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Abstract

Several authors have considered the analysis of load sharing parallel systems. The
main characteristics of such a two component system is that after the failure of one
component the surviving component has to shoulder extra load, and hence it is more
likely lo fail at an earlier time than what is expected under the original model. In other
cases, the failure of one component may releases extra resources to the other compo-
nent, thus delays the system failure. Freund (1961) introduced a bivariate extension
of the exponential distribution which is applicable to a two-component load sharing
systems. It is based on the assumptions that the lifetime distributions of the compo-
nents are exponential random variables before and after the change. In this paper, we
introduce a new class of bivariate distribution using the proportional hazard model.
It is observed that the bivariate model proposed by Freund (1961) is a particular case
of our model. We study different properties of the proposed model. Different statis-
tical inferences have also been developed. We have considered four different special
cases namely when the base distributions are exponential, Weibull, linear failure rate
and Pareto III distributions. One data analysis has been performed for illustrative
purposes. Finally we propose some generalizations.

Key Words and Phrases Proportional hazard model; Bivariate exponential distribution;

Bivariate hazard function; Maximum likelihood estimator; Fisher information matrix.

1 Introduction

Most reliability models are intended for components that operate independently within a

system. In many systems, the performance of the functioning of a component depends on

whether the other components within the system are working or not. The main characteristic

of a load sharing system is that after failure of one component, the surviving component has

to shoulder extra load, and hence it is expected to fail earlier that what is expected under

the original situations. In some other situations, the failure of one component may release

extra resources to the surviving component, and it increases the system lifetime.

It has been observed by Gross et al. (1971) that two organ sub systems in a human

body typically show this behavior. If one organ fails, the surviving organ is subjected to
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higher failure rate. For example, if a patient get his/ her kidney removed due to illness, then

the second kidney shows a higher failure rate. Similar phenomenon can be observed in the

behavior of human eyes also. Another typical situation of this type can be observed in nuclear

power industry. For example, in a nuclear power industry, components are redundantly added

to system mainly to safeguard against core meltdown. If the failure of one backup system

adversely affects the operation of another, then the probability of core meltdown can increase

significantly.

Freund (1961) proposed a bivariate distribution which is designed for the life testing of a

two-component load sharing system. In a two-component load sharing system, it is assumed

that the system can function even after one of the components has failed, although the

lifetime distribution of the other component (functioning) changes due to the over loading.

Therefore, the bivariate model proposed by Freund (1961) can be used to model survival

times of a system with two identical or nearly identical components, for example two-engine

plane, organisms with paired organs, such as kidneys, eyes, lungs, or a cooling system which

relies on two adjacent pumps to circulate coolant through the same ducts etc.

Freund (1961) in the development of his model assumed that the lifetime distributions

of the individual components are exponential random variables. It is assumed that if one of

the components fails, the life time distribution of the other component follows exponential

random variable with a different scale parameter. Since exponential distribution has only

constant failure rate it is known to have its own limitations. Due to this reason Freund’s

model has been extended to a model where it has been assumed that the lifetime distributions

of the components are no longer exponential random variables, see for example Lu (1989)

and Spurrier and Weier (1981) in this respect. In both these cases although the models are

more flexible than the Freund’s model, they are not very easy to handle analytically due to

their complicated structure. The readers who are interested about the different load sharing
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systems, may refer to Deshpande, Dewan and Naik-Nimbalkar (2010), Kim and Kvam (2004),

Kvam and Pena (2005), Lynch (1999), Shaked (1984) and see the references cited therein.

The main idea of this paper is to introduce a class of bivariate distributions to model two-

component load sharing system, which is more flexible than the model proposed by Freund

(1961), and which are easy to use in practice. In this case, we do not make any specific

assumptions on the lifetime distributions of the two components. Instead, we have assumed

that the lifetime distributions of the two components are from a proportional hazard class of

distributions. It may by noted that a class of distributions is said to be from a proportional

hazard class of distributions, if the survival function of any member of this class is of the form

(S0(x))
α, α > 0. Where S0(x) is the base line survival function. It is called a proportional

hazard class because the hazard function of any member of this class of distribution functions,

is proportional to the hazard function of the base line distribution function, see for example

Kalbfleish and Prentice (2002). In this present formulation, we can take any base line

distribution function. The bivariate distribution proposed by Freund (1961) can be obtained

as a special case of the proposed model. We call this bivariate distribution as the extended

Freund’s bivariate (EFB) distribution. It is observed that in certain cases the proposed EFB

distribution provides a better fit than the bivariate distribution proposed by Freund (1961).

Hence, it provides the practitioner a wide range of choices for the bivariate load sharing

distributions.

It is observed that the joint probability density function (PDF) and the joint survival

function (SF) can be obtained in explicit forms. Hence the implementation of the proposed

model is quite simple. The joint PDF can take different shapes depending on the base line

distribution and other associated parameters values. Several properties of the proposed EFB

model have been established. The marginal and the conditional distributions also can be

obtained in convenient forms. If the base line distribution is completely known, the maximum
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likelihood estimators (MLEs) can be obtained explicitly. If it is assumed that the base line

distribution has a specific form with some unknown parameters, the MLEs of the unknown

parameters can be obtained by maximizing the profile likelihood function. The expected

Fisher information matrix for different specific base line distributions have been provided. If

the base line distribution is known, the generation from a EFB model model is quite straight

forward. We discuss four specific examples in details, namely when the base line distributions

are (i) exponential, (ii) Weibull, (iii) linear failure rate and (iv) Pareto III. We perform the

analysis of one data set for illustrative purposes by using four different EFB models, and

proposed to choose the best fitted model using Kolmogorov-Smirnov distance measure. It

is observed that the proposed best fitted EFB model works quite well in analyzing the data

set. Finally we propose some generalizations also.

Rest of the paper is organized as follows. In Section 2, we introduce the model, and

provide the physical interpretation of the model. In Section 3, we present different properties

of the model. The MLEs and their properties are presented in Section 4. The analysis

of a data set is presented in Section 5. We provide the conclusions and propose some

generalizations in Section 6.

2 EFB Model and Some Special Cases

The bivariate random variable (Y1, Y2) is said to have EFB distribution, if the the joint PDF

of Y1 and Y2 has the following form;

fY1,Y2
(y1, y2) =





θ′1θ2f0(y1)f0(y2)(S0(y1))
θ′
1
−1(S0(y2))

θ1+θ2−θ′
1
−1 if y1 > y2 > 0

θ1θ
′

2f0(y1)f0(y2)(S0(y1))
θ1+θ2−θ′

2
−1(S0(y2))

θ′
2
−1 if y2 > y1 > 0,

(1)

and 0 otherwise. Here θ1 > 0, θ2 > 0, θ′1 > 0, θ′2 > 0, f0(·) and S0(·) are the density

function and survival function of the distribution function F0(·). It is further assumed that

F0(0) = 0. From now on it will be denoted by EFB(F0, θ1, θ2, θ
′

1, θ
′

2). Note that when
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θ1 = θ2 = θ′1 = θ′2 = 1, then Y1 and Y2 become independent.

It may be easily verified that (1) is indeed a proper bivariate density function, as

fY1,Y2
(y1, y2) ≥ 0, for all 0 < y1, y2 < ∞, and

∫
∞

0

∫
∞

y2

fY1,Y2
(y1, y2)dy1dy2 =

∫
∞

0

∫
∞

y2

θ′1θ2f0(y1)f0(y2)(S0(y1))
θ′
1
−1(S0(y2))

θ1+θ2−θ′
1
−1dy1dy2

=
θ2

θ1 + θ2∫
∞

0

∫
∞

y1

fY1,Y2
(y1, y2)dy2dy1 =

∫
∞

0

∫
∞

y1

θ1θ
′

2f0(y1)f0(y2)(S0(y1))
θ1+θ2−θ′

2
−1(S0(y2))

θ′
2
−1dy2dy1

=
θ1

θ1 + θ2
.

The following interpretation can be provided of the joint PDF (1). Suppose X1 and X2

are random variables representing the lifetimes of two components A and B respectively in

a two-component system, when they first put on a test. If component B fails before A,

i.e. if X2 < X1, the lifetime distribution of A changes, and suppose we denote it by X∗

1 .

Finally the system fails when component A fails, and in this case one observes the bivariate

random variable (X∗

1 , X2), where X∗

1 > X2. Similarly, if A fails before B, i.e. X1 < X2, the

lifetime distribution B changes and it will be denoted by X∗

2 . In this case also, similarly

as before, finally the system fails when component B fails eventually, and at the end one

observes the bivariate random variable (X1, X
∗

2 ). If we denote the lifetime distributions of

the components A and B as (Y1, Y2), then one observes Y1 = X∗

1 , Y2 = X2, if Y1 > Y2, and

Y1 = X1, Y2 = X∗

2 , if Y1 < Y2.

It is assumed that X1 and X2 are independently distributed having survival functions

(S0(·))
θ1 , θ1 > 0 and (S0(·))

θ2 , θ2 > 0 respectively. It is further assumed that X∗

1 and X∗

2

have the survival functions (S0(·))
θ′
1 and (S0(·))

θ′
2 respectively. Now let us look at the joint

PDF of Y1 and Y2 for y1 > y2.

fY1,Y2
(y1, y2)dy1dy2 = P (y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 ≤ y2 + dy2)
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= P (y1 ≤ X∗

1 ≤ y1 + dy1, y2 ≤ X2 ≤ y2 + dy2)

= P (y2 ≤ min{X1, X2} ≤ y2 + dy2, X1 > X2, y1 ≤ X∗

1 ≤ y1 + dy1)

= P (y2 ≤ min{X1, X2} ≤ y2 + dy2)

×P (X1 > X2| y2 ≤ min{X1, X2} ≤ y2 + dy2)

×P (y1 ≤ X∗

1 ≤ y1 + dy1| y2 ≤ min{X1, X2} ≤ y2 + dy2, X1 > X2)

Now note that

P (y2 ≤ min{X1, X2} ≤ y2 + dy2) = (θ1 + θ2)(S0(y2))
θ1+θ2−1f0(y2)dy2, (2)

P (X1 > X2| y2 ≤ min{X1, X2} ≤ y2 + dy2) =
P (X1 > X2, y2 ≤ min{X1, X2} ≤ y2 + dy2)

P (y2 ≤ min{X1, X2} ≤ y2 + dy2)

=
P (X1 > X2, y2 ≤ X2 ≤ y2 + dy2)

P (y2 ≤ min{X1, X2} ≤ y2 + dy2)

=
θ2f0(y2)(S0(y2)

θ+θ2−1

(θ + θ2)f0(y2)(S0(y2))θ1+θ2−1
=

θ2
θ1 + θ2

, (3)

and

P (y1 ≤ X∗

1 ≤ y1 + dy1| y2 ≤ min{X1, X2} ≤ y2 + dy2, X1 > X2) =

P (y1 ≤ X∗

1 ≤ y1 + dy1| y2 ≤ X2 ≤ y2 + dy2, X
∗

1 > y2) =
θ′1(S0(y1))

θ′
1
−1f0(y1)

(S0(y2))θ
′

1

. (4)

Therefore, combining (2), (3) and (4) we immediately obtain for y1 > y2

fY1,Y2
(y1, y2)dy1dy2 = θ′1θ2f0(y1)f0(y2)(S0(y1))

θ′
1
−1(S0(y2))

θ1+θ2−θ′
1
−1dy1dy2.

Similarly, we obtain fY1,Y2
(y1, y2) for y1 < y2 also.

Now we take different special cases of the base line distribution function.

Example 1: If we take the base line distribution as the exponential distribution, i.e. S0(y) =

e−y, then (1) becomes the Freund’s (1961) model. In this case the joint PDF of (1) becomes;

fY1,Y2
(y1, y2) =





θ′1θ2e
−θ′

1
y1e−(θ1+θ2−θ′

1
)y2 if y1 > y2 > 0

θ1θ
′

2e
−(θ1+θ2−θ′

2
)y1e−θ′

2
y2 if y2 > y1 > 0.

(5)
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It will be denoted by EFB(EXP, θ1, θ2, θ
′

1, θ
′

2).

Example 2: If we take Weibull as the base line distribution, i.e. S0(y) = e−yα , α > 0, then

(1) becomes;

fY1,Y2
(y1, y2) =





θ′1θ2α
2yα−1

1 yα−1
2 e−θ′

1
yα
1 e−(θ1+θ2−θ′

1
)yα

2 if y1 > y2 > 0

θ1θ
′

2α
2yα−1

1 yα−1
2 e−(θ1+θ2−θ′

2
)yα

1 e−θ′
2
yα
2 if y2 > y1 > 0.

(6)

It will be denoted by EFB(WE(α), θ1, θ2, θ
′

1, θ
′

2).

Example 3: If we take linear failure rate distribution as the base line distribution, i.e.

S0(y) = e−(y+αy2), for α > 0, then (1) becomes;

fY1,Y2
(y1, y2) =





θ′1θ2(1 + 2αy1)(1 + 2αy2)e
−θ′

1
(y1+αy2

1
)e−(θ1+θ2−θ′

1
)(y2+αy2

2
) if y1 > y2 > 0

θ1θ
′

2(1 + 2αy1)(1 + 2αy2)e
−(θ1+θ2−θ′

2
)(y1+αy2

1
)e−θ′

2
(y2+αy2

2
) if y2 > y1 > 0.

(7)

It will be denoted by EFB(LFR(α), θ1, θ2, θ
′

1, θ
′

2).

Example 4: If we take the base line distribution as a Pareto III distribution with S0(y) =

(1 + yα)−1 for α > 0, then (1) becomes;

fY1,Y2
(y1, y2) =





θ′1θ2α
2yα−1

1 yα−1
2 (1 + yα1 )

−(θ′
1
+1)(1 + yα2 )

−(θ1+θ2−θ′
1
+1) if y1 > y2 > 0

θ1θ
′

2α
2yα−1

1 yα−1
2 (1 + yα1 )

−(θ1+θ2−θ′
2
+1)(1 + yα2 )

−(θ′
2
+1) if y2 > y1 > 0.

(8)

It will be denoted by EFB(PAR(α), θ1, θ2, θ
′

1, θ
′

2). In Figures 1 and 2, the surface plot of

the different PDFs for different parameter values and for different base line distributions are

provided. It clearly indicates that they can take variety of shapes depending on the base

line distribution and the parameter values.

It may be mentioned that some of the very general bivariate models which have been

obtained by minimization or maximization process for example the class of bivariate models

with proportional reversed hazard marginals by Kundu and Gupta (2010) or the bivari-

ate Kumaraswamy distribution by Barreto-Souza and Lemonte (2013), do not generate the
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Figure 1: Contour plots of the joint PDF of the different EFB distributions are
presented for different parameter values and for different base distributions: (a)
EFB(EXP,1.0,1.0,1.5,1.5), (b) EFB(EXP,1.0,1.0,2.0,2.0), (c) EFB(WE(2.0),1.0,1.0,1.5,1.5),
(d) EFB(WE(3.0),1.0,1.0,1.5,1.5).

proposed EFB model as their process of generations are completely different.

3 Properties

We have the following result for the joint survival function and the marginal distributions.

Theorem 3.1: Let (Y1, Y2) ∼ EFB(F, θ1, θ2, θ
′

1, θ
′

2). The joint survival function of (Y1, Y2)

is
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Figure 2: Contour plots of the joint PDF of the different EFB distribu-
tions are presented for different parameter values and for different base dis-
tributions: (a) EFB(LFR(2.0),1.0,1.0,1.5,1.5), (b) EFB(LFR(3.0),1.0,1.0,1.5,1.5), (c)
EFB(PAR(2.0),1.0,1.0,1.5,1.5), (d) EFB(PAR(3.0),1.0,1.0,1.5,1.5).

Case 1: θ1 + θ2 6= θ′1, θ1 + θ2 6= θ′2

S(y1, y2) =





(S0(y1))
θ1+θ2 + θ2(S0(y1))

θ
′

1

θ1+θ2−θ′
1

(
(S0(y2))

θ1+θ2−θ′
1 − (S0(y1))

θ1+θ2−θ′
1

)
if y1 > y2

(S0(y2))
θ1+θ2 + θ1(S0(y2))

θ
′

2

θ1+θ2−θ′
1

(
(S0(y1))

θ1+θ2−θ′
2 − (S0(y2))

θ1+θ2−θ′
2

)
if y2 > y1

(9)

Case 2: θ1 + θ2 = θ′1, θ1 + θ2 6= θ′2.
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For y1 < y2, S(y1, y2) is same as in Case 1. For y1 > y2

S(y1, y2) = (S0(y1))
θ1+θ2(1 + θ2(lnS0(y2)− lnS0(y1))) (10)

Case 3: θ1 + θ2 6= θ′1, θ1 + θ2 = θ′2.

For y1 > y2, S(y1, y2) is same as in Case 1. For y1 < y2

S(y1, y2) = (S0(y2))
θ1+θ2(1 + θ1(lnS0(y1)− lnS0(y2))) (11)

Case 4: θ1 + θ2 = θ′1 = θ′2.

For y1 > y2 (y1 < y2), S(y1, y2) is same as in Case 2 (Case 3).

Proof of Theorem 3.1: It can be obtained in a routine manner, and it is not provided

here.

Theorem 3.2: Let (Y1, Y2) ∼ EFB(F, θ1, θ2, θ
′

1, θ
′

2). Then

(i) Y = min{Y1, Y2} has the survival function P (Y > y) = (S0(y))
θ1+θ2 .

(ii) P (Y1 > Y2) =
θ2

θ1 + θ2

Proof of Theorem 3.2: (i) easily follows from Theorem 3.1, and (ii) follows from (1).

Theorem 3.3: Let (Y1, Y2) ∼ EFB(F, θ1, θ2, θ
′

1, θ
′

2). The marginal survival functions of Y1

and Y2 are

Case 1: θ1 + θ2 6= θ′1, θ1 + θ2 6= θ′2

SY1
(y1) =

θ2
θ1 + θ2 − θ′1

(S0(y1))
θ′
1 +

θ1 − θ′1
θ1 + θ2 − θ′1

(S0(y1))
θ1+θ2 if y1 > 0 (12)

SY2
(y2) =

θ1
θ1 + θ2 − θ′2

(S0(y2))
θ′
2 +

θ2 − θ′2
θ1 + θ2 − θ′2

(S0(y2))
θ1+θ2 if y2 > 0. (13)
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Case 2: θ1 + θ2 = θ′1, θ1 + θ2 6= θ′2. In this case SY2
(·) is same as in Case 1. But

SY1
(y1) = (S0(y1))

θ1+θ2(1− θ2 lnS0(y1)) (14)

Case 3: θ1 + θ2 6= θ′1, θ1 + θ2 = θ′2. In this case SY1
(·) is same as in Case 1. But

SY2
(y2) = (S0(y2))

θ1+θ2(1− θ1 lnS0(y1)) (15)

Case 4: θ1 + θ2 = θ′1 = θ′2.

For y1 > y2 (y1 < y2), SY1
(y1)(SY2

(y2) is same as in Case 2 (Case 3).

Proof of Theorem 3.3: It can be obtained easily from Theorem 3.1.

Comment: Note that from the marginal distribution functions, the marginal PDFs can be

obtained. Hence the conditional PDFs also can be obtained from the joint PDF and from

the marginal PDFs. It is not pursued here.

Comment: One natural question is whether the joint survival function S(y1, y2) has a

convenient copula representation or not. Since S−1
Y1

(·) and S−1
Y2

(·) do not have closed form,

the joint survival function do not have explicit copula representation in general.

Theorem 3.4: Let (Y1, Y2) ∼ EFB(F, θ1, θ2, θ
′

1, θ
′

2). If θ′1 + θ′2 > θ1 + θ2, then (Y1, Y2) has

total positivity of order two (TP2) property.

Proof of Theorem 3.4: Note that (Y1, Y2) has TP2 property, if and only if for any

y11, y12, y21, y22, whenever, 0 < y11 < y12 and 0 < y21 < y22, we have

f(y11, y21)f(y12, y22) ≥ f(y12, y21)f(y11, y22). (16)

To prove (16) let us consider the case 0 < y11 < y21 < y12 < y22. Therefore, proving (16) is

equivalent to prove

(S0(y21))
θ′
1
+θ′

2
−θ1−θ2 ≥ (S0(y12))

θ′
1
+θ′

2
−θ1−θ2 , (17)
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which is true. Along the same line for other cases also (16) can be proved.

Now we provide a simple characterization of the EFB class of distributions. From The-

orem 3.1, it is clear that S(y1, y2) can be written in the form R(S0(y1), S0(y2)), where the

exact form of R(u, v), can be easily obtained from Theorem 3.1. Note that R(u, v) is a proper

survival function in [0, 1]× [0, 1]. The following notations are consistent and it follows that

S(y1, 0) = R(S0(y1), S0(0)) = R(S0(y1), 1) = SY1
(y1)

S(0, y2) = R(S0(0), S0(y2)) = R(1, S0(y2)) = SY2
(y2)

S(0, 0) = R(S0(0), S0(0)) = R(1, 1) = 1.

We have the following general result

Theorem 3.5: The survival function S(y1, y2) = R(S0(y1), S0(y2)) satisfies the functional

equation

R(S0(t)S0(y1), S0(t)S0(y2)) = R(S0(y1), S0(y2))R(S0(t), S0(t)) (18)

for all 0 < S0(t), S0(y1), S0(y2) < 1, if and only if it is of the form

R(S0(y1), S0(y2)) = S(y1, y2) =





[S0(y1)]
cR

(
1, S0(y2)

S0(y1)

)
if y2 ≥ y1

[S0(y2)]
cR

(
S0(y1)
S0(y2)

, 1
)

if y1 ≥ y2,
(19)

for some c > 0.

Proof of Theorem 3.5: See in the Appendix.

Now we present the characterization result.

Theorem 3.6: The EFB(F, θ1, θ2, θ
′

1, θ
′

2) distribution is characterized by the functional

equation

R(S0(t)S0(y1), S0(t)S0(y2)) = R(S0(y1), S0(y2))R(S0(t), S0(t)),

for all 0 < S0(t), S0(y1), S0(y2) < 1.
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Proof of Theorem 3.6: It mainly follows from Theorem 3.5, and observing the following

fact that for EFB(F, θ1, θ2, θ
′

1, θ
′

2), the survival function (Theorem 3.1) for all four cases, can

be written as follows:

R(S0(y1), S0(y2)) = S(y1, y2) =





[S0(y1)]
cR

(
1, S0(y2)

S0(y1)

)
if y2 ≥ y1

[S0(y2)]
cR

(
S0(y1)
S0(y2)

, 1
)

if y1 ≥ y2.

Corollary 3.1: The PDF of example 1, as given in (5) satisfies the bivariate lack of

memory property of Galambos and Kotz (1978).

Corollary 3.2: The survival function corresponding to the PDF of example 2, as given

in (6) satisfies the relation

S((y1 + t)1/α, (y2 + t)1/α) = S0(t, t)S(y1, y2).

It is the bivariate extension of the univariate characterization of the Weibull distribution.

Now we would like to provide the bivariate hazard function of the FEB distributions.

It may be mentioned that there are several ways of defining the bivariate hazard rates. In

this paper we consider the joint bivariate hazard function in the sense of Johnson and Kotz

(1975) and it is defined as follows:

h(y1, y2) =

(
−

∂

∂y1
,−

∂

∂y2

)
lnSY1,Y2

(y1, y2) = (h1(y1, y2), h2(y1, y2)) (say), (20)

and it is known that the bivariate hazard function h(y1, y2) uniquely defines the joint PDF.

It is difficult to establish the results regarding bivariate hazard function for a general EFB

models. The following results can be obtained for specific cases.

Theorem 3.7: Suppose (Y1, Y2) ∼ EFB(EXP, θ1, θ2, θ
′

1, θ
′

2).

(i) If (a)θ1 + θ2 > θ′1, θ1 < θ′1, (b) θ1 + θ2 > θ′2, θ2 < θ′2, then for fixed y2 (y1), h1(y1, y2)

(h2(y1, y2)) is a decreasing function of y1 (y2).
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(ii) If θ′1 > θ1 + θ2 and θ′2 > θ1 + θ2, then for fixed y2 (y1), h1(y1, y2) (h2(y1, y2)) is an

increasing function of y1 (y2).

Proof: To prove (i), first consider the case y1 > y2. In this case after some calculation we

can obtain

h1(y1, y2) =
(θ1 + θ2)(θ1 − θ′1)e

−(θ1+θ2−θ′
1
)y1 + θ′1θ2e

−(θ1+θ2−θ′
1
)y2

(θ1 − θ′1)e
−(θ1+θ2−θ′

1
)y1 + θ2e−(θ1+θ2−θ′

1
)y2

.

Using condition (a), it can be easily shown that
∂h1(y1, y2)

∂y1
< 0, for fixed y2 < y1. Similarly,

for y1 < y2, using condition (b), it can be shown that
∂h2(y1, y2)

∂y2
< 0, for fixed y1 < y2.

Hence, the result follows. The proof of (ii) can be obtained along the same line.

Theorem 3.8: Suppose (Y1, Y2) ∼ EFB(WE(α), θ1, θ2, θ
′

1, θ
′

2).

(i) If (a) θ1 + θ2 > θ′1, θ1 < θ′1, (b) θ1 + θ2 > θ′2, θ2 < θ′2, then for fixed y2 (y1), h1(y1, y2)

(h2(y1, y2)) is a decreasing function of y1 (y2) for all α > 0.

(ii) If θ′1 > θ1 + θ2 and θ′2 > θ1 + θ2, then for fixed y2 (y1), h1(y1, y2) (h2(y1, y2)) is an

increasing function of y1 (y2) for all α > 0.

Proof: The proof of Theorem 3.8 can be obtained from Theorem 3.7, by substituting

u1 = yα1 , u2 = yα2 , and observing the fact that
∂u1

∂y1
> 0 and

∂u2

∂y2
> 0.

Theorem 3.9: Suppose (Y1, Y2) ∼ EFB(LFR(α), θ1, θ2, θ
′

1, θ
′

2).

(i) If (a) θ1 + θ2 > θ′1, θ1 < θ′1, (b) θ1 + θ2 > θ′2, θ2 < θ′2, then for fixed y2 (y1), h1(y1, y2)

(h2(y1, y2)) is a decreasing function of y1 (y2) for all α > 0.

(ii) If θ′1 > θ1 + θ2 and θ′2 > θ1 + θ2, then for fixed y2 (y1), h1(y1, y2) (h2(y1, y2)) is an

increasing function of y1 (y2) for all α > 0.



16

Proof: The proof of Theorem 3.9 can be obtained from Theorem 3.7, by substituting

u1 = y1 + αy21, u2 = y2 + y22, and observing the fact that
∂u1

∂y1
> 0 and

∂u2

∂y2
> 0.

Theorem 3.10: If (Y1, Y2) ∼ EFB(PAR(α), θ1, θ2, θ
′

1, θ
′

2), and (a) θ1 > θ′1, (b) θ2 > θ′2, then

for fixed y2 (y1), h1(y1, y2) (h2(y1, y2)) is an increasing function of y1 (y2) for all 0 < α < 1.

Proof: In this case also, the proof can be obtained in a routine manner. Consider the case

y1 > y2, in this case after some calculation we can obtain

h1(y1, y2) =
αyα−1

1 (θ1 + θ2)(θ1 − θ′1)(1 + yα)−(θ1+θ2+1) + αyα−1
1 θ′1θ2(1 + yα2 )

−(θ1+θ2−θ′
1
)

(θ1 − θ′1)(1 + yα1 )
−(θ1+θ2) + θ2(1 + yα2 )

−(θ1+θ2−θ′
1
)

.

Using condition (a), it can be easily shown that
∂h1(y1, y2)

∂y1
< 0, for fixed y2 < y1. Similarly,

for y1 < y2, using condition (b), it can be shown that
∂h2(y1, y2)

∂y2
< 0, for fixed y1 < y2.

Hence, the result follows.

Now we mention how to generate samples from (1) based on the assumption that it is

known how to generate samples from the proportional hazard class of distributions for any

α > 0. It may be noted that if the base line distribution/ survival function is easily invertible,

then it is very simple to generate samples from the corresponding proportional hazard class

of distribution for any α > 0. The following algorithm can be used to generate samples from

EFB(F, θ1, θ2, θ
′

1, θ
′

2)

Algorithm:

• Generate u, v and w independently from a uniform (0, 1) distribution.

• If u ≤
θ1

θ1 + θ2
, consider y1 = S−1

0 ((1− v)1/θ1), and y2 = S−1
0 (S0(y1)(1− w)1/θ

′

2)

• If u >
θ1

θ1 + θ2
, consider y2 = S−1

0 ((1− v)1/θ2), and y1 = S−1
0 (S0(y2)(1− w)1/θ

′

1)

Therefore, it is immediate that the generation from the EFB model is quite straight

forward when S−1
0 (·) has explicit form, otherwise we need to solve it numerically. We will
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now briefly discuss how it can be done in three different cases mentioned above. In all these

cases, u, v and w are generated independently from a uniform (0, 1) distribution.

Example 1:

• If u ≤
θ1

θ1 + θ2
, y1 = −

1

θ1
ln(1− v), and y2 = y1 −

1

θ′2
ln(1− w)

• If u >
θ1

θ1 + θ2
, y2 = −

1

θ2
ln(1− v), and y1 = y2 −

1

θ′1
ln(1− w)

Example 2:

• If u ≤
θ1

θ1 + θ2
, y1 =

[
−

1

θ1
ln(1− v)

]1/α
, and y2 = y1 +

[
−

1

θ′2
ln(1− w)

]1/α

• If u >
θ1

θ1 + θ2
, y2 =

[
−

1

θ2
ln(1− v)

]1/α
, and y1 = y2 +

[
−

1

θ′1
ln(1− w)

]1/α

Example 3:

• If u ≤
θ1

θ1 + θ2
,

y1 =
−1 +

√
1− 4α ln(1− v)/θ1

2α
and y2 = y1 +

−1 +

√
1− 4α̃1 ln(1− w)/θ̃2

2α̃1

where

α̃1 =
α

2αy1 + 1
and θ̃2 = (2αy1 + 1)θ′2

• If u >
θ1

θ1 + θ2
,

y2 =
−1 +

√
1− 4α ln(1− v)/θ2

2α
and y1 = y2 +

−1 +

√
1− 4α̃2 ln(1− w)/θ̃1

2α̃2

where

α̃2 =
α

2αy2 + 1
and θ̃1 = (2αy2 + 1)θ′1
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Example 4:

• If u ≤
θ1

θ1 + θ2
, y1 =

[
(1− v)−1/θ1 − 1

]1/α
, and y2 =

[
(1 + yα1 )(1− w)−1/θ′

2 − 1
]1/α

• If u >
θ1

θ1 + θ2
, y2 =

[
(1− v)−1/θ2 − 1

]1/α
, and y1 =

[
(1 + yα2 )(1− w)−1/θ′

1 − 1
]1/α

From these examples, it is clear that if we know how to generate samples, from the base

line distribution function, it is very easy to generate samples from the corresponding EFB

models.

4 Statistical Inferences

4.1 Maximum Likelihood Estimators

In this section it is assumed we have a sample of size n, {(y1i, y2i), i = 1, · · · , n} from (1) and

based on the sample we want to estimate the unknown parameters, and then discuss their

properties.

First it is assumed that F0(·), the base line distribution, is completely known, and there-

fore, we need to find the maximum likelihood estimators (MLEs) of the unknown parameters

θ1, θ2, θ
′

1, θ
′

2. We use the following notations: I1 = {i; y1i > y2i}, I2 = {i; y1i < y2i}, n1 and

n2 denote the number of elements in I1 and I2 respectively. Based on the observations, the

log-likelihood function becomes;

l(θ1, θ2, θ
′

1, θ
′

2) = n1 ln θ
′

1 + n1 ln θ2 + θ′1
∑

i∈I1

ln(S0(y1i)) + (θ1 + θ2 − θ′1)
∑

i∈I1

ln(S0(y2i)) +

n2 ln θ1 + n2 ln θ
′

2 + θ′2
∑

i∈I2

ln(S0(y2i)) + (θ1 + θ2 − θ′2)
∑

i∈I2

ln(S0(y1i)) +

∑

i∈I

ln f0(y1i) +
∑

i∈I

ln f0(y2i)−
∑

i∈I

ln(S0(y1i))−
∑

i∈I

ln(S0(y2i))

= n2 ln θ1 + θ1(
∑

i∈I1

ln(S0(y2i)) +
∑

i∈I2

ln(S0(y1i))) +
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n1 ln θ2 + θ2(
∑

i∈I1

ln(S0(y2i)) +
∑

i∈I2

ln(S0(y1i))) +

n1 ln θ
′

1 + θ′1(
∑

i∈I1

ln(S0(y1i))−
∑

i∈I1

ln(S0(y2i))) +

n2 ln θ
′

2 + θ′2(
∑

i∈I2

ln(S0(y2i))−
∑

i∈I2

ln(S0(y1i))) +

∑

i∈I

ln f0(y1i) +
∑

i∈I

ln f0(y2i)−
∑

i∈I

ln(S0(y1i))−
∑

i∈I

ln(S0(y2i)). (21)

It is clear that when n1 = 0 the MLE of θ′1 does not exist, and similarly when n2 = 0, the

MLE of θ′2 does not exist. Therefore, it is assumed that n1 > 0 and n2 > 0. The MLEs of

θ1, θ2, θ
′

1 and θ′2 can be obtained as

θ̂1 = −
n2∑

i∈I1
lnS0(y2i) +

∑
i∈I2

lnS0(y1i)

θ̂2 = −
n1∑

i∈I1
lnS0(y2i) +

∑
i∈I2

lnS0(y1i)

θ̂′1 = −
n1∑

i∈I1
lnS0(y1i)−

∑
i∈I1

lnS0(y2i)

θ̂′2 = −
n2∑

i∈I2
lnS0(y2i)−

∑
i∈I2

lnS0(y1i)
.

Now we discuss how to compute the MLEs of the unknown parameters for different

examples provided in Section 2.

Example 1: In this case the base line distribution is completely know, therefore, the MLEs

are as follows:

θ̂1 =
n2∑

i∈I1
y2i +

∑
i∈I2

y1i
, θ̂2 =

n1∑
i∈I1

y2i +
∑

i∈I2
y1i

(22)

θ̂′1 =
n1∑

i∈I1
(y1i − y2i)

, θ̂′2 =
n2∑

i∈I2
(y2i − y1i)

. (23)

Example 2: In this case if α is known, the base line distribution is completely known. In

that case the MLEs of the unknown parameters can be obtained as

θ̂1(α) =
n2∑

i∈I1
yα2i +

∑
i∈I2

yα1i
, θ̂2(α) =

n1∑
i∈I1

yα2i +
∑

i∈I2
yα1i

(24)

θ̂′1(α) =
n1∑

i∈I1
(yα1i − yα2i)

, θ̂′2(α) =
n2∑

i∈I2
(yα2i − yα1i)

. (25)
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Clearly, if α is not known, first we obtain the MLE of α by maximizing the profile log-

likelihood function of α, which without the additive constant is

g(α) = n2 ln θ̂1(α)+n1 ln θ̂2(α)+n1 ln θ̂
′

1(α)+n2 ln θ̂
′

2(α)+2n lnα+α(
∑

i∈I

(ln y1i+ln y2i). (26)

The right hand side of (26) is a mixture of both convex and concave functions, hence, it is

difficult to prove analytically that g(α) is unimodal. But in all our numerical experiments

it is observed empirically that g(α) is unimodal. Hence, it has the unique maximum. Once

the MLE of α is obtained, the MLEs of θ1, θ2, θ
′

1 and θ′2 can be obtained as θ̂1(α̂), θ̂2(α̂),

θ̂′1(α̂), θ̂
′

2(α̂), respectively.

Example 3: In this case also, if α is known, the MLEs of the unknown parameters can be

obtained as

θ̂1(α) =
n2∑

i∈I1
(y2i + αy22i) +

∑
i∈I2

(y1i + αy21i)
, (27)

θ̂2(α) =
n1∑

i∈I1
(y2i + αy22i) +

∑
i∈I2

(y1i + αy21i)
, (28)

θ̂′1(α) =
n1∑

i∈I1
(y1i − y2i + α(y21i − y22i))

, (29)

θ̂′2(α) =
n2∑

i∈I2
(y2i − y1i + α(y22i − y21i))

. (30)

For unknown α the profile log-likelihood function of α without additive constant can be

written as

g(α) = n2 ln θ̂1(α) + n1 ln θ̂2(α) + n1 ln θ̂
′

1(α) + n2 ln θ̂
′

2(α)

+
∑

i∈I

(ln(1 + 2αy1i) + ln(1 + 2αy2i))−
n∑

i=1

(yα1i + yα2i + α(y21i + y22i)). (31)

In this also, it is observed empirically, that g(α) is an unimodal function, and hence it has

the unique maximum. Once the MLE of α is obtained, the MLEs of θ1, θ2, θ
′

1 and θ′2 can be

easily obtained as before; θ̂1(α̂), θ̂2(α̂), θ̂
′

1(α̂), θ̂
′

2(α̂), respectively.
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Example 4: If α is known, the MLEs of the unknown parameters can be obtained as

θ̂1(α) =
n2∑

i∈I1
ln(1 + yα2i) +

∑
i∈I2

ln(1 + yα1i)
, (32)

θ̂2(α) =
n1∑

i∈I1
ln(1 + yα2i) +

∑
i∈I2

(1 + yα1i)
, (33)

θ̂′1(α) =
n1∑

i∈I1
(ln(1 + yα1i)− ln(1 + yα2i))

, (34)

θ̂′2(α) =
n2∑

i∈I2
(ln(1 + yα2i)− ln(1 + yα1i))

. (35)

For unknown α the profile log-likelihood function of α without additive constant can be

written as

g(α) = n2 ln θ̂1(α) + n1 ln θ̂2(α) + n1 ln θ̂
′

1(α) + n2 ln θ̂
′

2(α) + 2n lnα

+(α− 1)
∑

i∈I

(ln y1i + ln y2i)−
n∑

i=1

(ln(1 + yα1i) + ln(1 + yα2i)). (36)

In this also, it is observed empirically, that g(α) is an unimodal function, and hence it has

the unique maximum. Once the MLE of α is obtained, the MLEs of θ1, θ2, θ
′

1 and θ′2 can be

easily obtained as before; θ̂1(α̂), θ̂2(α̂), θ̂
′

1(α̂), θ̂
′

2(α̂), respectively.

Now we will discuss the properties of the MLEs. This is a regular family of distributions.

Therefore, the MLEs will be asymptotically normally distributed, and the asymptotic vari-

ance will be the negative inverse of the expected Fisher information matrix, which can be

expressed as follows:

Example 1: When the base line distribution is completely known, the model has four un-

known parameters. In this case the negative of the expected Fisher information matrix

is

I1 =




θ2
θ2
1
(θ1+θ2)

0 0 0

0 θ1
θ2
2
(θ1+θ2)

0 0

0 0 θ1
θ′2
1
(θ1+θ2)

0

0 0 0 θ2
θ′2
2
(θ1+θ2)


 (37)

Examples 2-4: In all these cases the base line distribution has also one parameter. Therefore,

all the models have total five unknown parameters. In this case the negative of the expected
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Fisher information matrix in each case can be expressed as follows:

I2 =




θ2
θ2
1
(θ1+θ2)

0 0 0 h1

0 θ1
θ2
2
(θ1+θ2)

0 0 h2

0 0 θ1
θ′2
1
(θ1+θ2)

0 h3

0 0 0 θ2
θ′2
2
(θ1+θ2)

h4

h1 h2 h3 h4 h5



, (38)

where hj’s cannot be obtained in explicit forms, they can be obtained in terms of integration.

The expressions of h1, . . . , h5, are provided in the appendix.

4.2 Testing of Hypothesis

In a load sharing system, one of the natural questions is whether the failure of one component

results in a change in the lifetime distribution of the other component or not. In this respect

we consider the following testing of hypothesis problem:

H0 : θ1 = θ′1, θ2 = θ′2, vs. H1 : At least one is different. (39)

We propose to use the likelihood ratio test to test H0 vs. H1 as given in (39). First, we

provide the MLEs of the unknown parameters under H0, in all the three cases considered.

Example 1:

θ̂10 =
n∑

i∈I y1i
, and θ̂20 =

n∑
i∈I y2i

.

Example 2: For fixed α, the MLEs of θ1 and θ2 can be obtained as follows:

θ̂10(α) =
n∑

i∈I y
α
1i

, and θ̂20(α) =
n∑

i∈I y
α
2i

.

The MLE of α can be obtained by maximizing the profile log-likelihood function of α as

given below:

g0(α) = n ln θ̂10(α) + n ln θ̂20(α) + 2n lnα + α(
∑

i∈I

(ln y1i + ln y2i). (40)
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Once the MLE of α, α̂0, is obtained by maximizing (40), the MLEs of θ1 and θ2 can be

obtained as θ̂10(α̂0) and θ̂20(α̂0)

Example 3:

For fixed α, the MLEs of θ1 and θ2 can be obtained as follows:

θ̂10(α) =
n∑

i∈I(y1i + αy21i)
, and θ̂20(α) =

n∑
i∈I(y2i + αy22i)

.

The MLE of α can be obtained by maximizing the profile log-likelihood function of α as

given below:

g0(α) = n ln θ̂10(α) + n ln θ̂20(α) +
∑

i∈I

(ln(1 + 2αy1i) + ln(1 + 2αy2i)). (41)

Once α̂0, the MLE of α, is obtained by maximizing (41), the MLEs of θ1 and θ2 can be

obtained as θ̂10(α̂0) and θ̂20(α̂0)

Example 4:

For fixed α, the MLEs of θ1 and θ2 can be obtained as follows:

θ̂10(α) =
n∑

i∈I ln(1 + yα1i)
, and θ̂20(α) =

n∑
i∈I ln(1 + yα2i)

.

The MLE of α can be obtained by maximizing the profile log-likelihood function of α as

given below:

g0(α) = n ln θ̂10(α) + n ln θ̂20(α) + 2n lnα + (α− 1)
∑

i∈I

(ln y1i + ln y2i)

−
∑

i∈I

(ln(1 + yα1i) + ln(1 + yα2i)) . (42)

Once α̂0, the MLE of α, is obtained by maximizing (42), the MLEs of θ1 and θ2 can be

obtained as θ̂10(α̂0) and θ̂20(α̂0)

Once the MLEs under H0 are obtained, the likelihood ratio test can be easily obtained

to test H0 vs. H1 as given in (39).
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5 Data Analysis

In this section we analyze one data set consists of three star players in a basketball team.

The data set is obtained from the Basketball Association franchise Boston Celtics obtained

during the second half of the 2001-2002 session. The data set is presented in the following

Table 1. The data set represents the game times for each player’s second personal foul for

Table 1: Time until second foul for the three star players

Game Player Player Player Game Player Player Player
I II III I II III

1 21.02 30.22 43.43 2 24.25 45.54 17.19
3 6.56 19.47 23.28 4 15.35 16.37 25.40
5 39.08 30.32 43.53 6 16.20 4.16 39.52
7 34.59 46.44 16.33 8 19.10 38.40 20.17
9 28.22 37.43 25.41 10 32.00 45.52 39.11
11 11.25 19.09 11.59 12 17.39 25.43 22.51
13 28.47 31.15 2.41 14 23.42 31.28 40.03
15 42.06 23.21 45.36 16 28.51 33.59 16.20
17 34.56 32.53 40.44 18 40.33 15.35 28.33
19 27.56 46.21 28.05 20 9.54 36.21 28.12
21 27.09 11.11 23.33 22 40.36 33.21 17.04
23 41.44 36.28 19.13 24 32.23 8.17 41.27
25 7.53 37.31 13.43 26 28.34 35.58 41.48
27 26.32 28.02 29.33 28 30.47 40.40 42.13

that particular game, in which all the three players have participated and committed at least

two fouls at the end.

Kvam and Pena (2003) first analyzed this data set, see also Kvam and Pena (2005).

Later Deshpande et al. (2007) also analyzed this same data set. It is expected that once

a player committed at least two fouls the player may be out of the game for some time,

and due to this reason the foul rate of the other star players might change. Kvam and

Pena (2003) conjectured that once a star player committed two fouls, the foul rate of the
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other star players changes. Kvam and Pena (2003) assumed that the three star players

compose a system, where as Deshpande et al. (2007) assumed that any two star players

compose a system. We follow the approach of Deshpande et al. (2007), i.e. any two star

players compose a system. We analyze the data set assuming three different systems namely,

System I: (Player I, Player II), System II: (Player I, Player III) and System III: (Player II,

Player III) respectively.

System I (Player I & Player II):

Exponential: The MLEs of θ1, θ2, θ
′

1 and θ′2 as θ̂1 = 3.0933, θ̂2 = 1.4652, θ̂′1 = 7.5624

and θ̂′2 = 8.4909. The associated 95% confidence intervals are (1.072, 5.103), (0.815, 2.132),

(4.158, 10.963) and (3.304, 13.682) respectively.

Weibull: The MLEs of the different parameters in this case are α̂ = 3.0071, θ̂1 = 42.2983,

θ̂2 = 20.0360, θ̂′1 = 33.4448, θ̂′2 = 31.7244. and the associated confidence intervals are (1.8639,

4.1503), (23.3107, 61.2859), (10.7908, 29.2812), (17.2735, 49.6161) respectively.

Linear Failure Rate: The MLEs of the different parameters in this case are α̂ = 0.5515,

θ̂1 = 2.7047, θ̂2 = 1.2812, θ̂′1 = 5.8915 and θ̂′2 = 6.4637. The associated confidence intervals

are as follows: (0.3202, 0.7828), (1.3634, 4.0460), (.6958, 1.8666), (3.1350, 8.6430), (3.3919,

9.5355) respectively.

Pareto III: The MLEs of the different parameters in this case are α̂ = 2.9396, θ̂1 =

35.6781, θ̂2 = 19.8212, θ̂′1 = 21.7844 and θ̂′2 = 31.0153. The associated confidence intervals

are as follows: (1.9282, 3.9510), (24.4770, 46.8792), (13.8756, 25.7668), (15.5298, 28.0390),

(20.7605, 41.2701) respectively.

Now the natural question is how well these distributions fit the bivariate data set. Un-

fortunately, it is well known that although we have several satisfactory goodness of fit tests

for the univariate case, but for the bivariate case except for the bivariate normal distribution
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there does not exist any satisfactory goodness of fit test. Due to this reason, we test the

marginals (Theorem 3.3) and also the maximum (Theorem 3.2) of the two observations. We

report the results for the Kolmogorov-Smirnov distances and also the associated p values

in Table 2. From Table 2 it is clear that the EFB model with Weibull base line survival

function works the best among the three EFB models, and since all the p values are very

high, it indicates that we cannot reject the null hypothesis that the data of System-I are

coming from a EFB model with Weibull base line survival function.

Table 2: Kolmogorov-Smirnov distances and the associated p values for Sys-
tem I.

Variable Exponential Weibull LFR Pareto
K-S p K-S p K-S p K-S p

Y1 0.2709 0.0323 0.1287 0.7430 0.2480 0.0638 0.1876 0.3778
Y2 0.2533 0.0550 0.1322 0.7120 0.2416 0.0762 0.2011 0.2054

max{Y1, Y2} 0.2654 0.0455 0.1389 0.7345 0.2456 0.0712 0.2166 0.1765

System II (Player I & Player III)

Exponential: The MLEs are θ̂1 = 3.1387, θ̂2 = 1.4867, θ̂′1 = 7.0373 and θ̂′2 = 10.6621. The

associated 95% confidence intervals are: (1.6848, 4.5926), (0.8633, 2.1101), (3.5806, 10.4940),

(5.3209, 16.0033) respectively.

Weibull: The MLEs of the different parameters are α̂ = 2.7218, θ̂1 = 29.8836, θ̂2 = 14.1554,

θ̂′1 = 26.0310 and θ̂′2 = 32.4743. The associated 95% confidence intervals are: (1.4066, 4.0370),

(19.6691, 40.0981), (7.9006, 20.4102), (14.7725, 37.2895) respectively.

Linear Failure Rate: The MLEs of the different parameters are α̂ = 0.5108, θ̂1 =

2.7718, θ̂2 = 1.3129, θ̂′1 = 5.5991 and θ̂′2 = 8.2852. The associated 95% confidence intervals

are (0.2976, 0.7240), (1.4573, 4.0863), (0.7340, 1.8918), (3.2512, 7.9470) respectively.

Pareto III: The MLEs of the different parameters in this case are α̂ = 2.4320, θ̂1 = 13.7189,
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θ̂2 = 11.8897, θ̂′1 = 26.0183 and θ̂′2 = 31.8613. The associated confidence intervals are as

follows: (1.3073, 3.5567), (10.4593, 16.9785), (8.8787, 14.9007), (18.0059, 34.0307), (20.9195,

42.8031) respectively.

We report the Kolmogorov-Smirnov distances of Y1, Y2 and max{Y1, Y2} with the corre-

sponding fitted distributions and the associated p values in Table 3. It is clear that in this

case also the EFB model with Weibull survival functions provides a best fit to System-II

data set.

Table 3: Kolmogorov-Smirnov distances and the associated p values for Sys-
tem II.

Variable Exponential Weibull LFR Pareto
K-S p K-S p K-S p K-S p

Y1 0.2712 0.0320 0.1453 0.5954 0.2508 0.0590 0.2178 0.1668
Y3 0.2668 0.0371 0.2015 0.2055 0.2364 0.0876 0.2241 0.1511

max{Y1, Y2} 0.2685 0.0356 0.1815 0.3876 0.2456 0.0678 0.2315 0.1478

System III (Player II & Player III)

Exponential: The MLEs are θ̂1 = 2.3222, θ̂2 = 2.3222, θ̂′1 = 5.9544 and θ̂′2 = 7.7489. The

associated 95% confidence intervals are ; (0.8644, 3.7800), (0.8644, 3.7800), (3.4966, 8.4122),

(4.4610, 11.0368) respectively.

Weibull: The MLEs are α̂ = 3.0235, θ̂1 = 31.7787, θ̂2 = 31.7787, θ̂′1 = 23.6955 and

θ̂′2 = 30.1831. The corresponding 95% confidence intervals are (1.7890, 4.2580), (19.2098,

44.3476), (19.2098, 44.3476), (13.7081, 33.6829) respectively.

Linear Failure Rate: The MLEs are α̂ = 0.5746, θ̂1 = 2.0208, θ̂2 = 2.0208, θ̂′1 = 4.5123

and θ̂′2 = 5.8721. The corresponding 95% confidence intervals are: (0.3601, 0.7891), (1.0330,

3.0086), ((1.0330, 2.0208), (2.3867, 6.6379), (3.2932, 8.4510) respectively.

Pareto III: The MLEs of the different parameters in this case are α̂ = 2.8418, θ̂1 =
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26.0509, θ̂2 = 26.0509, θ̂′1 = 21.4136 and θ̂′2 = 27.4781. The associated confidence intervals

are as follows: (1.8431, 3.8405), (16.9389, 35.1629), (16.9389, 35.1629), (13.9658, 28.8614),

(17.9983, 36.9579), respectively.

The Kolmogorov-Smirnov distances and the associated p values of the different variables

are provided in Table 4. The Kolmogorov-Smirnov distances and the associated p values

suggest that EFB model with Weibull base line survival function provides the best fit among

the three different EFB models.

Table 4: Kolmogorov-Smirnov distances and the associated p values for Sys-
tem III.

Variable Exponential Weibull LFR LFR
K-S p K-S p K-S p K-S p

Y2 0.2582 0.0478 0.1839 0.3000 0.2469 0.0657 0.2236 0.1578
Y3 0.2823 0.0231 0.1931 0.2469 0.2545 0.0531 0.2155 0.1732

max{Y2, Y3} 0.2678 0.0345 0.1897 0.2675 0.2489 0.0578 0.2178 0.1698

Finally we perform the likelihood ratio test for testing H0 vs. H1 as defined in (39)

for all the three cases. It is observed that for System I and System II, the corresponding

p values are very high, and therefore we cannot reject the null hypothesis. On the other

hand for System III, the p value is 0.07, and therefore, we reject the null hypothesis only

at the 10% level of significance. Interestingly, the conclusions match with the corresponding

non-parametric test procedure proposed by Deshpande et al. (2007).

6 Conclusions

In this paper we have introduced a class of bivariate models which can be used to analysis

two-component load sharing systems. The proposed model is an extension of the well known

Freund’s bivariate exponential model. Our model is a very flexible model, and it can be used
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quite effectively to analyze a two-component load-sharing system. Moreover the proposed

model is very easy to use as it has explicit expressions for PDF and CDF. We have discussed

four specific examples of our proposed model in details and developed different inferential

procedures.

Although we have introduced the bivariate model (1) when the base line distribution has

the support only on the positive real line, but the same definition can be used to define a

new class of bivariate distributions when the support of F0(·) is on (−∞,∞). It may be

noted that the physical interpretations what we have provided, may not be applicable in

this case, but still it will be a proper bivariate distribution. Consider the following example

when the base line distribution has the support on the whole real line. Suppose the base line

distribution has the standard normal distribution function, then the joint PDF (1) becomes;

fY1,Y2
(y1, y2) =





1
2π
θ′1θ2e

−
1

2
(y2

1
+y2

2
)(Φ(−y1))

θ′
1
−1(Φ(−y2))

θ1+θ2−θ′
1
−1 if y1 > y2

1
2π
θ1θ

′

2e
−

1

2
(y2

1
+y2

2
)(Φ(−y1))

θ1+θ2−θ′
2
−1(Φ(−y2))

θ′
2
−1 if y2 > y1.

(43)

It might be interesting to develop different properties of these types of general models. More

work is needed in this direction.
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Appendix

Proof of Theorem 3.5:

If part:
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Let the functional equation (18) be satisfied, then for y1 = y2 = y, (18) becomes

R(S0(t)S0(y), S0(t)S0(y)) = R(S0(y), S0(y))R(S0(t), S0(t)). (44)

From Aczel (1966, page 41) and using the fact that R(S0(y1), S0(y2)) is a survival function,

it follows that

R(S0(t), S0(t)) = [S0(t)]
c; c > 0. (45)

Therefore, (18) can be written as

R(S0(t)S0(y1), S0(t)S0(y2)) = R(S0(y1), S0(y2))[S0(t)]
c. (46)

Now consider the case y1 ≥ y2, then

R(S0(y1), S0(y2)) = R

(
S0(y2)

S0(y1)

S0(y2)
, S0(y2)S0(0)

)

= R(S0(y2), S0(y2))R

(
S0(y1)

S0(y2)
, S0(0)

)

= [S0(y2)]
cR

(
S0(y1)

S0(y2)
, 1

)
.

Similarly, it can be proved for y1 ≤ y2 also.

Only if part:

Let R(S0(y1), S0(y2)) be of the form (19). Therefore,

R(S0(t)S0(y1), S0(t)S0(y2)) = S(y1, y2) =





[S0(t)S0(y1)]
c R

(
1, S0(y2)

S0(y1)

)
if y2 ≥ y1

[S0(t)S0(y2)]
c R

(
S0(y1)
S0(y2)

, 1
)

if y1 ≥ y2

(47)

Moreover, from (19), if y1 = y2 = t

R(S0(t), S0(t)) = S(t, t) = [S0(t)]
c.

Therefore, (47) can be written as

R(S0(t)S0(y1), S0(t)S0(y2)) = S(y1, y2) =





R(S0(t), S0(t))[S0(y1)]
c R

(
1, S0(y2)

S0(y1)

)
if y2 ≥ y1

R(S0(t), S0(t))[S0(y2)]
c R

(
S0(y1)
S0(y2)

, 1
)

if y1 ≥ y2
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Now, the result follows by observing the fact

R(S0(y1), S0(y2)) =





[S0(y1)]
c R

(
1, S0(y2)

S0(y1)

)
if y2 ≥ y1

[S0(y2)]
c R

(
S0(y1)
S0(y2)

, 1
)

if y1 ≥ y2

The Expressions of h1, . . . , h5.

We use the following notations:

g1(y;α) = −
d

dα
lnS0(y), g2(y;α) = −

d2

dα2
lnS0(y), g3(y;α) = −

d2

dα2
ln f0(y).

Then

h1 = h2 =
θ2

θ1 + θ2

∫
∞

0

∫ y1

0

g1(y2;α)fY1,Y2
(y1, y2)dy2dy1

+
θ1

θ1 + θ2

∫
∞

0

∫ y2

0

g1(y1;α)fY1,Y2
(y1, y2)dy1dy2

h3 =
θ2

θ1 + θ2

∫
∞

0

∫ y1

0

(g1(y1;α)− g1(y2;α)) fY1,Y2
(y1, y2)dy2dy1

h4 =
θ1

θ1 + θ2

∫
∞

0

∫ y2

0

(g1(y2;α)− g1(y1;α)) fY1,Y2
(y1, y2)dy1dy2

h5 = θ2

∫
∞

0

∫ y1

0

g2(y2;α)fY1,Y2
(y1, y2)dy2dy1 + θ1

∫
∞

0

∫ y2

0

g2(y1;α)fY1,Y2
(y1, y2)dy1dy2

+
θ′1θ2

θ1 + θ2

∫
∞

0

∫ y1

0

(g2(y1;α)− g2(y2;α)) fY1,Y2
(y1, y2)dy2dy1

+
θ′2θ1

θ1 + θ2

∫
∞

0

∫ y2

0

(g2(y2;α)− g2(y1;α)) fY1,Y2
(y1, y2)dy1dy2

+

∫
∞

0

∫
∞

0

(g3(y1;α) + g3(y2;α)− g2(y1;α)− g2(y2;α)) fY1,Y2
(y1, y2)dy1dy2
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