The Bivariate Generalized Linear Failure Rate Distribution and its Multivariate Extension

Ammar M. Sarhan ${ }^{* \dagger}$, David C. Hamilton ${ }^{\dagger}$, Bruce Smith ${ }^{\dagger}$ \& Debasis Kundu ${ }^{\ddagger}$

Abstract

The two-parameter linear failure rate distribution has been used quite successfully to analyze lifetime data. Recently, a new three-parameter distribution, known as the generalized linear failure rate distribution has been introduced by exponentiating the linear failure rate distribution. The generalized linear failure rate distribution is a very flexible lifetime distribution, and the probability density function of the generalized linear failure rate distribution can take different shapes. Its hazard function also can be increasing, decreasing and bathtub shaped. The main aim of this paper is to introduce a bivariate generalized linear failure rate distribution, whose marginals are generalized linear failure rate distributions. It is obtained using the same approach as the Marshall-Olkin bivariate exponential distribution. Different properties of this new distribution are established. The bivariate generalized linear failure rate distribution has five parameters and the maximum likelihood estimators are obtained using the EM algorithm. A data set is analyzed for illustrative purposes. Finally, some generalizations to the multivariate case are proposed.

Key Words and Phrases Marshall-Olkin copula; Maximum likelihood estimator; failure rate; EM algorithm; Fisher information matrix.
\dagger Department of Mathematics and Statistics, Faculty of Science, Dalhousie University, Halifax NS B3H 3JH, Canada.
\ddagger Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Pin 208016, India.

* Corresponding author. e-mail: asarhan@mathstat.dal.ca

1 Introduction

The two-parameter linear failure rate (LFR) distribution, whose hazard function is monotonically increasing in a linear fashion, has been used quite successfully to analyze lifetime data. For some basic properties and for different estimation procedures of the parameters of the LFR distribution, the readers are referred to Bain (1974), Pandey et al. (1993), Sen and Bhattacharyya (1995), Lin et al. $(2003,2006)$ and the references cited therein.

Recently, Sarhan and Kundu (2009) introduced a three-parameter generalized linear failure rate (GLFR) distribution by exponentiating the LFR distribution as was done for the exponentiated Weibull distribution by Mudholkar et al. (1995). The exponentiation introduces an extra shape parameter in the model, which may bring more flexibility in the shape of the probability density function (PDF) and hazard function. Several properties of this new distribution are established. It is observed that several known distributions like exponential, Rayleigh and LFR distributions can be obtained as special cases of the GLFR distribution.

The aim of this paper is to introduce a new bivariate generalized linear failure rate (BGLFR) distribution, whose marginals are GLFR distributions. This new five-parameter BGLFR distribution is obtained using a similar method as was used for the Marshall-Olkin bivariate exponential model, Marshall and Olkin (1969). The proposed BGLFR distribution is constructed from three independent GLFR distributions using a maximization process. Creating a bivariate distribution with given marginals using this technique is nothing new. Alternatively, the same BGLFR distribution can be obtained by coupling the GLFR marginals with the Marshall-Olkin copula (Nelsen, 1999). This new distribution is a singular distribution, and it can be used quite conveniently if there are ties in the data. The joint cumulative distribution function (CDF) can be expressed as a mixture of an absolute continuous distribution function and a singular distribution function. The joint probability
density function (PDF) of the BGLFR distribution can take different shapes and the cumulative distribution function can be expressed in a compact form. The BGLFR distribution can be applied to a maintenance model or a stress model as introduced by Kundu and Gupta (2009).

Several dependency properties of this new distribution are investigated, which will be useful for data analysis purposes. The BGLFR copula has a total positivity of order two $\left(\mathrm{TP}_{2}\right)$ property. Each component is stochastically increasing with respect to the other. This implies that the correlation is always non-negative and the two variables are positively quadrant dependent. Moreover, the correlation between the two variables varies between 0 and 1. Kendall's tau index can be calculated using the copula property and can be positive.The population version of the medial correlation coefficient as defined by Blomqvist (1950) is always non-negative. The bivariate tail dependence is always positive.

The BGLFR distribution has five parameters, and their estimation is an important problem in practice. The usual maximum likelihood estimators can be obtained by solving five non-linear equations in five unknowns directly, which is not a trivial issue. To avoid difficult computation we treat this problem as a missing value problem and use the EM algorithm, which can be implemented more conveniently than the direct maximization process. Another advantage of the EM algorithm is that it can be used to obtain the observed Fisher information matrix, which is helpful for constructing the asymptotic confidence intervals for the parameters.

Alternatively, it is possible to obtain approximate maximum likelihood estimators by estimating the marginals first and then estimating the dependence parameter through copula function, as suggested by Joe (1997, chapter 10), which have the same rate of convergence as the maximum likelihood estimators. It is computationally less involved compared to the MLE calculations. This approach is not pursued here. Analysis of a data set is presented
for illustrative purposes. The poroposed model provides a better fit than the Marshall-Olkin bivariate exponential model or the recently proposed bivariate generalized exponential model (Kundu and Gupta, 2009).

Although in this paper we mainly discussed the BGLFR, many of our results can be easily extended to the multivariate case. Moreover, the LFR distribution is a proportional reversed hazard model, and our method may be used to introduce other bivariate proportional reversed hazard models.

The rest of the paper is organized as follows. We briefly introduce the GLFR distribution in Section 2. In Section 3 we introduce the BGLFR distribution and study its different properties. The EM algorithm is described in Section 4, and analysis of a data set is presented in Section 5. We discuss the multivariate generalization in Section 6, and finally conclude the paper in Section 7.

2 Generalized Linear Failure Rate Distribution

A random variable X has a linear failure rate distribution with parameters $\beta \geq 0$ and $\gamma \geq 0$ (such that $\beta+\gamma>0$), if X has the following distribution function;

$$
\begin{equation*}
F_{L F R}(x ; \beta, \gamma)=1-\exp \left\{-\beta x-\frac{\gamma}{2} x^{2}\right\}, \tag{1}
\end{equation*}
$$

for $x>0$. The exponential distribution with mean $1 / \beta(\operatorname{ED}(\beta))$ and the Rayleigh distribution with parameter $\gamma(\operatorname{RD}(\gamma))$ can be obtained as special cases from the LFR distribution. The PDF of the LFR distribution can be decreasing or unimodal, but the failure rate function is either increasing or constant only (Sen and Bhattacharyya, 1995).

Sarhan and Kundu (2009) introduced the GLFR distribution by exponentiating the LFR distribution function as follows. A random variable X is said to have a GLFR distribution
with parameters $\alpha>0, \beta>0$ and $\gamma>0(\operatorname{GLFR}(\alpha, \beta, \gamma))$, if it has the CDF

$$
\begin{equation*}
F_{G L F R}(x ; \alpha, \beta, \gamma)=\left(1-\exp \left\{-\beta x-\frac{\gamma}{2} x^{2}\right\}\right)^{\alpha} \tag{2}
\end{equation*}
$$

for $x>0$. The corresponding PDF has the form;

$$
\begin{equation*}
f_{G L F R}(x ; \alpha, \beta, \gamma)=\alpha(\beta+\gamma x) e^{-\left(\beta x+\frac{\gamma}{2} x^{2}\right)}\left(1-\exp \left\{-\beta x-\frac{\gamma}{2} x^{2}\right\}\right)^{\alpha-1} \tag{3}
\end{equation*}
$$

for $x>0$. The PDF of the GLFR distribution is either decreasing or unimodal, and it can have constant, increasing, decreasing or bathtub shaped hazard function. It is immediate from (2) that if α is an integer, then the CDF of $\operatorname{GLFR}(\alpha, \beta, \gamma)$ represents the CDF of the maximum of a simple random sample of size α, from the LFR distribution. Therefore, when α is an integer, GLFR provides the distribution function of a parallel system when each component has the LFR distribution.

The mean or the other moments cannot be obtained in explicit form, but can be written in terms of infinite series (Sarhan and Kundu, 2009). However, because of the closed form CDF, the median or other percentile points can be obtained explicitly. Because of the exponentiated nature of the CDF, the GLFR distribution is closed under maximum, i.e. if X_{1}, \cdots, X_{n} are independently distributed such that X_{i} follows the $\operatorname{GLFR}\left(\alpha_{i}, \beta, \gamma\right)$ distribution, for $i=1, \cdots, n$, then $\max \left\{X_{1}, \cdots, X_{n}\right\}$ is GLFR $\left(\sum_{i=1}^{n} \alpha_{i}, \beta, \gamma\right)$. Moreover, if R is the stress-strength parameter, i.e. $R=P\left(X_{1}<X_{2}\right)$ where X_{1} and X_{2} are as defined above, then

$$
R=P\left(X_{1}<X_{2}\right)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} .
$$

For order statistics, moments of order statistics, characterization, and for an estimation procedure, the readers are referred to Sarhan and Kundu (2009).

3 Bivariate Generalized Failure Rate Distribution

In this section we introduce the BGLFR distribution using a method similar to that which was used by Marshall and Olkin (1969) to define the Marshall-Olkin bivariate exponential (MOBE) distribution.

Suppose U_{1}, U_{2} and U_{3} are three independent random variables such that $U_{i} \sim$ GLFR $\left(\alpha_{i}, \beta, \gamma\right)$ for $i=1,2$ and 3. Define

$$
\begin{equation*}
X_{1}=\max \left\{U_{1}, U_{3}\right) \quad \text { and } \quad X_{2}=\max \left\{U_{2}, U_{3}\right\} . \tag{4}
\end{equation*}
$$

Then we say that the bivariate vector $\left(X_{1}, X_{2}\right)$ has a bivariate GLFR (BGLFR) distribution, with parameters $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$ and we denote it by BGLFR $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$. The following interpretations can be provided for BGLFR model.

Competing risks model: Assume a system has two components, labeled 1 and 2 and the survival time of component i is denoted by $X_{i}, i=1,2$. It is considered that there are three independent causes of failures, which may affect the system. Only component 1 can fail due to cause 1, and similarly only component 2 can fail due to cause 2 , while both the components fail at the same time due to cause 3 . Let U_{i} be the lifetime of cause $i, i=1,2,3$. If U_{1}, U_{2}, U_{3} follow GLFR distribution, then $\left(X_{1}, X_{2}\right)$ follows BGLFR model.

Shock model: Suppose there are three independent sources of shocks, say 1, 2, and 3. Suppose these shocks are affecting a system with two components, say 1 and 2. It is assumed that, the shock from source 1 reaches the system destroys component 1 immediately, the shock from source 2 reaches the system destroys component 2 immediately while if the shock from source 3 hits the system destroys both the components immediately. Let U_{i} denote the inter-arrival times between the shocks in source i, $\mathrm{i}=1,2,3$, which follow the distribution GLFRD. If X_{1}, X_{2} denote the survival times of the components, then (X_{1}, X_{2}) follows BGLFR model.

If $\left(X_{1}, X_{2}\right) \sim \operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$, then the corresponding CDF, PDF and the marginals are provided in the following theorem. The proofs are not difficult and therefore are omitted.

Theorem 3.1: Suppose $\left(X_{1}, X_{2}\right) \sim \operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$. Then
(a) The joint CDF of $\left(X_{1}, X_{2}\right)$ can be written as

$$
\begin{equation*}
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)=\prod_{i=1}^{3} F_{G L F R}\left(x_{i} ; \alpha_{i}, \beta, \gamma\right) \tag{5}
\end{equation*}
$$

where $x_{3}=\min \left\{x_{1}, x_{2}\right\}$.
(b) The joint PDF of (X_{1}, X_{2}) can be written as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, x_{2}\right) & \text { if } & 0<x_{1}<x_{2}<\infty \tag{6}\\
f_{2}\left(x_{1}, x_{2}\right) & \text { if } & 0<x_{2}<x_{1}<\infty \\
f_{0}(x) & \text { if } & 0<x_{1}=x_{2}=x<\infty
\end{array}\right.
$$

where

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}\right) & =f_{G L F R}\left(x_{1} ; \alpha_{1}+\alpha_{3}, \beta, \gamma\right) f_{G L F R}\left(x_{2} ; \alpha_{2}, \beta, \gamma\right) \\
f_{2}\left(x_{1}, x_{2}\right) & =f_{G L F R}\left(x_{1} ; \alpha_{1}, \beta, \gamma\right) f_{G L F R}\left(x_{2} ; \alpha_{2}+\alpha_{3}, \beta, \gamma\right) \\
f_{0}(x) & =\frac{\alpha_{3}}{\alpha_{1}+\alpha_{2}+\alpha_{3}} f_{G L F R}\left(x ; \alpha_{1}+\alpha_{2}+\alpha_{3}, \beta, \gamma\right)
\end{aligned}
$$

(c) The marginal distributions of X_{1} and X_{2} are $\operatorname{GLFR}\left(\alpha_{1}+\alpha_{3}, \beta, \gamma\right)$ and $\operatorname{GLFR}\left(\alpha_{2}+\alpha_{3}, \beta, \gamma\right)$ respectively.

The joint distribution function of X_{1} and X_{2} has a singular part along the line $x_{1}=x_{2}$, with weight $\frac{\alpha_{3}}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$, and has an absolute continuous part on $0<x_{1} \neq x_{2}<\infty$ with weight $\frac{\alpha_{1}+\alpha_{2}}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$. In writing the joint PDF, it is understood that the first two parts are the joint PDF with respect to two dimensional Lebesgue meausre, whereas the third part is the PDF with respect to one dimensional Lebesgue measure along the line $x_{1}=x_{2}$.

This is similar to the Marshall-Olkin bivariate exponential model or bivariate generalized exponential model.

For fixed $\alpha_{1}, \alpha_{2}, \beta$ and γ, as α_{3} varies from 0 to ∞, the correlation between X_{1} and X_{2} varies between 0 and 1 . This is because, if $\alpha_{3}=0$, then X_{1} and X_{2} become independent, and when α_{3} tends to infinity, then U_{3} tends to infinity with probability 1 . Thus $U_{3}>U_{1}$ and $U_{3}>U_{2}$ with probability 1 . Therefore, $X_{1}=X_{2}$ with probability 1 , as α_{3} tends to infinity. The joint survival function and the conditional distributions can be easily obtained. Surface plots of the absolutely continuous part of the joint PDF of $\left(X_{1}, X_{2}\right)$ are provided in Figure 1. The joint PDF can take various shapes depending on the parameter values.

Interestingly, the BGLFR distribution can be obtained by using the Marshall-Olkin (MO) copula with the marginals as the GLFR distributions. To every bivariate distribution function $F_{X_{1}, X_{2}}$ with continuous marginals $F_{X_{1}}$ and $F_{X_{2}}$ corresponds a unique bivariate distribution function with uniform margins $C:[0,1]^{2} \rightarrow[0,1]$ called a copula, such that $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=C\left\{F_{X_{1}}\left(x_{1}\right), F_{X_{2}}\left(x_{2}\right)\right\}$ holds for all $\left(x_{1}, x_{2}\right) \in \Re^{2}$ (Nelsen, 1999). The MO copula is

$$
\begin{equation*}
C_{\theta_{1}, \theta_{2}}\left(u_{1}, u_{2}\right)=u_{1}^{1-\theta_{1}} u_{2}^{1-\theta_{2}} \min \left\{u_{1}^{\theta_{1}}, u_{2}^{\theta_{2}}\right\}, \tag{7}
\end{equation*}
$$

for $0<\theta_{1}<1$ and $0<\theta_{2}<1$. Using $u_{i}=F_{X_{i}}\left(x_{i}\right)$ where X_{i} is $\operatorname{GLFR}\left(\alpha_{i}+\alpha_{3}, \beta, \gamma\right)$ and $\theta_{i}=\alpha_{3} /\left(\alpha_{i}+\alpha_{3}\right), \mathrm{i}=1,2,3$, gives the same joint distribution function $F_{X_{1}, X_{2}}$ as (5).

Generating values from a BGLFR distribution is straightforward. First, we can generate values for three independent GLFR random variables and then use (4) to generate (X_{1}, X_{2}). Alternatively, we can generate $\left(u_{1}, u_{2}\right)$ from the copula $C_{\theta_{1}, \theta_{2}}$, and then use the inversion formula to obtain $\left(X_{1}, X_{2}\right)$. If $\left(X_{1}, X_{2}\right)$ follows the $\operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$, then $\max \left\{X_{1}, X_{2}\right\}$ follows the $\operatorname{GLFR}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}, \beta, \gamma\right)$ distribution. The stress strength parameter of $\left(X_{1}, X_{2}\right)$ is

$$
\begin{equation*}
P\left(X_{1}<X_{2}\right)=P\left(U_{1}<U_{3}<U_{2}\right)+P\left(U_{3}<U_{1}<U_{2}\right)=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}+\alpha_{3}} . \tag{8}
\end{equation*}
$$

Now we will provide several dependency results between the two variables. Lehmann (1966) defined two random variables X_{1} and X_{2} to be positive quadrant dependent (PQD) if for all x_{1} and x_{2},

$$
\begin{equation*}
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) \geq P\left(X_{1} \leq x_{1}\right) P\left(X_{2} \leq x_{2}\right) . \tag{9}
\end{equation*}
$$

Intuitively, X_{1} and X_{2} are PQD if the probability that they are simultaneously small or simultaneously large is at least as great as it would be if they were independent. PQD is a copula property and (9) can be written equivalently as

$$
\begin{equation*}
C\left(u_{1}, u_{2}\right) \geq u_{1} u_{2}, \quad \text { for all } u_{1}, u_{2} \in[0,1]^{2} . \tag{10}
\end{equation*}
$$

This condition is satisfied by the MO copula. Therefore, if (X_{1}, X_{2}) follow the BGLFR distribution, then they are PQD. Because X_{1} and X_{2} are PQD, for every pair of increasing functions $g_{1}(\cdot)$ and $g_{2}(\cdot)$ (Barlow and Proschan, 1981) the following relation is satisfied

$$
\begin{equation*}
\operatorname{Cov}\left\{g_{1}\left(X_{1}\right), g_{2}\left(X_{2}\right)\right\} \geq 0 \tag{11}
\end{equation*}
$$

Moreover, it can also be verified that X_{1} is stochastically increasing in X_{2}, and similarly X_{2} is also stochastically increasing in X_{1}.

A non-negative function g defined on \Re^{2} is total positivity of order two, abbreviated by TP_{2}, if for all $x_{1}<x_{2}$ and $y_{1}<y_{2}$,

$$
\begin{equation*}
g\left(x_{1}, y_{1}\right) g\left(x_{2}, y_{2}\right) \geq g\left(x_{2}, y_{1}\right) g\left(x_{1}, y_{2}\right) . \tag{12}
\end{equation*}
$$

The MO copula satisfies this condition. Therefore (Nelsen, 1999), if (X_{1}, X_{2}) follows the BGLFR distribution, then X_{1} and X_{2} are left corner set decreasing, i.e. $P\left(X_{1} \leq x_{1}, X_{2} \leq\right.$ $\left.x_{2} \mid X_{1} \leq x_{1}^{\prime}, X_{2} \leq x_{2}^{\prime}\right)$ is non-decreasing in x_{1}^{\prime} and in x_{2}^{\prime}, for all x_{1} and x_{2}.

The copula provides a natural way to measure the dependence between two random variables. Now we provide some measures of dependence namely the Kendall's tau and the medial correlation. We further study the dependence of extreme events.

Kendall's tau is defined as the probability of concordance minus the probability of discordance between two pairs of random vectors $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$,

$$
\begin{equation*}
\tau=P\left[\left(X_{1}-Y_{1}\right)\left(X_{2}-Y_{2}\right)>0\right]-P\left[\left(X_{1}-Y_{1}\right)\left(X_{2}-Y_{2}\right)<0\right] . \tag{13}
\end{equation*}
$$

where $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ are independent and identically distributed random vectors. Nelsen (1999) has shown that Kendall's tau index is also a copula property. Moreover, the MO copula has Kendall's tau as $\frac{\theta_{1} \theta_{2}}{\theta_{1}-\theta_{1} \theta_{2}+\theta_{2}}$. So, if $\left(X_{1}, X_{2}\right) \sim \operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$, the Kendall's tau index between X_{1} and X_{2} is

$$
\begin{equation*}
\tau_{X_{1}, X_{2}}=\frac{\theta_{1} \theta_{2}}{\theta_{1}-\theta_{1} \theta_{2}+\theta_{2}}=\frac{\alpha_{3}}{\alpha_{1}+\alpha_{2}+\alpha_{3}} . \tag{14}
\end{equation*}
$$

For fixed α_{1} and α_{2}, as α_{3} varies from 0 to $\infty, \tau_{X_{1}, X_{2}}$ varies between 0 and 1 .

Blomqvist (1950) defined the median correlation coefficient, $M_{X_{1} X_{2}}$, between two continuous random variables X_{1} and X_{2} as follows. If $M_{X_{1}}$ and $M_{X_{2}}$ denote the median of X_{1} and X_{2} respectively, then

$$
\begin{equation*}
M_{X_{1} X_{2}}=P\left[\left(X_{1}-M_{X_{1}}\right)\left(X_{2}-M_{X_{2}}\right)>0\right]-P\left[\left(X_{1}-M_{X_{1}}\right)\left(X_{2}-M_{X_{2}}\right)<0\right] . \tag{15}
\end{equation*}
$$

Domma (2009) observed that Blomqvist's medial correlation coefficient is a copula property and it can be verified that

$$
\begin{equation*}
M_{X_{1} X_{2}}=4 F_{X_{1}, X_{2}}\left(M_{X_{1}}, M_{X_{2}}\right)-1=4 C_{\theta_{1}, \theta_{2}}\left(\frac{1}{2}, \frac{1}{2}\right)-1 . \tag{16}
\end{equation*}
$$

Therefore, if $\left(X_{1}, X_{2}\right) \sim \operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$, then $M_{X_{1} X_{2}}$ is

$$
M_{X_{1} X_{2}}=\left\{\begin{array}{lll}
\left(\frac{1}{2}\right)^{2-\theta_{2}} & \text { if } & \theta_{1}>\theta_{2} \tag{17}\\
\left(\frac{1}{2}\right)^{2-\theta_{1}} & \text { if } & \theta_{1}<\theta_{2}
\end{array}\right.
$$

where as above $\theta_{i}=\alpha_{3} /\left(\alpha_{3}+\alpha_{i}\right)$ The minimum and the maximum values of $M_{X_{1} X_{2}}$ are $1 / 4$ and $1 / 2$ respectively.

The bivariate tail dependence measures the amount of dependence in the upper quadrant (or lower quadrant) tail of a bivariate distribution (Joe, 1997). For bivariate random vectors (X_{1}, X_{2}), the upper tail dependence (if it exists) is defined as follows

$$
\begin{equation*}
\lambda_{U}=\lim _{z \rightarrow 1^{-}} P\left(X_{2}>F_{X_{2}}^{-1}(z) \mid X_{1}>F_{X_{1}}^{-1}(z)\right) . \tag{18}
\end{equation*}
$$

Intuitively, the upper tail dependence exists when there is a positive probability that some positive outliers may occur jointly. If $\lambda_{U} \in(0,1]$, then X_{1} and X_{2} are said to be asymptotically dependent, if $\lambda_{U}=0$, then they are asymptotically independent. Similarly, the lower tail dependence parameter λ_{L} (if it exists) is defined as follows

$$
\begin{equation*}
\lambda_{L}=\lim _{z \rightarrow 0^{+}} P\left(X_{2} \leq F_{X_{2}}^{-1}(z) \mid X_{1} \leq F_{X_{1}}^{-1}(z)\right) . \tag{19}
\end{equation*}
$$

These parameters are non-parametric and both depend only on the copula C of X_{1} and X_{2} as follows:

$$
\begin{equation*}
\lambda_{U}=2-\lim _{t \rightarrow 1^{-}} \frac{1-C(t, t)}{1-t} \quad \text { and } \quad \lambda_{L}=\lim _{t \rightarrow 0^{+}} \frac{C(t, t)}{t} . \tag{20}
\end{equation*}
$$

If (X_{1}, X_{2}) follows $\operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$, then

$$
\lambda_{U}=\left\{\begin{array}{lll}
\theta_{1} & \text { if } & \theta_{1}<\theta_{2} \tag{21}\\
\theta_{2} & \text { if } & \theta_{2}<\theta_{1},
\end{array}\right.
$$

and $\lambda_{L}=0$.

4 Estimation

In this section we consider the estimation of the unknown parameters of the BGLFR model. It is assumed that we have a sample of size n, of the form

$$
\begin{equation*}
\left\{\left(x_{11}, x_{12}\right), \cdots,\left(x_{n 1}, x_{n 2}\right)\right\} \tag{22}
\end{equation*}
$$

from $\operatorname{BGLFR}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$ and our problem is to estimate $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma$ from the given sample. First we obtain the MLEs of the unknown parameters. Since the computation of
the MLEs is computationally quite involved, we propose alternative estimators, which can be obtained in a more convenient manner.

For further development we use the following notations;

$$
I_{1}=\left\{i ; x_{i 1}<x_{i 2}\right\}, \quad I_{2}=\left\{i ; x_{i 1}>x_{i 2}\right\}, \quad I_{0}=\left\{i ; x_{i 1}=x_{i 2}=x_{i}\right\}, \quad I=I_{0} \cup I_{1} \cup I_{2}
$$

and

$$
n_{0}=\left|I_{0}\right|, \quad n_{1}=\left|I_{1}\right|, \quad n_{2}=\left|I_{2}\right| .
$$

Based on the sample (22) mentioned above, the log-likelihood function of the observed data can be written as;

$$
\begin{equation*}
l\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)=\sum_{i \in I_{1}} \ln f_{1}\left(x_{i 1}, x_{i 2}\right)+\sum_{i \in I_{2}} \ln f_{2}\left(x_{i 1}, x_{i 2}\right)+\sum_{i \in I_{0}} \ln f_{0}\left(x_{i}, x_{i}\right) . \tag{23}
\end{equation*}
$$

Therefore, the MLEs of the unknown parameters can be obtained by maximizing (23) with respect to the unknown parameters. It is clearly a five dimensional optimization problem. We need to solve five non-linear equations simultaneously to compute the MLEs, which may not very simple. To avoid that we propose to use the expectation maximization (EM) algorithm to compute the MLEs in this case.

It may be noted that if instead of $\left(X_{1}, X_{2}\right)$, we had observed U_{1}, U_{2} and U_{3}, the MLEs of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma$ can be obtained by solving a two dimensional optimization process, which is clearly much convenient than solving a five dimensional optimization process. Due to this reason, we treat this problem as a missing value problem. It is assumed that for the bivariate random vector $\left(X_{1}, X_{2}\right)$, there is an associated random vector $\left(\lambda_{1}, \lambda_{2}\right)$ as follows;

$$
\Lambda_{1}=\left\{\begin{array}{lll}
1 & \text { if } & U_{1}>U_{3} \tag{24}\\
3 & \text { if } & U_{1}<U_{3}
\end{array} \quad \text { and } \quad \Lambda_{2}=\left\{\begin{array}{lll}
2 & \text { if } & U_{2}>U_{3} \\
3 & \text { if } & U_{2}<U_{3}
\end{array}\right.\right.
$$

Therefore, if $X_{1}=X_{2}$, then clearly $\lambda_{1}=\lambda_{2}=3$. But if $X_{1}<X_{2}$ or $X_{1}>X_{2}$, the corresponding $\left(\Lambda_{1}, \Lambda_{2}\right)$ is missing. If $\left(X_{1}, X_{2}\right) \in I_{1}$ then the possible values of $\left(\Lambda_{1}, \Lambda_{2}\right)$ are
$(3,2)$ or $(1,2)$ and if $\left(X_{1}, X_{2}\right) \in I_{2}$ then the possible values of $\left(\Lambda_{1}, \Lambda_{2}\right)$ are $(1,3)$ or $(1,2)$. It implies that if $\left(X_{1}, X_{2}\right) \in I_{1}$, then Λ_{2} is known, but Λ_{1} is unknown, and if $\left(X_{1}, X_{2}\right) \in I_{2}$, then Λ_{1} is known, but Λ_{2} is unknown. The following Table 1 provides the all possible orders of U_{i} 's, the associated $\left(X_{1}, X_{2}\right),\left(\Lambda_{1}, \Lambda_{2}\right)$ values and the corresponding probabilities, which will be useful for further development.

Table 1: All possible orders of U_{i} 's, the associated $\left(X_{1}, X_{2}\right),\left(\Lambda_{1}, \Lambda_{2}\right)$ values and the corresponding probabilities.

Case	Possible Order	X_{1}	X_{2}	Λ_{1}	Λ_{2}	Prob	Set
1	$U_{1}<U_{2}<U_{3}$	U_{3}	U_{3}	3	3	$\frac{\alpha_{2} \alpha_{3}}{\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{0}
2	$U_{2}<U_{1}<U_{3}$	U_{3}	U_{3}	3	3	$\frac{\alpha_{1} \alpha_{3}}{\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{0}
3	$U_{1}<U_{3}<U_{2}$	U_{3}	U_{2}	3	2	$\frac{\alpha_{2} \alpha_{3}}{\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{1}
4	$U_{3}<U_{1}<U_{2}$	U_{1}	U_{2}	1	2	$\frac{\alpha_{1} \alpha_{2}}{\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{1}
5	$U_{2}<U_{3}<U_{1}$	U_{1}	U_{3}	1	3	$\frac{\alpha_{1} \alpha_{3}}{\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{2}
6	$U_{3}<U_{2}<U_{1}$	U_{1}	U_{2}	1	2	$\frac{\alpha_{1} \alpha_{2}}{\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$	I_{2}

Now we are in a position to provide the EM algorithm. In the 'E' step of the EM algorithm the observations belong to I_{0}, we treat them as complete observations. If the observation
belongs to either I_{1} OR I_{2}, we treat it as the missing observation. If $\left(x_{1}, x_{2}\right) \in I_{1}$, we form the 'pseudo observation' by fractioning (x_{1}, x_{2}) to two partially complete 'pseudo observation' of the form $\left(x_{1}, x_{2}, u_{1}(\theta)\right)$ and $\left(x_{1}, x_{2}, u_{2}(\theta)\right)$ respectively. Here θ is the parameter vector, i.e. $\theta=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right)$ and the fractional mass $u_{1}(\theta)$ and $u_{2}(\theta)$ assigned to the 'pseudo observation' is the conditional probability, that Λ_{1} takes the values 3 or 1 respectively given $X_{1}<X_{2}$. It is clear from Table 1 that

$$
\begin{equation*}
u_{1}(\theta)=P\left(\Lambda_{1}=3 \mid X_{1}<X_{2}\right)=\frac{\alpha_{3}}{\alpha_{1}+\alpha_{3}}, \quad u_{2}(\theta)=P\left(\Lambda_{1}=1 \mid X_{1}<X_{2}\right)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{3}} \tag{25}
\end{equation*}
$$

Similarly, if $\left(x_{1}, x_{2}\right) \in I_{2}$, we form the 'pseudo observation' of the form $\left(x_{1}, x_{2}, w_{1}(\theta)\right)$ and $\left(x_{1}, x_{2}, w_{2}(\theta)\right)$. Here the fractional mass $w_{1}(\theta)$ or $w_{2}(\theta)$ assigned to the 'pseudo observation', is the conditional probability that the random variable Λ_{2} takes the values 3 or 2 respectively, given $X_{1}>X_{2}$. Again from Table 1 it is clear that

$$
\begin{equation*}
w_{1}(\theta)=P\left(\Lambda_{2}=3 \mid X_{1}>X_{2}\right)=\frac{\alpha_{3}}{\alpha_{2}+\alpha_{3}}, \quad w_{2}(\theta)=P\left(\Lambda_{2}=2 \mid X_{1}>X_{2}\right)=\frac{\alpha_{2}}{\alpha_{2}+\alpha_{3}} \tag{26}
\end{equation*}
$$

From now on for brevity, we write $u_{1}(\theta), u_{2}(\theta), w_{1}(\theta), w_{2}(\theta)$ as $u_{1}, u_{2}, w_{1}, w_{2}$ respectively.

Now we are in a position to provide the ' E '-step of the EM algorithm. We will be using the following notation; $\theta_{i}=\left(\alpha_{i}, \beta, \gamma\right) ; i=1,2,3$. Also, $f\left(\cdot ; \theta_{i}\right)$ and $F\left(\cdot ; \theta_{i}\right)$ denote respectively the PDF and CDF of the $\operatorname{GLFR}\left(\alpha_{i}, \beta, \gamma\right)$ for $i=1,2,3$. The log-likelihood function of the 'pseudo data' ('E' - step) can be written as

$$
\begin{aligned}
l_{\text {pseudo }}(\theta)= & \sum_{i \in I_{0}} \ln f\left(x_{i} ; \theta_{3}\right)+\sum_{i \in I_{0}} \ln F\left(x_{i} ; \theta_{1}\right)+\sum_{i \in I_{0}} \ln F\left(x_{i} ; \theta_{2}\right)+ \\
& u_{1}\left(\sum_{i \in I_{1}} \ln f\left(x_{i 1} ; \theta_{3}\right)+\sum_{i \in I_{1}} \ln f\left(x_{i 2} ; \theta_{2}\right)+\sum_{i \in I_{1}} \ln F\left(x_{i 1} ; \theta_{1}\right)\right) \\
& u_{2}\left(\sum_{i \in I_{1}} \ln f\left(x_{i 1} ; \theta_{1}\right)+\sum_{i \in I_{1}} \ln f\left(x_{i 2} ; \theta_{2}\right)+\sum_{i \in I_{1}} \ln F\left(x_{i 1} ; \theta_{3}\right)\right) \\
& w_{1}\left(\sum_{i \in I_{2}} \ln f\left(x_{i 1} ; \theta_{1}\right)+\sum_{i \in I_{2}} \ln f\left(x_{i 2} ; \theta_{3}\right)+\sum_{i \in I_{2}} \ln F\left(x_{i 2} ; \theta_{2}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& w_{2}\left(\sum_{i \in I_{2}} \ln f\left(x_{i 1} ; \theta_{1}\right)+\sum_{i \in I_{2}} \ln f\left(x_{i 2} ; \theta_{2}\right)+\sum_{i \in I_{2}} \ln F\left(x_{i 2} ; \theta_{3}\right)\right) \\
= & l_{1}\left(\theta_{1}\right)+l_{2}\left(\theta_{2}\right)+l_{3}\left(\theta_{3}\right), \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
l_{1}\left(\theta_{1}\right)= & \sum_{i \in I_{0}} \ln F\left(x_{i} ; \theta_{1}\right)+u_{1} \sum_{i \in I_{1}} \ln F\left(x_{i 1} ; \theta_{1}\right)+u_{2} \sum_{i \in I_{1}} \ln f\left(x_{i 1} ; \theta_{1}\right)+\sum_{i \in I_{2}} \ln f\left(x_{i 1} ; \theta_{1}\right) \\
l_{2}\left(\theta_{2}\right)= & \sum_{i \in I_{0}} \ln F\left(x_{i} ; \theta_{2}\right)+w_{1} \sum_{i \in I_{2}} \ln F\left(x_{i 2} ; \theta_{2}\right)+w_{2} \sum_{i \in I_{2}} \ln f\left(x_{i 2} ; \theta_{2}\right)+\sum_{i \in I_{1}} \ln f\left(x_{i 2} ; \theta_{2}\right) \\
l_{3}\left(\theta_{3}\right)= & \sum_{i \in I_{0}} \ln f\left(x_{i} ; \theta_{3}\right)+u_{1} \sum_{i \in I_{1}} \ln f\left(x_{i 1} ; \theta_{3}\right)+u_{2} \sum_{i \in I_{1}} \ln F\left(x_{i 1} ; \theta_{3}\right)+ \\
& w_{1} \sum_{i \in I_{2}} \ln f\left(x_{i 2} ; \theta_{3}\right)+w_{2} \sum_{i \in I_{1}} \ln F\left(x_{i 2} ; \theta_{3}\right) .
\end{aligned}
$$

Now at the ' M '-step we need to maximize (27) with respect to unknown parameters. For fixed β and γ, the maximization of $l_{\text {pseudo }}(\theta)$ with respect to α_{1}, α_{2} and α_{3} can be obtained by maximizing $l_{1}\left(\theta_{1}\right), l_{2}\left(\theta_{2}\right)$, and $l_{3}\left(\theta_{3}\right)$ with respect to α_{1}, α_{2} and α_{3} respectively. If we denote them as $\widetilde{\alpha}_{1}(\beta, \gamma), \widetilde{\alpha}_{2}(\beta, \gamma)$ and $\widetilde{\alpha}_{3}(\beta, \gamma)$ respectively, then

$$
\begin{align*}
& \widetilde{\alpha}_{1}(\beta, \gamma)=\frac{u_{2} n_{1}+n_{2}}{\sum_{i \in I_{0}} a\left(x_{i} ; \beta, \gamma\right)+\sum_{i \in I_{1}} a\left(x_{i 1} ; \beta, \gamma\right)+\sum_{i \in I_{2}} a\left(x_{i 1} ; \beta, \gamma\right)} \tag{28}\\
& \widetilde{\alpha}_{2}(\beta, \gamma)=\frac{w_{2} n_{2}+n_{1}}{\sum_{i \in I_{0}} a\left(x_{i} ; \beta, \gamma\right)+\sum_{i \in I_{1}} a\left(x_{i 2} ; \beta, \gamma\right)+\sum_{i \in I_{2}} a\left(x_{i 2} ; \beta, \gamma\right)} \tag{29}\\
& \widetilde{\alpha}_{3}(\beta, \gamma)=\frac{n_{0}+u_{1} n_{1}+w_{1} n_{2}+n_{1}}{\sum_{i \in I_{0}} a\left(x_{i} ; \beta, \gamma\right)+\sum_{i \in I_{1}} a\left(x_{i 1} ; \beta, \gamma\right)+\sum_{i \in I_{2}} a\left(x_{i 2} ; \beta, \gamma\right)} . \tag{30}
\end{align*}
$$

where

$$
a(x ; \beta, \gamma)=\ln \left[1-\exp \left(-\beta x-\frac{\gamma}{2} x^{2}\right)\right]
$$

Finally the maximization of $l_{\text {pseudo }}(\theta)$ with respect to θ, can be obtained by maximizing $l_{\text {pseudo }}\left(\widetilde{\alpha}_{1}(\beta, \gamma), \widetilde{\alpha}_{2}(\beta, \gamma), \widetilde{\alpha}_{3}(\beta, \gamma), \beta, \gamma\right)$, the pseudo profile \log-likelihood function of β and γ. If $\widetilde{\beta}$ and $\widetilde{\gamma}$ maximize the pseudo profile \log-likelihood function, then $\widetilde{\alpha}_{1}(\widetilde{\beta}, \widetilde{\gamma}), \widetilde{\alpha}_{2}(\widetilde{\beta}, \widetilde{\gamma})$, $\widetilde{\alpha}_{3}(\widetilde{\beta}, \widetilde{\gamma}), \widetilde{\beta}, \widetilde{\gamma}$ become the next iterate of the EM algorithm. We propose to use the following algorithm to compute the MLEs of the unknown parameters by EM algorithm;

Algorithm:

Step 1: Take some initial guess value of θ, say $\theta^{(0)}=\left(\alpha_{1}^{(0)}, \alpha_{2}^{(0)}, \alpha_{3}^{(0)}, \beta^{(0)}, \gamma^{(0)}\right)$
STEP 2: Compute $u_{1}\left(\theta^{(0)}\right), u_{2}\left(\theta^{(0)}\right), w_{1}\left(\theta^{(0)}\right)$ and $w_{2}\left(\theta^{(0)}\right)$.
Step 3: For given $u_{1}\left(\theta^{(0)}\right), u_{2}\left(\theta^{(0)}\right), w_{1}\left(\theta^{(0)}\right)$ and $w_{2}\left(\theta^{(0)}\right)$, maximize the pseudo log-likelihood function $l_{\text {pseudo }}\left(\widetilde{\alpha}_{1}(\beta, \gamma), \widetilde{\alpha}_{2}(\beta, \gamma), \widetilde{\alpha}_{3}(\beta, \gamma), \beta, \gamma\right)$ with respect β and γ, say $\beta^{(1)}$ and $\gamma^{(1)}$ respectively.

STEP 3: Obtain $\alpha_{1}^{(1)}=\widetilde{\alpha}_{1}\left(\beta^{(1)}, \gamma^{(1)}\right), \alpha_{2}^{(1)}=\widetilde{\alpha}_{2}\left(\beta^{(1)}, \gamma^{(1)}\right)$ and $\alpha_{3}^{(1)}=\widetilde{\alpha}_{3}\left(\beta^{(1)}, \gamma^{(1)}\right)$, and therefore $\theta^{(1)}=\left(\alpha_{1}^{(1)}, \alpha_{2}^{(1)}, \alpha_{3}^{(1)}, \beta^{(1)}, \gamma^{(1)}\right)$

Step 4: Replace $\theta^{(0)}$ by $\theta^{(1)}$ and go back to Step 1 and continue the process unless convergence takes place.

5 Data Analysis

In this section we present the analysis of one data set mainly to illustrate how the proposed model and the EM algorithm work in practice.

UEFA Champion's League Data: The data set has been obtained from Meintanis (2007). The data set is presented in Table 2. It represents the soccer data where at least one goal is scored by the home team and at least goal is scored directly from a penalty kick, foul kick or any other direct kick (all of them will be called as kick goal) by any team has been considered. Here X_{1} and X_{2} represent the time in minutes of the first kick goal scored by any team and X_{2} represents the first goal of any type scored by the home team. Clearly all possibilities are open, for example $X_{1}<X_{2}$ or $X_{1}>X_{2}$ or $X_{1}=X_{2}=Y$ (say).

Meintanis (2007) analyzed this data set using Marshall-Olkin bivariate exponential model. Kundu and Gupta (2009) re-analyzed the same data set using bivariate generalized exponential model. It is observed that the bivariate generalized exponential distribution provides a

Table 2: UEFA Champion's League Data

$2005-2006$	X_{1}	X_{2}	2004-2005	X_{1}	X_{2}
Lyon-Real Madrid	26	20	Internazionale-Bremen	34	34
Milan-Fenerbahce	63	18	Real Madrid-Roma	53	39
Chelsea-Anderlecht	19	19	Man. United-Fenerbahce	54	7
Club Brugge-Juventus	66	85	Bayern-Ajax	51	28
Fenerbahce-PSV	40	40	Moscow-PSG	76	64
Internazionale-Rangers	49	49	Barcelona-Shakhtar	64	15
Panathinaikos-Bremen	8	8	Leverkusen-Roma	26	48
Ajax-Arsenal	69	71	Arsenal-Panathinaikos	16	16
Man. United-Benfica	39	39	Dynamo Kyiv-Real Madrid	44	13
Real Madrid-Rosenborg	82	48	Man. United-Sparta	25	14
Villarreal-Benfica	72	72	Bayern-M. TelAviv	55	11
Juventus-Bayern	66	62	Bremen-Internazionale	49	49
Club Brugge-Rapid	25	9	Anderlecht-Valencia	24	24
Olympiacos-Lyon	41	3	Panathinaikos-PSV	44	30
Internazionale-Porto	16	75	Arsenal-Rosenborg	42	3
Schalke-PSV	18	18	Liverpool-Olympiacos	27	47
Barcelona-Bremen	22	14	M. Tel-Aviv-Juventus	28	28
Milan-Schalke	42	42	Bremen-Panathinaikos	2	2
Rapid-Juventus	36	52			

better fit than the Marshall-Olkin bivariate exponential model. It has been shown by Kundu and Gupta (2009) using the scaled TTT transform of Aarset (1987), that both the marginals (X_{1} and X_{2}) have increasing empirical hazard rates. It has prompted us to use the BGLFR distribution to analyze this model.

Before trying to analyze the data using BGLFR model, we first fit the GLFR model to X_{1} and X_{2} separately. The MLEs of the parameters (β, γ, α) of the corresponding GLFR distribution for X_{1} and X_{2} are $\left(5.1828 \times 10^{-3}, 9.3294 \times 10^{-4}, 1.3031\right)$ and ($0.0194,5.6825$ $\times \times 10^{-4}, 1.1433$) and the corresponding log-likelihood values are -162.676 and -162.938 respectively. Since both exponential and generalized exponential distributions are special cases of the GLFR distribution, we perform the following two testing of hypotheses:

Problem 1: $\mathrm{H}_{01}: \gamma=0, \alpha=1$ (exponential) vs $\mathrm{H}_{1}: \gamma>0, \alpha>0$ (GLFR).
Problem 2: $\mathrm{H}_{02}: \gamma=0$ (generalized exponential) vs $\mathrm{H}_{1}: \gamma>0$ (GLFR).
The \log-likelihood values (\mathcal{L}), the likelihood ratio test statistic (Λ), the MLEs of each model, and the associated p values are presented in Table 3. Based on the p values it is clear that: (1) GLFR distribution provides a significantly better fit for both X_{1} and X_{2} compared to the exponential; (2) GLFR distribution provides a significantly better fit for X_{1} compared to the generalized exponential distribution; (3) GLFR distribution provides a better fit for X_{2} than the generalized exponential distributions. Finally using the EM algorithm we obtain

Table 3: The MLEs and the values of \mathcal{L}, Λ, and the p values of X_{1} and X_{2}.

Null	X_{1} MLEs	\mathcal{L}	Λ	p-value	X_{2} MLEs	\mathcal{L}	Λ	p-value
H_{01}	$\widehat{\beta}=0.024$	-174.304	23.257	<0.0001	$\widehat{\beta}=0.0304$	-166.219	6.562	0.038
H_{02}	$\widehat{\beta}=0.0449$	-168.815	6.279	0.012	$\widehat{\beta}=0.0413$ $\widehat{\alpha}=3.1193$	-163.937	1.998	0.157

the MLEs of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ and γ as $\left(0.492,0.166,0.411,2.013 \times 10^{-4}, 8.051 \times 10^{-4}\right)$.

In order to investigate if the BGLFR distribution provides a better fit to data set 1 , than the MO model and the BVGE model, we use the Akaike Information Criterion (AIC), see Akaike (1969), Bayesian Information Criterion (BIC), see Schwartz (1978), and also likelihood ratio test (LRT). Since the MO model cannot be obtained as a special case of the BGLFR distribution we cannot use the LRT test directly to compare the MO model and the BGLFR model. It is natural to use AIC or BIC in this case. On the other hand since BVGE distribution can be obtained as a special case of the BGLFR model, the LRT also
can be used in testing between BVGE and BGLFR models.

In the enclosed Table 4 we provide the MLEs of the unknown parameters of the MO and the BVGE models. We have also enclosed the AIC and BIC values for model selection purposes.

Table 4: The MLEs and the values of \mathcal{L}, Λ, AIC and BIC.

Model	MLEs	\mathcal{L}	AIC	BIC
MO	$\widehat{\lambda}_{1}=0.012, \widehat{\lambda}_{2}=0.014, \widehat{\lambda}_{3}=0.022$	-339.006	684.012	-344.423
BVGE	$\begin{array}{cl} \widehat{\alpha}_{1}=1.351, & \widehat{\alpha}_{2}=0.465, \widehat{\alpha}_{3}=1.153 \\ & \widehat{\beta}=0.039 \end{array}$	-296.935	601.870	-304.157
BGLFR	$\begin{aligned} & \widehat{\alpha}_{1}=0.492, \widehat{\alpha}_{2}=0.166, \widehat{\alpha}_{3}=0.411 \\ & \widehat{\beta}=2.013 \times 10^{-4}, \widehat{\gamma}=8.051 \times 10^{-4} \end{aligned}$	-293.379	596.757	-302.406

It is clear that between MO model and BGLFR model, clearly BGLFR model is preferable, based on both AIC and BIC values. Now to choose between BVGE and BGLFR, based on AIC, BGLFR is preferable, BIC suggests BVGE model. If we perform the LRT test, while the null hypothesis is BVGE model and the alternative is BGLFR model, the test statistic is 6.73 with the $0.025<p<0.05$. Since p value is not very high, we prefer BGLFR than BVGE for analyzing this data set.

6 Multivariate Generalized Linear Failure Rate DisTRIBUTION

In this section we are in a position to define the m-variate generalized linear failure rate distribution and provide some of its properties. It may be mentioned that recently Franco and

Vivo (2009), provided a multivariate extension of Sarhan-Balakrishnan bivariate distribution and studied its several properties.

Suppose U_{1}, \cdots, U_{m+1} are $m+1$ independent random variables such that $U_{i} \sim \operatorname{GLFR}\left(\alpha_{i}\right.$, $\beta, \gamma)$ for $i=1, \cdots, m+1$. Define

$$
X_{j}=\max \left\{U_{j}, U_{m+1}\right\}, j=1,2, \cdots, m
$$

then we say that $\boldsymbol{X}=\left(X_{1}, \cdots, X_{m}\right)$ is a m-variate GLFR with parameters $\left(\alpha_{1}, \cdots, \alpha_{m+1}\right.$, β, γ), and it will be denoted by $\operatorname{MGLFR}\left(m, \alpha_{1}, \cdots, \alpha_{m+1}, \beta, \gamma\right)$. The joint CDF of \boldsymbol{X} can be easily obtained as follows;

Theorem 6.1: If $\boldsymbol{X}=\left(X_{1}, \cdots, X_{m}\right) \sim \operatorname{MGLFR}\left(m, \alpha_{1}, \cdots, \alpha_{m+1}, \beta, \gamma\right)$, then the joint CDF of \boldsymbol{X} for $x_{1}>0, \cdots, x_{m}>0$ is

$$
\begin{equation*}
F_{X}(\boldsymbol{x})=\prod_{i=1}^{m+1} F_{G L F R}\left(x_{i} ; \alpha_{i}, \beta, \gamma\right) \tag{31}
\end{equation*}
$$

where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right)$ and $x_{m+1}=\min \left\{x_{1}, \cdots, x_{m}\right\}$.

Along the same line as the bivariate GLFR distribution, the multivariate GLFR distribution (31) also can be obtained from the m-variate Marshall-Olkin copula with the marginals as the GLFR distributions. In this case (31) can be obtained from the following MO copula

$$
\begin{equation*}
C_{\theta}\left(u_{1}, \cdots, u_{m}\right)=u_{1}^{1-\theta_{1}} \cdots u_{m}^{1-\theta_{m}} \min \left\{u_{1}^{\theta_{1}} \cdots u_{m}^{\theta_{m}}\right\} \tag{32}
\end{equation*}
$$

here $\theta=\left(\theta_{1}, \cdots, \theta_{m}\right)$, and

$$
\theta_{1}=\frac{\alpha_{m+1}}{\alpha_{1}+\alpha_{m+1}}, \cdots, \theta_{m}=\frac{\alpha_{m+1}}{\alpha_{m}+\alpha_{m+1}}
$$

For $m>1$, the MGLFR distribution function can also be written as

$$
\begin{equation*}
F_{X}(\boldsymbol{x})=p F_{a}(\boldsymbol{x})+(1-p) F_{s}(\boldsymbol{x}), \tag{33}
\end{equation*}
$$

here $0<p<1, F_{a}$ and F_{s} denote the absolute continuous and singular part of F respectively. The corresponding PDF of \boldsymbol{X} also can be written as

$$
\begin{equation*}
f_{X}(\boldsymbol{x})=p f_{a}(\boldsymbol{x})+(1-p) f_{s}(\boldsymbol{x}) . \tag{34}
\end{equation*}
$$

In writing (34) it needs to be understood that f_{a} is the PDF with respect to m-dimensional Lebesgue measure, and f_{s} also can be further decomposed and they are PDFs with respect to $1, \cdots,(m-1)$ dimensional Lebesgue measures. It is not difficult to obtain the explicit expressions of F_{s} and f_{s} for the general m, but they are quite tedious, and they are not pursued here. We provide the explicit expression of f_{a} and p in the appendix.

Now we provide the distribution functions of the marginals, conditionals and the extreme order statistics of the MGLFR distribution.

Theorem 6.2: If $\boldsymbol{X}=\left(X_{1}, \cdots, X_{m}\right) \sim \operatorname{MGLFR}\left(m, \alpha_{1}, \cdots, \alpha_{m}, \alpha_{m+1}, \beta, \gamma\right)$, then
(a) $X_{1} \sim \operatorname{GLFR}\left(\alpha_{1}+\alpha_{m+1}, \beta, \gamma\right), \cdots, X_{m} \sim \operatorname{GLFR}\left(\alpha_{m}+\alpha_{m+1}, \beta, \gamma\right)$.
(b) For $2 \leq s \leq m,\left(X_{1}, \cdots, X_{s}\right) \sim \operatorname{MGLFR}\left(s, \alpha_{1}, \cdots, \alpha_{s}, \alpha_{m+1}, \beta, \gamma\right)$
(c) The conditional distribution of $\left(X_{1}, \cdots, X_{s}\right)$, given $\left\{X_{s+1} \leq x_{s+1}, \cdots, X_{m} \leq x_{m}\right\}$ is

$$
\begin{aligned}
& P\left(X_{1} \leq x_{1}, \cdots, X_{s} \leq x_{s} \mid X_{s+1} \leq x_{s+1}, \cdots, X_{m} \leq x_{m}\right)= \\
& \quad\left[\prod_{j=1}^{s} F_{G L F R}\left(x_{j}, \alpha_{j}, \beta, \gamma\right)\right] \begin{cases}1 & \text { if } z=v \\
F_{G L F R}\left(z, \alpha_{m+1}, \beta, \gamma\right) F_{G L F R}\left(v, \alpha_{m+1}, \beta, \gamma\right) & \text { if } z<v\end{cases}
\end{aligned}
$$

where $z=\min \left\{x_{1}, \cdots, x_{s}\right\}$ and $v=\min \left\{x_{s+1}, \cdots, x_{m}\right\}$.
(d) If $T_{m}=\max \left\{X_{1}, \cdots, X_{m}\right\}$, then

$$
F_{T_{n}}(t)=P\left(T_{n} \leq t\right)=F_{G L F R}\left(t, \alpha_{1}+\cdots+\alpha_{m+1}, \beta, \gamma\right)
$$

(e) If $T_{1}=\min \left\{X_{1}, \cdots, X_{m}\right\}$, then

$$
F_{T_{1}}(t)=P\left(T_{1} \leq t\right)=F_{G L F R}\left(t, \alpha_{m+1}, \beta, \gamma\right) \times\left(1-\prod_{i=1}^{m}\left(1-F_{G L F R}\left(t, \alpha_{i}, \beta, \gamma\right)\right)\right)
$$

Proof: The proofs of (a), (b), (c) and (d) are quite simple and are not provided here.
(e) Note that

$$
F_{T_{1}}(t)=\sum_{k=1}^{m}(-1)^{k-1} \sum_{I_{k} \in S_{k}} F_{I_{k}}(t, \cdots, t),
$$

where $I_{k}=\left(i_{1}, \cdots, i_{k}\right), 1 \leq i_{1} \neq \cdots \neq i_{k} \leq m$, is a k-dimensional subset and S_{k} is the set of all ordered k-dimensional subsets of $\{1, \cdots, m\}$. Further

$$
F_{I_{k}}(t, \cdots, t)=P\left(X_{i_{1}} \leq t, \cdots, X_{i_{k}} \leq t\right)
$$

Therefore, using part (b),

$$
F_{T_{1}}(t)=F_{G L F R}\left(t, \alpha_{m+1}, \beta, \gamma\right) \times \sum_{I_{k} \in S_{k}} F_{G L F R}\left(t, \alpha_{i_{1}}+\cdots+\alpha_{i_{k}}, \beta, \gamma\right)
$$

Now using the fact

$$
\sum_{k=1}^{m}(-1)^{k-1} \sum_{I_{k} \in S_{k}} F_{G L F R}\left(t, \alpha_{i_{1}}+\cdots+\alpha_{i_{k}}, \beta, \gamma\right)=1-\prod_{i=1}^{m}\left(1-F_{G L F R}\left(t, \alpha_{i}, \beta, \gamma\right)\right)
$$

the result follows.

7 Conclusions

In this paper we have introduced the bivariate generalized linear failure rate distribution whose marginals are generalized linear failure rate distributions. The proposed bivariate distribution is a singular distribution, and it can be used quite effectively instead of MarshallOlkin bivariate exponential model, or the bivariate generalized exponential model when there are ties in the data. Several properties of this new distribution have been established, and also we proposed to use the EM algorithm to compute the maximum likelihood estimators.

Further we have proposed its multivariate generalization. Several properties have been discussed. It can be obtained by using the multivariate Marshall-Olkin copula coupled with generalized linear failure rate marginals. It may be mentioned that the EM algorithm
along the same line as the bivariate case may be developed. Alternatively, using the copula structure, other estimators as proposed by Kim et al. (2006) may be used and their properties can be established. The work is in progress, it will be reported later.

Appendix

In this appendix we provide the explicit expression of f_{a} and p of (34) for general m. Let $k \in\{1, \cdots, m\}$ be the number of the different components of $\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right)$, i.e. when $k=1$, all x_{i} 's are equal, and all x_{i} 's are different when $k=m$. Then \boldsymbol{x} belongs to the set where F_{X} is absolutely continuous if and only if $k=m$. For each \boldsymbol{x} with $k=m$, there exists a permutation $P_{m}=\left(i_{1}, \cdots, i_{m}\right)$, such that $x_{i_{1}}<\cdots<x_{i_{m}}$, and let us define the following function

$$
\begin{equation*}
f_{P_{m}}(\boldsymbol{x})=f_{G L F R}\left(x_{i_{1}}, \alpha_{i_{1}}+\alpha_{m+1}, \beta, \gamma\right) f_{G L F R}\left(x_{i_{2}}, \alpha_{i_{2}}, \beta, \gamma\right) \cdots f_{G L F R}\left(x_{i_{m}}, \alpha_{i_{m}}, \beta, \gamma\right) \tag{35}
\end{equation*}
$$

Differentiating (33) with respect to x_{1}, \cdots, x_{m}, we obtain

$$
\frac{\partial^{m} F_{X}\left(x_{1}, \cdots, x_{m}\right)}{\partial x_{1} \cdots \partial x_{m}}=p f_{a}(\boldsymbol{x})=f_{P_{m}}(\boldsymbol{x})
$$

for $P_{m}=\left(i_{1}, \cdots, i_{m}\right)$, such that $x_{i_{1}}<\cdots<x_{i_{m}}$, and f_{a} is the joint density function of the absolute continuous part as mentioned before. Moreover, p may be obtained

$$
\begin{aligned}
p & =p \int_{\Re^{m}} f_{a}(\boldsymbol{x}) d x_{1} \cdots d x_{m}=\sum_{P_{m}} \int_{x_{i_{m}}=0}^{\infty} \int_{x_{i_{m-1}}=0}^{x_{i_{m}}} \cdots \int_{x_{i_{1}}=0}^{x_{i_{2}}} f_{P_{m}}(\boldsymbol{x}) d x_{i_{1}} \cdots d x_{i_{m}} \\
& =\sum_{P_{m}} \frac{\alpha_{i_{2}}}{\alpha_{i_{1}}+\alpha_{i_{2}}+\alpha_{m+1}} \times \frac{\alpha_{i_{m}}}{\alpha_{i_{1}}+\alpha_{i_{2}}+\alpha_{i_{3}}+\alpha_{m+1}} \times \cdots \times \frac{\alpha_{i_{m}}+\alpha_{m+1}}{\alpha_{i_{1}}+\cdots+} .
\end{aligned}
$$

Therefore,

$$
f_{a}(\boldsymbol{x})=\frac{1}{p} f_{P_{n}}(\boldsymbol{x}) .
$$

References

[1] Aarset, M.V. (1987), "How to identify a bathtub failure rate?", IEEE Transactions on Reliability, vol. 36, 106-108.
[2] Akaike, H. (1969), "Fitting autoregressive model for regression", Annals of the Institute of Statistical Mathematics, vol. 21, 243-247.
[3] Bain, L. J. (1974), "Analysis of the linear failure rate distribution", Technometrics, vol. 15, 875-887.
[4] Barlow, R.E. and Proschan, F. (1981), Statistical Theory of Reliability and Life Testing, Probability Models, Silver Spring, Maryland.
[5] Blomqvist, N. (1950), "On a measure of dependence between two random variables", Annals of Mathematical Statistics, vol. 21, 593-600.
[6] Domma, F. (2009), "Some properties of the bivariate Burr type III distribution", Statistics, to appear, DOI:10.1080/02331880902986547.
[7] Franco, M. and Vivo, J-M (2009), "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its aging and dependence properties", Journal of Multivariate Analysis, to appear DOI:10.1016/j/jmva.2009.08.008.
[8] Joe, H. (1997) Multivariate model and dependence concept, Chapman and Hall, London.
[9] Kim, G., Silvapulle, M.J. and Silvapulle, P. (2006), "Comparison of semiparametric and parametric methods for estimating copulas", Computational Statistics and Data Analysis, vol. 51, 2836-2850.
[10] Kundu, D. and Gupta, R.D. (2009), "Bivariate generalized exponential distribution", Journal of Multivariate Analysis, vol 100, 581-593.
[11] Lehmann, E.L. (1966), "Some concepts of dependence", Ann. Math. Statist., 37, 1137 1153.
[12] Lin, C.T., Wu, S.J.S., Balakrishnan, N. (2003), "Parameter estimation for the linear hazard rate distribution based on records and inter-record times", Communications in Statistics - Theory and Methods, vol. 32, 729-748.
[13] Lin, C.T., Wu, S.J.S., Balakrishnan, N. (2006), "Monte Carlo methods for Bayesian inference on the linear hazard rate distribution", Communications in Statistics - Theory and Methods, vol. 35, 575-590.
[14] Marshall, A.W. and Olkin, I. (1967), "A multivariate exponential model", Journal of the American Statistical Association, vol. 62, 30-44.
[15] Meintanis, S.G. (2007), "Test of fit for Marshall-Olkin distributions with applications", Journal of Statistical Planning and Inference, vol. 137, 3954-3963.
[16] Mudholkar, G.S., Srivastava, D.K. and Freimer, M. (1995). "The exponentiated Weibull family; a reanalysis of the bus motor failure data", Technometrics, 37, 436-445.
[17] Nelsen, R.B. (1999), An introduction to copulas, 2nd edition, Springer, New York.
[18] Pandey, A., Singh, A. and Zimmer, W.J. (1993), "Bayes estimation of the linear hazard model", IEEE Transactions on Reliability, vol. 42, 636-640.
[19] Sarhan, A. and Balakrishnan, N. (2007), "A new class of bivariate distributions and its mixture", Journal of Multivariate Analysis, vol. 98, 1508-1527.
[20] Sarhan, A. and Kundu, D. (2009), "Generalized linear failure rate distribution", Communications in Statistics - Theory and Methods, vol. 38, 642-660.
[21] Schwarz, G. (1978), "Estimating the dimension of a model", Annals of Statistics, vol. $6,461-464$.
[22] Sen, A. and Bhattacharyya, G.K. (1995), "Inference procedures for linear failure rate model", Journal of Statistical Planning and Inference, vol. 46, 59-76.

Figure 1: Surface and contour plots of the absolute continuous part of the joint PDF of the BGLFR model, for different values of ($\alpha_{1}, \alpha_{2}, \alpha_{3}$). We have assumed $\beta=\gamma=1$ in all the cases. (a) $(2,2,2)$ (b) $(1,1,1)$ (c) $(0.5,0.5,0.5)$ (d) $(5,5,5)$.

