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Abstract

The two-parameter linear failure rate distribution has been used quite successfully
to analyze lifetime data. Recently, a new three-parameter distribution, known as the
generalized linear failure rate distribution has been introduced by exponentiating the
linear failure rate distribution. The generalized linear failure rate distribution is a
very flexible lifetime distribution, and the probability density function of the general-
ized linear failure rate distribution can take different shapes. Its hazard function also
can be increasing, decreasing and bathtub shaped. The main aim of this paper is to
introduce a bivariate generalized linear failure rate distribution, whose marginals are
generalized linear failure rate distributions. It is obtained using the same approach
as the Marshall-Olkin bivariate exponential distribution. Different properties of this
new distribution are established. The bivariate generalized linear failure rate distri-
bution has five parameters and the maximum likelihood estimators are obtained using
the EM algorithm. A data set is analyzed for illustrative purposes. Finally, some
generalizations to the multivariate case are proposed.
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1 Introduction

The two-parameter linear failure rate (LFR) distribution, whose hazard function is mono-

tonically increasing in a linear fashion, has been used quite successfully to analyze lifetime

data. For some basic properties and for different estimation procedures of the parameters

of the LFR distribution, the readers are referred to Bain (1974), Pandey et al. (1993), Sen

and Bhattacharyya (1995), Lin et al. (2003, 2006) and the references cited therein.

Recently, Sarhan and Kundu (2009) introduced a three-parameter generalized linear fail-

ure rate (GLFR) distribution by exponentiating the LFR distribution as was done for the

exponentiated Weibull distribution by Mudholkar et al. (1995). The exponentiation intro-

duces an extra shape parameter in the model, which may bring more flexibility in the shape

of the probability density function (PDF) and hazard function. Several properties of this new

distribution are established. It is observed that several known distributions like exponential,

Rayleigh and LFR distributions can be obtained as special cases of the GLFR distribution.

The aim of this paper is to introduce a new bivariate generalized linear failure rate

(BGLFR) distribution, whose marginals are GLFR distributions. This new five-parameter

BGLFR distribution is obtained using a similar method as was used for the Marshall-Olkin

bivariate exponential model, Marshall and Olkin (1969). The proposed BGLFR distribu-

tion is constructed from three independent GLFR distributions using a maximization pro-

cess. Creating a bivariate distribution with given marginals using this technique is nothing

new. Alternatively, the same BGLFR distribution can be obtained by coupling the GLFR

marginals with the Marshall-Olkin copula (Nelsen, 1999). This new distribution is a sin-

gular distribution, and it can be used quite conveniently if there are ties in the data. The

joint cumulative distribution function (CDF) can be expressed as a mixture of an absolute

continuous distribution function and a singular distribution function. The joint probability
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density function (PDF) of the BGLFR distribution can take different shapes and the cumu-

lative distribution function can be expressed in a compact form. The BGLFR distribution

can be applied to a maintenance model or a stress model as introduced by Kundu and Gupta

(2009).

Several dependency properties of this new distribution are investigated, which will be

useful for data analysis purposes. The BGLFR copula has a total positivity of order two

(TP2) property. Each component is stochastically increasing with respect to the other.

This implies that the correlation is always non-negative and the two variables are positively

quadrant dependent. Moreover, the correlation between the two variables varies between

0 and 1. Kendall’s tau index can be calculated using the copula property and can be

positive.The population version of the medial correlation coefficient as defined by Blomqvist

(1950) is always non-negative. The bivariate tail dependence is always positive.

The BGLFR distribution has five parameters, and their estimation is an important prob-

lem in practice. The usual maximum likelihood estimators can be obtained by solving five

non-linear equations in five unknowns directly, which is not a trivial issue. To avoid difficult

computation we treat this problem as a missing value problem and use the EM algorithm,

which can be implemented more conveniently than the direct maximization process. An-

other advantage of the EM algorithm is that it can be used to obtain the observed Fisher

information matrix, which is helpful for constructing the asymptotic confidence intervals for

the parameters.

Alternatively, it is possible to obtain approximate maximum likelihood estimators by

estimating the marginals first and then estimating the dependence parameter through copula

function, as suggested by Joe (1997, chapter 10), which have the same rate of convergence

as the maximum likelihood estimators. It is computationally less involved compared to the

MLE calculations. This approach is not pursued here. Analysis of a data set is presented
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for illustrative purposes. The poroposed model provides a better fit than the Marshall-Olkin

bivariate exponential model or the recently proposed bivariate generalized exponential model

(Kundu and Gupta, 2009).

Although in this paper we mainly discussed the BGLFR, many of our results can be

easily extended to the multivariate case. Moreover, the LFR distribution is a proportional

reversed hazard model, and our method may be used to introduce other bivariate propor-

tional reversed hazard models.

The rest of the paper is organized as follows. We briefly introduce the GLFR distribution

in Section 2. In Section 3 we introduce the BGLFR distribution and study its different

properties. The EM algorithm is described in Section 4, and analysis of a data set is presented

in Section 5. We discuss the multivariate generalization in Section 6, and finally conclude

the paper in Section 7.

2 Generalized Linear Failure Rate Distribution

A random variable X has a linear failure rate distribution with parameters β ≥ 0 and γ ≥ 0

(such that β + γ > 0), if X has the following distribution function;

FLFR(x; β, γ) = 1− exp
{
−βx− γ

2
x2

}
, (1)

for x > 0. The exponential distribution with mean 1/β (ED(β)) and the Rayleigh distribu-

tion with parameter γ (RD(γ)) can be obtained as special cases from the LFR distribution.

The PDF of the LFR distribution can be decreasing or unimodal, but the failure rate function

is either increasing or constant only (Sen and Bhattacharyya, 1995).

Sarhan and Kundu (2009) introduced the GLFR distribution by exponentiating the LFR

distribution function as follows. A random variable X is said to have a GLFR distribution
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with parameters α > 0, β > 0 and γ > 0 (GLFR(α, β, γ)), if it has the CDF

FGLFR(x; α, β, γ) =
(
1− exp

{
−βx− γ

2
x2

})α

, (2)

for x > 0. The corresponding PDF has the form;

fGLFR(x; α, β, γ) = α(β + γx)e−(βx+ γ
2
x2)

(
1− exp

{
−βx− γ

2
x2

})α−1

, (3)

for x > 0. The PDF of the GLFR distribution is either decreasing or unimodal, and it can

have constant, increasing, decreasing or bathtub shaped hazard function. It is immediate

from (2) that if α is an integer, then the CDF of GLFR(α, β, γ) represents the CDF of the

maximum of a simple random sample of size α, from the LFR distribution. Therefore, when

α is an integer, GLFR provides the distribution function of a parallel system when each

component has the LFR distribution.

The mean or the other moments cannot be obtained in explicit form, but can be writ-

ten in terms of infinite series (Sarhan and Kundu, 2009). However, because of the closed

form CDF, the median or other percentile points can be obtained explicitly. Because of the

exponentiated nature of the CDF, the GLFR distribution is closed under maximum, i.e. if

X1, · · · , Xn are independently distributed such that Xi follows the GLFR(αi, β, γ) distribu-

tion, for i = 1, · · · , n, then max{X1, · · · , Xn} is GLFR

(
n∑

i=1

αi, β, γ

)
. Moreover, if R is the

stress-strength parameter, i.e. R = P (X1 < X2) where X1 and X2 are as defined above, then

R = P (X1 < X2) =
α1

α1 + α2

.

For order statistics, moments of order statistics, characterization, and for an estimation

procedure, the readers are referred to Sarhan and Kundu (2009).
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3 Bivariate Generalized Failure Rate Distribution

In this section we introduce the BGLFR distribution using a method similar to that which

was used by Marshall and Olkin (1969) to define the Marshall-Olkin bivariate exponential

(MOBE) distribution.

Suppose U1, U2 and U3 are three independent random variables such that Ui ∼ GLFR

(αi, β, γ) for i = 1, 2 and 3. Define

X1 = max{U1, U3) and X2 = max{U2, U3}. (4)

Then we say that the bivariate vector (X1, X2) has a bivariate GLFR (BGLFR) distribution,

with parameters (α1, α2, α3, β, γ) and we denote it by BGLFR (α1, α2, α3, β, γ). The following

interpretations can be provided for BGLFR model.

Competing risks model: Assume a system has two components, labeled 1 and 2 and the

survival time of component i is denoted by Xi, i = 1, 2. It is considered that there are

three independent causes of failures, which may affect the system. Only component 1 can

fail due to cause 1, and similarly only component 2 can fail due to cause 2, while both the

components fail at the same time due to cause 3. Let Ui be the lifetime of cause i, i = 1, 2, 3.

If U1, U2, U3 follow GLFR distribution, then (X1, X2) follows BGLFR model.

Shock model: Suppose there are three independent sources of shocks, say 1, 2, and 3.

Suppose these shocks are affecting a system with two components, say 1 and 2. It is assumed

that, the shock from source 1 reaches the system destroys component 1 immediately, the

shock from source 2 reaches the system destroys component 2 immediately while if the

shock from source 3 hits the system destroys both the components immediately. Let Ui

denote the inter-arrival times between the shocks in source i, i=1,2,3, which follow the

distribution GLFRD. If X1, X2 denote the survival times of the components, then (X1, X2)

follows BGLFR model.
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If (X1, X2) ∼ BGLFR (α1, α2, α3, β, γ), then the corresponding CDF, PDF and the

marginals are provided in the following theorem. The proofs are not difficult and there-

fore are omitted.

Theorem 3.1: Suppose (X1, X2) ∼ BGLFR (α1, α2, α3, β, γ). Then

(a) The joint CDF of (X1, X2) can be written as

FX1,X2(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) =
3∏

i=1

FGLFR(xi; αi, β, γ), (5)

where x3 = min{x1, x2}.

(b) The joint PDF of (X1, X2) can be written as

fX1,X2(x1, x2) =





f1(x1, x2) if 0 < x1 < x2 < ∞

f2(x1, x2) if 0 < x2 < x1 < ∞

f0(x) if 0 < x1 = x2 = x < ∞,

(6)

where

f1(x1, x2) = fGLFR(x1; α1 + α3, β, γ) fGLFR(x2; α2, β, γ)

f2(x1, x2) = fGLFR(x1; α1, β, γ) fGLFR(x2; α2 + α3, β, γ)

f0(x) =
α3

α1 + α2 + α3

fGLFR(x; α1 + α2 + α3, β, γ)

(c) The marginal distributions of X1 and X2 are GLFR(α1+α3, β, γ) and GLFR(α2+α3, β, γ)

respectively.

The joint distribution function of X1 and X2 has a singular part along the line x1 = x2,

with weight
α3

α1 + α2 + α3

, and has an absolute continuous part on 0 < x1 6= x2 < ∞ with

weight
α1 + α2

α1 + α2 + α3

. In writing the joint PDF, it is understood that the first two parts

are the joint PDF with respect to two dimensional Lebesgue meausre, whereas the third

part is the PDF with respect to one dimensional Lebesgue measure along the line x1 = x2.
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This is similar to the Marshall-Olkin bivariate exponential model or bivariate generalized

exponential model.

For fixed α1, α2, β and γ, as α3 varies from 0 to ∞, the correlation between X1 and X2

varies between 0 and 1. This is because, if α3 = 0, then X1 and X2 become independent, and

when α3 tends to infinity, then U3 tends to infinity with probability 1. Thus U3 > U1 and

U3 > U2 with probability 1. Therefore, X1 = X2 with probability 1, as α3 tends to infinity.

The joint survival function and the conditional distributions can be easily obtained. Surface

plots of the absolutely continuous part of the joint PDF of (X1, X2) are provided in Figure

1. The joint PDF can take various shapes depending on the parameter values.

Interestingly, the BGLFR distribution can be obtained by using the Marshall-Olkin

(MO) copula with the marginals as the GLFR distributions. To every bivariate distribu-

tion function FX1,X2 with continuous marginals FX1 and FX2 corresponds a unique bivariate

distribution function with uniform margins C : [0, 1]2 → [0, 1] called a copula, such that

FX1,X2(x1, x2) = C{FX1(x1), FX2(x2)} holds for all (x1, x2) ∈ <2 (Nelsen, 1999). The MO

copula is

Cθ1,θ2(u1, u2) = u1−θ1
1 u1−θ2

2 min{uθ1
1 , uθ2

2 }, (7)

for 0 < θ1 < 1 and 0 < θ2 < 1. Using ui = FXi
(xi) where Xi is GLFR(αi + α3, β, γ) and

θi = α3/(αi + α3), i=1,2,3, gives the same joint distribution function FX1,X2 as (5).

Generating values from a BGLFR distribution is straightforward. First, we can generate

values for three independent GLFR random variables and then use (4) to generate (X1, X2).

Alternatively, we can generate (u1, u2) from the copula Cθ1,θ2 , and then use the inversion for-

mula to obtain (X1, X2). If (X1, X2) follows the BGLFR(α1, α2, α3, β, γ), then max{X1, X2}
follows the GLFR(α1 +α2 +α3, β, γ) distribution. The stress strength parameter of (X1, X2)

is

P (X1 < X2) = P (U1 < U3 < U2) + P (U3 < U1 < U2) =
α2

α1 + α2 + α3

. (8)
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Now we will provide several dependency results between the two variables. Lehmann

(1966) defined two random variables X1 and X2 to be positive quadrant dependent (PQD)

if for all x1 and x2,

P (X1 ≤ x1, X2 ≤ x2) ≥ P (X1 ≤ x1)P (X2 ≤ x2). (9)

Intuitively, X1 and X2 are PQD if the probability that they are simultaneously small or

simultaneously large is at least as great as it would be if they were independent. PQD is a

copula property and (9) can be written equivalently as

C(u1, u2) ≥ u1 u2, for all u1, u2 ∈ [0, 1]2. (10)

This condition is satisfied by the MO copula. Therefore, if (X1, X2) follow the BGLFR

distribution, then they are PQD. Because X1 and X2 are PQD, for every pair of increasing

functions g1(·) and g2(·) (Barlow and Proschan, 1981) the following relation is satisfied

Cov{g1(X1), g2(X2)} ≥ 0 (11)

Moreover, it can also be verified that X1 is stochastically increasing in X2, and similarly X2

is also stochastically increasing in X1.

A non-negative function g defined on <2 is total positivity of order two, abbreviated by

TP2, if for all x1 < x2 and y1 < y2,

g(x1, y1)g(x2, y2) ≥ g(x2, y1)g(x1, y2). (12)

The MO copula satisfies this condition. Therefore (Nelsen, 1999), if (X1, X2) follows the

BGLFR distribution, then X1 and X2 are left corner set decreasing, i.e. P (X1 ≤ x1, X2 ≤
x2|X1 ≤ x′1, X2 ≤ x′2) is non-decreasing in x′1 and in x′2, for all x1 and x2.

The copula provides a natural way to measure the dependence between two random

variables. Now we provide some measures of dependence namely the Kendall’s tau and the

medial correlation. We further study the dependence of extreme events.
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Kendall’s tau is defined as the probability of concordance minus the probability of dis-

cordance between two pairs of random vectors (X1, X2) and (Y1, Y2),

τ = P [(X1 − Y1)(X2 − Y2) > 0]− P [(X1 − Y1)(X2 − Y2) < 0]. (13)

where (X1, X2) and (Y1, Y2) are independent and identically distributed random vectors.

Nelsen (1999) has shown that Kendall’s tau index is also a copula property. Moreover, the

MO copula has Kendall’s tau as
θ1θ2

θ1 − θ1θ2 + θ2

. So, if (X1, X2) ∼ BGLFR(α1, α2, α3, β, γ),

the Kendall’s tau index between X1 and X2 is

τX1,X2 =
θ1θ2

θ1 − θ1θ2 + θ2

=
α3

α1 + α2 + α3

. (14)

For fixed α1 and α2, as α3 varies from 0 to ∞, τX1,X2 varies between 0 and 1.

Blomqvist (1950) defined the median correlation coefficient, MX1X2 , between two contin-

uous random variables X1 and X2 as follows. If MX1 and MX2 denote the median of X1 and

X2 respectively, then

MX1X2 = P [(X1 −MX1)(X2 −MX2) > 0]− P [(X1 −MX1)(X2 −MX2) < 0]. (15)

Domma (2009) observed that Blomqvist’s medial correlation coefficient is a copula property

and it can be verified that

MX1X2 = 4FX1,X2(MX1 ,MX2)− 1 = 4Cθ1,θ2

(
1

2
,
1

2

)
− 1. (16)

Therefore, if (X1, X2) ∼ BGLFR(α1, α2, α3, β, γ), then MX1X2 is

MX1X2 =





(
1
2

)2−θ2

if θ1 > θ2

(
1
2

)2−θ1

if θ1 < θ2.

(17)

where as above θi = α3/(α3 + αi) The minimum and the maximum values of MX1X2 are 1/4

and 1/2 respectively.
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The bivariate tail dependence measures the amount of dependence in the upper quadrant

(or lower quadrant) tail of a bivariate distribution (Joe, 1997). For bivariate random vectors

(X1, X2), the upper tail dependence (if it exists) is defined as follows

λU = lim
z→1−

P (X2 > F−1
X2

(z)| X1 > F−1
X1

(z)) . (18)

Intuitively, the upper tail dependence exists when there is a positive probability that some

positive outliers may occur jointly. If λU ∈ (0, 1], then X1 and X2 are said to be asymptoti-

cally dependent, if λU = 0, then they are asymptotically independent. Similarly, the lower

tail dependence parameter λL (if it exists) is defined as follows

λL = lim
z→0+

P (X2 ≤ F−1
X2

(z)| X1 ≤ F−1
X1

(z)). (19)

These parameters are non-parametric and both depend only on the copula C of X1 and X2

as follows:

λU = 2− lim
t→1−

1− C(t, t)

1− t
and λL = lim

t→0+

C(t, t)

t
. (20)

If (X1, X2) follows BGLFR(α1, α2, α3, β, γ), then

λU =
{

θ1 if θ1 < θ2

θ2 if θ2 < θ1,
(21)

and λL = 0.

4 Estimation

In this section we consider the estimation of the unknown parameters of the BGLFR model.

It is assumed that we have a sample of size n, of the form

{(x11, x12), · · · , (xn1, xn2)} (22)

from BGLFR(α1, α2, α3, β, γ) and our problem is to estimate α1, α2, α3, β, γ from the given

sample. First we obtain the MLEs of the unknown parameters. Since the computation of
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the MLEs is computationally quite involved, we propose alternative estimators, which can

be obtained in a more convenient manner.

For further development we use the following notations;

I1 = {i; xi1 < xi2}, I2 = {i; xi1 > xi2}, I0 = {i; xi1 = xi2 = xi}, I = I0 ∪ I1 ∪ I2

and

n0 = |I0|, n1 = |I1|, n2 = |I2|.

Based on the sample (22) mentioned above, the log-likelihood function of the observed data

can be written as;

l(α1, α2, α3, β, γ) =
∑

i∈I1

ln f1(xi1, xi2) +
∑

i∈I2

ln f2(xi1, xi2) +
∑

i∈I0

ln f0(xi, xi). (23)

Therefore, the MLEs of the unknown parameters can be obtained by maximizing (23) with

respect to the unknown parameters. It is clearly a five dimensional optimization problem.

We need to solve five non-linear equations simultaneously to compute the MLEs, which

may not very simple. To avoid that we propose to use the expectation maximization (EM)

algorithm to compute the MLEs in this case.

It may be noted that if instead of (X1, X2), we had observed U1, U2 and U3, the MLEs

of α1, α2, α3, β, γ can be obtained by solving a two dimensional optimization process, which

is clearly much convenient than solving a five dimensional optimization process. Due to this

reason, we treat this problem as a missing value problem. It is assumed that for the bivariate

random vector (X1, X2), there is an associated random vector (λ1, λ2) as follows;

Λ1 =





1 if U1 > U3

3 if U1 < U3

and Λ2 =





2 if U2 > U3

3 if U2 < U3.
(24)

Therefore, if X1 = X2, then clearly λ1 = λ2 = 3. But if X1 < X2 or X1 > X2, the

corresponding (Λ1, Λ2) is missing. If (X1, X2) ∈ I1 then the possible values of (Λ1, Λ2) are
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(3,2) or (1,2) and if (X1, X2) ∈ I2 then the possible values of (Λ1, Λ2) are (1,3) or (1,2). It

implies that if (X1, X2) ∈ I1, then Λ2 is known, but Λ1 is unknown, and if (X1, X2) ∈ I2,

then Λ1 is known, but Λ2 is unknown. The following Table 1 provides the all possible orders

of Ui’s, the associated (X1, X2), (Λ1, Λ2) values and the corresponding probabilities, which

will be useful for further development.

Table 1: All possible orders of Ui’s, the associated (X1, X2), (Λ1, Λ2) values and the corre-
sponding probabilities.

Case Possible Order X1 X2 Λ1 Λ2 Prob Set

1 U1 < U2 < U3 U3 U3 3 3
α2α3

(α1 + α2)(α1 + α2 + α3)
I0

2 U2 < U1 < U3 U3 U3 3 3
α1α3

(α1 + α2)(α1 + α2 + α3)
I0

3 U1 < U3 < U2 U3 U2 3 2
α2α3

(α1 + α3)(α1 + α2 + α3)
I1

4 U3 < U1 < U2 U1 U2 1 2
α1α2

(α1 + α3)(α1 + α2 + α3)
I1

5 U2 < U3 < U1 U1 U3 1 3
α1α3

(α2 + α3)(α1 + α2 + α3)
I2

6 U3 < U2 < U1 U1 U2 1 2
α1α2

(α2 + α3)(α1 + α2 + α3)
I2

Now we are in a position to provide the EM algorithm. In the ‘E’ step of the EM algorithm

the observations belong to I0, we treat them as complete observations. If the observation
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belongs to either I1 OR I2, we treat it as the missing observation. If (x1, x2) ∈ I1, we form the

’pseudo observation’ by fractioning (x1, x2) to two partially complete ‘pseudo observation’

of the form (x1, x2, u1(θ)) and (x1, x2, u2(θ)) respectively. Here θ is the parameter vector,

i.e. θ = (α1, α2, α3, β, γ) and the fractional mass u1(θ) and u2(θ) assigned to the ‘pseudo

observation’ is the conditional probability, that Λ1 takes the values 3 or 1 respectively given

X1 < X2. It is clear from Table 1 that

u1(θ) = P (Λ1 = 3|X1 < X2) =
α3

α1 + α3

, u2(θ) = P (Λ1 = 1|X1 < X2) =
α1

α1 + α3

. (25)

Similarly, if (x1, x2) ∈ I2, we form the ‘pseudo observation’ of the form (x1, x2, w1(θ)) and

(x1, x2, w2(θ)). Here the fractional mass w1(θ) or w2(θ) assigned to the ‘pseudo observation’,

is the conditional probability that the random variable Λ2 takes the values 3 or 2 respectively,

given X1 > X2. Again from Table 1 it is clear that

w1(θ) = P (Λ2 = 3|X1 > X2) =
α3

α2 + α3

, w2(θ) = P (Λ2 = 2|X1 > X2) =
α2

α2 + α3

. (26)

From now on for brevity, we write u1(θ), u2(θ), w1(θ), w2(θ) as u1, u2, w1, w2 respectively.

Now we are in a position to provide the ‘E’-step of the EM algorithm. We will be using the

following notation; θi = (αi, β, γ); i = 1, 2, 3. Also, f(·; θi) and F (·; θi) denote respectively

the PDF and CDF of the GLFR(αi, β, γ) for i = 1, 2, 3. The log-likelihood function of the

‘pseudo data’ (‘E’ - step) can be written as

lpseudo(θ) =
∑

i∈I0

ln f(xi; θ3) +
∑

i∈I0

ln F (xi; θ1) +
∑

i∈I0

ln F (xi; θ2) +

u1


∑

i∈I1

ln f(xi1; θ3) +
∑

i∈I1

ln f(xi2; θ2) +
∑

i∈I1

ln F (xi1; θ1)




u2


∑

i∈I1

ln f(xi1; θ1) +
∑

i∈I1

ln f(xi2; θ2) +
∑

i∈I1

ln F (xi1; θ3)




w1


∑

i∈I2

ln f(xi1; θ1) +
∑

i∈I2

ln f(xi2; θ3) +
∑

i∈I2

ln F (xi2; θ2)




14



w2


∑

i∈I2

ln f(xi1; θ1) +
∑

i∈I2

ln f(xi2; θ2) +
∑

i∈I2

ln F (xi2; θ3)




= l1(θ1) + l2(θ2) + l3(θ3), (27)

where

l1(θ1) =
∑

i∈I0

ln F (xi; θ1) + u1

∑

i∈I1

ln F (xi1; θ1) + u2

∑

i∈I1

ln f(xi1; θ1) +
∑

i∈I2

ln f(xi1; θ1)

l2(θ2) =
∑

i∈I0

ln F (xi; θ2) + w1

∑

i∈I2

ln F (xi2; θ2) + w2

∑

i∈I2

ln f(xi2; θ2) +
∑

i∈I1

ln f(xi2; θ2)

l3(θ3) =
∑

i∈I0

ln f(xi; θ3) + u1

∑

i∈I1

ln f(xi1; θ3) + u2

∑

i∈I1

ln F (xi1; θ3) +

w1

∑

i∈I2

ln f(xi2; θ3) + w2

∑

i∈I1

ln F (xi2; θ3).

Now at the ‘M’-step we need to maximize (27) with respect to unknown parameters. For

fixed β and γ, the maximization of lpseudo(θ) with respect to α1, α2 and α3 can be obtained

by maximizing l1(θ1), l2(θ2), and l3(θ3) with respect to α1, α2 and α3 respectively. If we

denote them as α̃1(β, γ), α̃2(β, γ) and α̃3(β, γ) respectively, then

α̃1(β, γ) =
u2n1 + n2∑

i∈I0 a(xi; β, γ) +
∑

i∈I1 a(xi1; β, γ) +
∑

i∈I2 a(xi1; β, γ)
(28)

α̃2(β, γ) =
w2n2 + n1∑

i∈I0 a(xi; β, γ) +
∑

i∈I1 a(xi2; β, γ) +
∑

i∈I2 a(xi2; β, γ)
(29)

α̃3(β, γ) =
n0 + u1n1 + w1n2 + n1∑

i∈I0 a(xi; β, γ) +
∑

i∈I1 a(xi1; β, γ) +
∑

i∈I2 a(xi2; β, γ)
. (30)

where

a(x; β, γ) = ln
[
1− exp(−βx− γ

2
x2)

]

Finally the maximization of lpseudo(θ) with respect to θ, can be obtained by maximizing

lpseudo(α̃1(β, γ), α̃2(β, γ), α̃3(β, γ), β, γ), the pseudo profile log-likelihood function of β and

γ. If β̃ and γ̃ maximize the pseudo profile log-likelihood function, then α̃1(β̃, γ̃), α̃2(β̃, γ̃),

α̃3(β̃, γ̃), β̃, γ̃ become the next iterate of the EM algorithm. We propose to use the following

algorithm to compute the MLEs of the unknown parameters by EM algorithm;

Algorithm:
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Step 1: Take some initial guess value of θ, say θ(0) = (α
(0)
1 , α

(0)
2 , α

(0)
3 , β(0), γ(0))

Step 2: Compute u1(θ
(0)), u2(θ

(0)), w1(θ
(0)) and w2(θ

(0)).

Step 3: For given u1(θ
(0)), u2(θ

(0)), w1(θ
(0)) and w2(θ

(0)), maximize the pseudo log-likelihood

function lpseudo(α̃1(β, γ), α̃2(β, γ), α̃3(β, γ), β, γ) with respect β and γ, say β(1) and γ(1) re-

spectively.

Step 3: Obtain α
(1)
1 = α̃1(β

(1), γ(1)), α
(1)
2 = α̃2(β

(1), γ(1)) and α
(1)
3 = α̃3(β

(1), γ(1)), and

therefore θ(1) = (α
(1)
1 , α

(1)
2 , α

(1)
3 , β(1), γ(1))

Step 4: Replace θ(0) by θ(1) and go back to Step 1 and continue the process unless conver-

gence takes place.

5 Data Analysis

In this section we present the analysis of one data set mainly to illustrate how the proposed

model and the EM algorithm work in practice.

UEFA Champion’s League Data: The data set has been obtained from Meintanis (2007).

The data set is presented in Table 2. It represents the soccer data where at least one goal

is scored by the home team and at least goal is scored directly from a penalty kick, foul

kick or any other direct kick (all of them will be called as kick goal) by any team has been

considered. Here X1 and X2 represent the time in minutes of the first kick goal scored by

any team and X2 represents the first goal of any type scored by the home team. Clearly all

possibilities are open, for example X1 < X2 or X1 > X2 or X1 = X2 = Y (say).

Meintanis (2007) analyzed this data set using Marshall-Olkin bivariate exponential model.

Kundu and Gupta (2009) re-analyzed the same data set using bivariate generalized exponen-

tial model. It is observed that the bivariate generalized exponential distribution provides a
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Table 2: UEFA Champion’s League Data

2005-2006 X1 X2 2004-2005 X1 X2

Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34
Milan-Fenerbahce 63 18 Real Madrid-Roma 53 39
Chelsea-Anderlecht 19 19 Man. United-Fenerbahce 54 7
Club Brugge-Juventus 66 85 Bayern-Ajax 51 28
Fenerbahce-PSV 40 40 Moscow-PSG 76 64
Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15
Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48
Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16
Man. United-Benfica 39 39 Dynamo Kyiv-Real Madrid 44 13
Real Madrid-Rosenborg 82 48 Man. United-Sparta 25 14
Villarreal-Benfica 72 72 Bayern-M. TelAviv 55 11
Juventus-Bayern 66 62 Bremen-Internazionale 49 49
Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24
Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30
Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3
Schalke-PSV 18 18 Liverpool-Olympiacos 27 47
Barcelona-Bremen 22 14 M. Tel-Aviv-Juventus 28 28
Milan-Schalke 42 42 Bremen-Panathinaikos 2 2
Rapid-Juventus 36 52

better fit than the Marshall-Olkin bivariate exponential model. It has been shown by Kundu

and Gupta (2009) using the scaled TTT transform of Aarset (1987), that both the marginals

(X1 and X2) have increasing empirical hazard rates. It has prompted us to use the BGLFR

distribution to analyze this model.

Before trying to analyze the data using BGLFR model, we first fit the GLFR model to

X1 and X2 separately. The MLEs of the parameters (β, γ, α) of the corresponding GLFR

distribution for X1 and X2 are (5.1828 × 10−3, 9.3294 × 10−4, 1.3031) and (0.0194, 5.6825

× × 10−4, 1.1433) and the corresponding log-likelihood values are -162.676 and -162.938

respectively. Since both exponential and generalized exponential distributions are special

cases of the GLFR distribution, we perform the following two testing of hypotheses:
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Problem 1: H01: γ = 0, α = 1 (exponential) vs H1: γ > 0, α > 0 (GLFR).

Problem 2: H02: γ = 0 (generalized exponential) vs H1: γ > 0 (GLFR).

The log-likelihood values (L), the likelihood ratio test statistic (Λ), the MLEs of each

model, and the associated p values are presented in Table 3. Based on the p values it is clear

that: (1) GLFR distribution provides a significantly better fit for both X1 and X2 compared

to the exponential; (2) GLFR distribution provides a significantly better fit for X1 compared

to the generalized exponential distribution; (3) GLFR distribution provides a better fit for

X2 than the generalized exponential distributions. Finally using the EM algorithm we obtain

Table 3: The MLEs and the values of L, Λ, and the p values of X1 and X2.

Null X1 X2

MLEs L Λ p-value MLEs L Λ p-value

H01 β̂ = 0.024 -174.304 23.257 < 0.0001 β̂ = 0.0304 -166.219 6.562 0.038

H02 β̂ = 0.0449 -168.815 6.279 0.012 β̂ = 0.0413 -163.937 1.998 0.157
α̂ = 3.1193 α̂ = 1.6776

the MLEs of α1, α2, α3, β and γ as (0.492, 0.166, 0.411, 2.013 × 10−4, 8.051 × 10−4).

In order to investigate if the BGLFR distribution provides a better fit to data set 1,

than the MO model and the BVGE model, we use the Akaike Information Criterion (AIC),

see Akaike (1969), Bayesian Information Criterion (BIC), see Schwartz (1978), and also

likelihood ratio test (LRT). Since the MO model cannot be obtained as a special case of the

BGLFR distribution we cannot use the LRT test directly to compare the MO model and

the BGLFR model. It is natural to use AIC or BIC in this case. On the other hand since

BVGE distribution can be obtained as a special case of the BGLFR model, the LRT also
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can be used in testing between BVGE and BGLFR models.

In the enclosed Table 4 we provide the MLEs of the unknown parameters of the MO

and the BVGE models. We have also enclosed the AIC and BIC values for model selection

purposes.

Table 4: The MLEs and the values of L, Λ, AIC and BIC.

Model MLEs L AIC BIC

MO λ̂1 = 0.012, λ̂2 = 0.014, λ̂3 = 0.022 -339.006 684.012 -344.423

BVGE α̂1 = 1.351, α̂2 = 0.465, α̂3 = 1.153 -296.935 601.870 -304.157

β̂ = 0.039

BGLFR α̂1 = 0.492, α̂2 = 0.166, α̂3 = 0.411 -293.379 596.757 -302.406

β̂ = 2.013 × 10−4, γ̂ = 8.051 × 10−4

It is clear that between MO model and BGLFR model, clearly BGLFR model is prefer-

able, based on both AIC and BIC values. Now to choose between BVGE and BGLFR, based

on AIC, BGLFR is preferable, BIC suggests BVGE model. If we perform the LRT test, while

the null hypothesis is BVGE model and the alternative is BGLFR model, the test statistic

is 6.73 with the 0.025 < p < 0.05. Since p value is not very high, we prefer BGLFR than

BVGE for analyzing this data set.

6 Multivariate Generalized Linear Failure Rate Dis-

tribution

In this section we are in a position to define the m-variate generalized linear failure rate

distribution and provide some of its properties. It may be mentioned that recently Franco and
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Vivo (2009), provided a multivariate extension of Sarhan-Balakrishnan bivariate distribution

and studied its several properties.

Suppose U1, · · · , Um+1 are m+1 independent random variables such that Ui ∼ GLFR(αi,

β, γ) for i = 1, · · · ,m + 1. Define

Xj = max{Uj, Um+1}, j = 1, 2, · · · ,m ,

then we say that X = (X1, · · · , Xm) is a m-variate GLFR with parameters (α1, · · · , αm+1,

β, γ), and it will be denoted by MGLFR(m,α1, · · · , αm+1, β, γ). The joint CDF of X can be

easily obtained as follows;

Theorem 6.1: If X = (X1, · · · , Xm) ∼ MGLFR(m,α1, · · · , αm+1, β, γ), then the joint CDF

of X for x1 > 0, · · · , xm > 0 is

FX(x) =
m+1∏

i=1

FGLFR(xi; αi, β, γ), (31)

where x = (x1, · · · , xm) and xm+1 = min{x1, · · · , xm}.

Along the same line as the bivariate GLFR distribution, the multivariate GLFR distribu-

tion (31) also can be obtained from the m-variate Marshall-Olkin copula with the marginals

as the GLFR distributions. In this case (31) can be obtained from the following MO copula

Cθ(u1, · · · , um) = u1−θ1
1 · · ·u1−θm

m min{uθ1
1 · · · uθm

m }, (32)

here θ = (θ1, · · · , θm), and

θ1 =
αm+1

α1 + αm+1

, · · · , θm =
αm+1

αm + αm+1

.

For m > 1, the MGLFR distribution function can also be written as

FX(x) = pFa(x) + (1− p)Fs(x), (33)
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here 0 < p < 1, Fa and Fs denote the absolute continuous and singular part of F respectively.

The corresponding PDF of X also can be written as

fX(x) = pfa(x) + (1− p)fs(x). (34)

In writing (34) it needs to be understood that fa is the PDF with respect to m-dimensional

Lebesgue measure, and fs also can be further decomposed and they are PDFs with respect

to 1, · · · , (m − 1) dimensional Lebesgue measures. It is not difficult to obtain the explicit

expressions of Fs and fs for the general m, but they are quite tedious, and they are not

pursued here. We provide the explicit expression of fa and p in the appendix.

Now we provide the distribution functions of the marginals, conditionals and the extreme

order statistics of the MGLFR distribution.

Theorem 6.2: If X = (X1, · · · , Xm) ∼ MGLFR(m, α1, · · · , αm, αm+1, β, γ), then

(a) X1 ∼ GLFR(α1 + αm+1, β, γ), · · ·, Xm ∼ GLFR(αm + αm+1, β, γ).

(b) For 2 ≤ s ≤ m, (X1, · · · , Xs) ∼ MGLFR(s, α1, · · · , αs, αm+1, β, γ)

(c) The conditional distribution of (X1, · · · , Xs), given {Xs+1 ≤ xs+1, · · · , Xm ≤ xm} is

P (X1 ≤ x1, · · · , Xs ≤ xs|Xs+1 ≤ xs+1, · · · , Xm ≤ xm) =



s∏

j=1

FGLFR(xj, αj, β, γ)








1 if z = v

FGLFR(z, αm+1, β, γ)FGLFR(v, αm+1, β, γ) if z < v,

where z = min{x1, · · · , xs} and v = min{xs+1, · · · , xm}.

(d) If Tm = max{X1, · · · , Xm}, then

FTn(t) = P (Tn ≤ t) = FGLFR(t, α1 + · · ·+ αm+1, β, γ)

(e) If T1 = min{X1, · · · , Xm}, then

FT1(t) = P (T1 ≤ t) = FGLFR(t, αm+1, β, γ)×
(

1−
m∏

i=1

(1− FGLFR(t, αi, β, γ))

)
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Proof: The proofs of (a), (b), (c) and (d) are quite simple and are not provided here.

(e) Note that

FT1(t) =
m∑

k=1

(−1)k−1
∑

Ik∈Sk

FIk
(t, · · · , t),

where Ik = (i1, · · · , ik), 1 ≤ i1 6= · · · 6= ik ≤ m, is a k-dimensional subset and Sk is the set of

all ordered k-dimensional subsets of {1, · · · ,m}. Further

FIk
(t, · · · , t) = P (Xi1 ≤ t, · · · , Xik ≤ t).

Therefore, using part (b),

FT1(t) = FGLFR(t, αm+1, β, γ)× ∑

Ik∈Sk

FGLFR(t, αi1 + · · ·+ αik , β, γ)

Now using the fact

m∑

k=1

(−1)k−1
∑

Ik∈Sk

FGLFR(t, αi1 + · · ·+ αik , β, γ) = 1−
m∏

i=1

(1− FGLFR(t, αi, β, γ))

the result follows.

7 Conclusions

In this paper we have introduced the bivariate generalized linear failure rate distribution

whose marginals are generalized linear failure rate distributions. The proposed bivariate

distribution is a singular distribution, and it can be used quite effectively instead of Marshall-

Olkin bivariate exponential model, or the bivariate generalized exponential model when there

are ties in the data. Several properties of this new distribution have been established, and

also we proposed to use the EM algorithm to compute the maximum likelihood estimators.

Further we have proposed its multivariate generalization. Several properties have been

discussed. It can be obtained by using the multivariate Marshall-Olkin copula coupled

with generalized linear failure rate marginals. It may be mentioned that the EM algorithm
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along the same line as the bivariate case may be developed. Alternatively, using the copula

structure, other estimators as proposed by Kim et al. (2006) may be used and their properties

can be established. The work is in progress, it will be reported later.

Appendix

In this appendix we provide the explicit expression of fa and p of (34) for general m. Let

k ∈ {1, · · · ,m} be the number of the different components of x = (x1, · · · , xm), i.e. when

k = 1, all xi’s are equal, and all xi’s are different when k = m. Then x belongs to the set

where FX is absolutely continuous if and only if k = m. For each x with k = m, there exists

a permutation Pm = (i1, · · · , im), such that xi1 < · · · < xim , and let us define the following

function

fPm(x) = fGLFR(xi1 , αi1 + αm+1, β, γ)fGLFR(xi2 , αi2 , β, γ) · · · fGLFR(xim , αim , β, γ) (35)

Differentiating (33) with respect to x1, · · · , xm, we obtain

∂mFX(x1, · · · , xm)

∂x1 · · · ∂xm

= pfa(x) = fPm(x),

for Pm = (i1, · · · , im), such that xi1 < · · · < xim , and fa is the joint density function of the

absolute continuous part as mentioned before. Moreover, p may be obtained

p = p
∫

<m
fa(x)dx1 · · · dxm =

∑

Pm

∫ ∞

xim=0

∫ xim

xim−1
=0
· · ·

∫ xi2

xi1
=0

fPm(x)dxi1 · · · dxim

=
∑

Pm

αi2

αi1 + αi2 + αm+1

× αi3

αi1 + αi2 + αi3 + αm+1

× · · · × αim

αi1 + · · ·+ αim + αm+1

.

Therefore,

fa(x) =
1

p
fPn(x).
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Figure 1: Surface and contour plots of the absolute continuous part of the joint PDF of the
BGLFR model, for different values of (α1, α2, α3). We have assumed β = γ = 1 in all the
cases. (a) (2, 2, 2) (b) (1, 1, 1) (c) (0.5, 0.5, 0.5) (d) (5, 5, 5).
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