

λ 1.0445(0.0865),1.0337(90.9) 1.0322(0.0547),0.8346(89.5)
N T = 1.50 T = 2.00
20 α 1.0569(0.0594),0.9073(95.7) 1.0525(0.0492),0.8541(96.0)

λ 1.0317(0.0780),1.0657(91.8) 1.0177(0.0632),1.0635(93.4)
30 α 1.0368(0.0398),0.7303(93.9) 1.0362(0.0325),0.6798(95.4)

λ 1.0200(0.0517),0.8531(92.6) 1.0086(0.0435),0.8357(94.3)
40 α 1.0236(0.0276),0.6247(94.7) 1.0248(0.0227),0.5784(96.1)

λ 1.0186(0.0374),0.7273(92.5) 1.0085(0.0320),0.7064(94.3)
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Table 4: The average confidence interval based on Boot-p estimate when the MLEs are used
and the associated coverage percentages are presented.

N T = 0.75 T = 1.00
20 α 1.4868(92.0) 1.2216(92.8)

λ 1.4633(93.2) 1.2146(91.3)
30 α 1.0882(93.0) 0.9282(93.7)

λ 2.0338(92.6) 1.2874(91.8)
40 α 0.8844(95.0) 0.7652(95.1)

λ 1.3537(93.3) 0.9631(92.9)
N T = 1.50 T = 2.00
20 α 0.9985(92.2) 0.9197(92.3)

λ 1.2963(92.3) 1.0647(91.8)
30 α 0.7780(93.8) 0.7143(93.1)

λ 0.9190(92.2) 0.8042(92.2)
40 α 0.6466(95.8) 0.5991(92.3)

λ 0.7489(93.6) 0.6934(93.7)

Table 5: The average confidence interval based on Boot-p estimate when the AMLEs are
used and the associated coverage percentages are presented.

N T = 0.75 T = 1.00
20 α 1.4529(93.0) 1.2341(93.0)

λ 1.4944(92.6) 1.1976(92.4)
30 α 1.1167(94.2) 0.9199(93.1)

λ 2.1123(92.8) 1.2699(92.3)
40 α 0.8987(94.6) 0.7711(94.8)

λ 1.3459(94.1) 0.9711(93.4)
N T = 1.50 T = 2.00
20 α 0.9812(93.3) 0.9261(93.6)

λ 1.2899(91.9) 1.1112(92.3)
30 α 0.7818(94.0) 0.7231(94.0)

λ 0.8999(92.6) 0.8221(93.1)
40 α 0.6646(94.9) 0.6113(93.0)

λ 0.7501(94.1) 0.7016(94.4)
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Table 6: The average estimates, the mean squared errors, average credible interval based on
Bayes Estimate.

N T = 0.75 T = 1.00
20 α 1.0436(0.1134),1.3123(96.2) 1.0322(0.0829),1.1200(95.1)

λ 1.0491(0.1552),1.3988(94.3) 1.0120(0.0972),1.1389(94.1)
30 α 1.0213(0.0670),0.9907(94.9) 1.0104(0.0535),0.8677(94.7)

λ 1.0398(0.0862),1.1519(95.9) 1.0063(0.0653),0.9155(93.8)
40 α 1.0185(0.0459),0.8477(95.5) 1.0165(0.0348),0.7569(96.7)

λ 1.0156(0.0616),0.9601(94.5) 1.0093(0.0435),0.8104(95.0)
N T = 1.50 T = 2.00
20 α 1.0247(0.0565),0.9412(97.0) 1.0167(0.0467),0.8396(94.4)

λ 1.0233(0.0839),0.9941(93.6) 1.0090(0.0658),0.9685(95.4)
30 α 1.0185(0.0397),0.7454(95.1) 1.0196(0.0308),0.6885(95.7)

λ 1.0128(0.0494),0.8168(94.5) 1.0038(0.0468),0.7693(94.3)
40 α 1.0123(0.0272),0.6393(95.6) 1.0174(0.0254),0.5794(94.3)

λ 1.0130(0.0365),0.7027(94.0) 0.9993(0.0325),0.6722(94.2)
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