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Abstract

The two-parameter generalized exponential distribution has been used recently

quite extensively to analyze lifetime data. In this paper the two-parameter gener-

alized exponential distribution has been embedded in a larger class of distributions

obtained by introducing another shape parameter. Because of the additional shape

parameter more flexibility has been introduced in the family. It is observed that the

new family is positively skewed, and has increasing, decreasing, unimodal and bathtub

shaped hazard functions. It can be observed as a proportional reversed hazard family

of distributions. This new family of distributions is analytically quite tractable and it

can be used quite effectively to analyze censored data also. Analysis of two data sets

are performed and the results are quite satisfactory.

Key Words and Phrases: Generalized exponential distribution; hazard function; reversed

hazard function; proportional reversed hazard model; regular family of distributions.

1 Introduction

The two-parameter generalized exponential (GE) distribution has been introduced by Gupta

and Kundu [12] and it has the following probability density function (PDF);

fGE(x; α, λ) = αλe−λx
(
1 − e−λx

)α−1
; x > 0. (1)
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Here α > 0 and λ > 0 are the shape and scale parameters respectively. The two-parameter

GE distribution has been used quite effectively for analyzing lifetime data. The readers are

referred to the recent review article by Gupta and Kundu [13] for a current account on the

generalized exponential distribution.

Although, GE distribution can be used quite effectively to analyze a data set which has

monotone (increasing/ decreasing) hazard function (HF), but unfortunately it cannot be used

if the HF is unimodal or bathtub shaped, similar to the Weibull or gamma distributions. The

main aim of this paper is to extend the GE distribution to a three-parameter distribution,

with an additional shape parameter. Many well known distributions can be obtained as

special cases of the proposed distribution. This new family of distribution functions is

always positively skewed, and the skewness decreases as both the shape parameters increase

to infinity. Interestingly, the new three-parameter distribution has increasing, decreasing,

uni-modal and bathtub shaped HFs. Therefore, it can be used quite effectively for analyzing

different types of lifetime data.

The rest of the paper is organized as follows. In section 2 we introduce the model and

discuss its properties in Section 3. Statistical inferences are carried out in section 4. Two

data sets are analyzed in section 5. In Section 6, we present some simulation results, and

finally we provide some generalization and conclude the paper in section 7.

2 Extended GE Family

The extended GE (EGE) family has the distribution function;

F (y; α, β, λ) =





(
1 − (1 − βλy)

1
β

)α
if β 6= 0

(
1 − e−λy

)α
if β = 0

(2)
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for α > 0, λ > 0 and −∞ < β < ∞. The support of the EGE random variable Y in (2) is

(0,∞) if β ≤ 0, and (0, 1/(βλ)) if β > 0. The following values of the parameters α and β

are of particular interest; (i) β = 0, EGE reduces to GE, (ii) β = 0, α = 1, EGE reduces

to exponential, (iii) β = 1, α = 1, EGE reduces to uniform, (iv) α = 1, EGE reduces to

generalized Pareto, (v) α = 1, β < 0, EGE reduces to Pareto. It may be mentioned that the

generalized Pareto distribution has received considerable attention in the recent statistical

literature because of its capability to model exceedances over a threshold, see for example

Johnson, Kotz and Balakrishnan [16] or Davison and Smith [7]. From now on the three-

parameter EGE distribution with parameters α, β and λ will be denoted by EGE(α, β, λ).

The PDF of EGE(α, β, λ) becomes

f(y; α, β, λ) =





αλ
(
1 − (1 − βλy)

1
β

)α−1
(1 − βλy)

1
β
−1 if β 6= 0

αλ
(
1 − e−λy

)α−1
e−λy if β = 0,

(3)

when 0 < y < ∞ and 0 < y < 1/(βλ), for β ≤ 0 and β > 0, respectively. Moreover, its

quantile function is

Q(u; α, β, λ) =





1
βλ

[
1 − (1 − u1/α)β

]
if β 6= 0

− 1
λ

ln
(
1 − u1/α

)
if β = 0.

(4)

Clearly, as β → 0, the quantile function of the EGE distribution tends to the quantile

function of the GE distribution. For β > 0, the quantile function of the EGE distribution

coincides with the quantile function of a transformed beta distribution. For β > 0, the

support is on a finite interval. The shape of the PDF is (i) unimodal if α > 1 and 0 < β < 1,

(ii) an increasing function if α > 1 and β > 1, (iii) an decreasing function if 0 < α < 1 and

0 < β < 1, (iv) a bathtub shaped if 0 < α < 1 and β > 1. (v) If α = 1, for 0 < β < 1 it is a

decreasing function and for β > 1, it is an increasing function.

For β < 0, it has the support on the whole real line and the shape of the PDF is unimodal

if α > 0. For β = 0, it is well known that the PDF is a decreasing function if 0 < α ≤ 1
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and it is unimodal if α > 1. The PDFs of the EGE for different ranges of α and β when λ

=1 are plotted in Figure 1. It is clear that the GE family has been embedded in a larger
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Figure 1: The PDFs of the extended GE for different values of α and β, when λ = 1.

family, with an additional shape parameter β. Due to this additional shape parameter, more

flexibility can be incorporated in the family, which will be useful for data analysis purposes.

The EGE model can be seen as a proportional reversed hazard rate model (PRHRM), see

for example the recent review article by Gupta and Gupta [11] in this connection. Therefore,

several properties of the general PRHRM model can be easily translated for the EGE model.

In the next section we discuss different structural properties of the EGE model.

3 Properties

The HF of EGE takes the form

h(y; α, β, λ) =





αλ

(
1−(1−βλy)

1
β

)α−1

(1−βλy)
1
β
−1

1−

(
1−(1−βλy)

1
β

)α if β 6= 0

αλ(1−e−λy)
α−1

e−λy

1−(1−e−λy)
α if β = 0.

(5)

It is observed that the HF can take all four different shapes namely (i) increasing, (ii)

decreasing, (iii) unimodal and (iv) bathtub. The Figures 2 and 3 provide the HFs of the
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Figure 2: The HFs of the EGE distribution for different values of α and β < 0.
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Figure 3: The HFs of the EGE distribution for different values of α and β > 0.

EGE distributions for different values of α and β, when λ = 1. We have the following

results regarding the shapes of the HFs of the EGE distributions. The proofs are provided

in the appendix.

Theorem 1: The HF of the EGE distribution is (a) unimodal if α > 1 and β < 0, (b) a

decreasing function if α < 1 and β < 0.

Theorem 2: The HF of the EGE distribution is (a) an increasing function if α > 1 and

β > 1, (b) a bathtub shaped if α < 1 and β < 1.

Suppose Y follows EGE(α, β, 1), then it can be easily shown that for β 6= 0 and kβ+1 > 0
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E
[
(1 − βY )k

]
=

Γ(α + 1)Γ(kβ + 1)

Γ(α + kβ + 1)
. (6)

From (6) it easily follows that

E(Y ) =
1

β

[
1 − Γ(α + 1)Γ(β + 1)

Γ(α + β + 1)

]
(7)

and

V (Y ) =
1

β2

[
Γ(α + 1)Γ(2β + 1)

Γ(α + 2β + 1)
− Γ2(α + 1)Γ2(β + 1)

Γ2(α + β + 1)

]
. (8)

Note that when α = 1, then E(Y ) =
1

β + 1
, V (Y ) =

1

(1 + β)2(1 + 2β)
and they coinside

with the corresponding moments of the generalized Pareto distribution, see Johnson, Kotz

and Balakrishnan [16]. For β = 0, the results are available in Gupta and Kundu [12].

The median of the EGE distribution can be easily obtained by substituting u = 1/2 in

the quantile function 4. For α < 1 and β < 1, the mode of the EGE distribution can be

easily seen to be at 0, otherwise it cannot be obtained in explicit form. It can be obtained

as root of a non-linear equation.

4 Parametric Inference

In this section we mainly consider the parametric inference of the unknown parameters

of the EGE(α, β, λ). It is assumed that we have a sample of size n, from EGE(α, β, λ),

say y1, . . . , yn. Based on the random sample y1, . . . , yn, the maximum likelihood estimators

(MLEs) of α, β, λ can be obtained by maximizing the log-likelihood function

l(α, β, λ|data) = n ln α +n ln λ+(α− 1)
n∑

i=1

ln
(
1 − (1 − βλyi)

1
β

)
+

(
1

β
− 1

)
n∑

i=1

ln(1−βλyi).

(9)

For given β and λ, the MLE of α, say α̂(β, λ) can be obtained as

α̂(β, λ) = − n
∑n

i=1 ln
(
1 − (1 − βλyi)

1
β

) . (10)
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The MLEs of β and λ can be obtained by maximizing the profile log-likelihood function

l(α̂(β, λ), β, λ|data) with respect to β and λ. Now we will discuss about the asymptotic

properties of the MLEs.

Regular Case: Observe that when α > 0 and β < 0, the situation is exactly similar

as the generalized Weibull case discussed by Mudholkar, Srivastava and Kollia [21] with

α > 0 and λ < 0 according to their notations. It can be verified similarly as in Mudholkar,

Srivastava and Kollia [21] that when α > 0 and β < 0, the PDF of EGE(α, β, λ) satisfies

all the regularity properties of the parametric family. Therefore, in this case the standard

asymptotic normality result holds and it can be stated as

√
n(φ̂ − φ) −→ N3

(
0, I−1(φ)

)
, (11)

here φ = (α, β, λ) and φ̂ = (α̂, β̂, λ̂) denotes the MLEs of φ, N3 denotes the trivariate normal

distribution and I(φ) is the expected Fisher information matrix.

Non-Regular Case: Observe that when β > 0, the support of EGE(α, β, λ) depends on

the unknown parameters. For the purpose of statistical inference, when β > 0, we propose

the following re-parameterization of α, β, λ as (α, β, θ), where θ = (βλ)−1. Therefore, (2)

can be written as

f(y; α, β, θ) =
α

βθ

(
1 −

(
1 − y

θ

) 1
β

)α−1 (
1 − y

θ

) 1
β
−1

(12)

for 0 < y < θ and 0 otherwise. The corresponding distribution function and the quantile

function become

F (y; α, β, θ) =

(
1 −

(
1 − y

θ

) 1
β

)α

(13)

and

Q(u; α, β, θ) = θ
(
1 −

(
1 − u

1
α

)β
)

(14)

respectively. In this new parameterization θ is both the scale as well as thresh hold parameter

and α and β are both shape parameters.
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First, let us observe that based on a random sample y1, · · · , yn from (12), the maximum

likelihood estimators can be obtained by maximizing the log-likelihood function

l(α, β, θ) = n ln α−n ln β−n ln θ+(α−1)
n∑

i=1

ln

(
1 −

(
1 − y(i)

θ

) 1
β

)
+

(
1

β
− 1

)
n∑

i=1

ln
(
1 − y(i)

θ

)
.

(15)

Here y(1) < y(2) < . . . < y(n) denote the ordered yi’s. It is immediate from (15) that for fixed

0 < α < 1, 0 < β < 1, as θ ↓ y(n), l(α, β, θ) −→ ∞. Therefore, in this case the MLEs do not

exist, and we look for alternative estimators as in Mudholkar, Srivastava and Kollia [21].

To estimate the unknown parameters, the most natural way (see Smith [23]) is to first

estimate the threshold parameter θ by its consistent estimator θ̃ = y(n). The modified log-

likelihood function based on the remaining (n − 1) observations after ignoring the largest

observation and replacing θ by θ̃ = y(n) is

l(α, β, θ̃) = (n − 1) ln α − (n − 1) ln y(n) − (n − 1) ln β + (α − 1)
n−1∑

i=1

ln


1 −

(
1 − y(i)

y(n)

) 1
β




+

(
1

β
− 1

)
n−1∑

i=1

ln

(
1 − y(i)

y(n)

)
. (16)

For fixed β, observe that the modified MLE of α can be obtained as

α̂(β) = − n − 1
∑n−1

i=1 ln(1 − (1 − y(i)

y(n)
)

1
β )

. (17)

Therefore, in this case the modified MLE of β can be obtained by solving a one dimensional

optimization problem from the modified profile log-likelihood function of β.

For the purpose of statistical inference, an understanding of the joint distributions of

θ̃ and the modified likelihood estimators of α̃ and β̃ obtained from (16) is necessary. It is

convenient to describe the joint distribution in terms of the asymptotic marginal of θ̃ and the

asymptotic conditional distribution of (α̃, β̃) given θ̃. We have the following results, whose

proofs are provided in the appendix.
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Theorem 3:

(a) The marginal distribution of θ̃ = y(n) is given by

P [θ̃ ≤ t] =

(
1 −

(
1 − t

θ

) 1
β

)nα

.

(b) Asymptotically as n → ∞,

nβ

(
Y(n)

θ
− 1

)
→ −V β, where V ∼ exp(α).

Here ‘exp(α)’ denotes the exponential distribution with mean 1/α.

Theorem 4: Given y(n), the conditional asymptotic distribution of (α̃, β̃) obtained by

maximizing (16) is a bivariate normal distribution with mean (α, β) and I−1
α,β, the inverse of

the Fisher information matrix, as the covariance matrix.

Theorem 5: Asymptotically as n → ∞, the distribution of (α̃, β̃) is (a) bivariate normal,

if β >
1

2
, (b) bivariate Weibull if β <

1

2
, (c) a mixture of normal and Weibull if β =

1

2
.

Comments: It may be noted that although for β > 0, uniform and generalized Pareto

distributions can be obtained as special cases of the EGE distribution, the MLEs of the un-

known parameters for EGE distribution does not exist. Therefore, the asymptotic properties

of the modified maximum likelihood estimators of the EGE distribution are not comparable

with the corresponding asymptotic properties of the MLEs of the uniform or generalized

Pareto distributions. Moreover, for non-regular case, the results of Smith [23] is not di-

rectly applicable for generalized Pareto distribution see Smith [23] (page 88-89), and it has

been mentioned that special procedures are needed to develop the asymptotic properties of

the MLEs. In case of EGE, the situation is very similar with the corresponding situation

of the generalized Weibull distribution of Mudholkar, Srivstava and Kollia [21], and the

corresponding asymptotic results are also quite comparable.
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5 Data Analysis

Data Set 1: This data set consists of survival times of guinea pigs injected with tubercle

bacilli and was originally studied by Bjerkedal [5]. Guinea pigs are known to have high

susceptibility to human tuberculosis, which is one of the reasons to choose guinea pigs for

such a study. Here we consider only the study where each animals in a single cage are under

the same regimen. The regimen number of the common log of the number of bacillary units

in 0.5 ml. of challenge solution, i.e. regimen 6.6 corresponds to 3.98 ×106 bacillary units per

0.5 ml. (log(3.98 ×106) = 6.6). We considered the data for regimen 6.6, and there were 72

observations. The data set is available in Gupta et al. [10].

From the preliminary data analysis, the mean, standard deviation and the coefficient of

skewness are calculated as 99.82, 80.55 and 1.80 respectively. The skewness measure indicates

that the data are positively skewed. The scaled TTT transform of Aarset [1] indicates that

the empirical HF is unimodal. Similar claims were made by Gupta et al. [10] and Kundu et

al. [19] while analyzing this data set. Gupta et al. [10] used the log-normal distribution and

Kundu et al. [19] suggested to use the Birnbaum-Saunders distribution for analyzing this

data set. It may be mentioned that both log-normal and Birnbaum-Saunders distribution

are positively skewed distributions and both have unimodal HFs.

In this case we want to use EGE distribution to analyze this data set. Since EGE has

three parameters, and the MLEs cannot be obtained in explicit forms, we need to use some

optimization method to compute the MLEs. For any optimization method some initial

guesses are required to start the iterative process. Due to the relation (10), we can reduce

the three dimensional optimization process to a two dimensional optimization process. It is

quite natural to start with the two-dimensional contour plot of (β, λ) to have an idea about

the initial guesses of (β, λ). We have used a slightly different approach.
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First we have fitted the two-parameter GE distribution by using the standard technique

as suggested by Gupta and Kundu [12]. The MLEs of α and λ become 2.4748 and 0.0169.

Now to estimate the three-parameter EGE distribution, we take the initial value of λ as λ0

= 0.0169. It is observed that the profile likelihood function of β, namely l(α0, β, λ0|data)

as defined in (9), where α0 = α̂(β, λ0), as defined in (10) is an unimodal function. and we

obtain the initial guess of β as β0 = -0.05. We use the downhill simplex method as provided

in Press et al. [22]and obtained the MLEs of α, λ and β as α̂ = 5.3121, λ̂ = 0.0382, β̂ =

-0.2865. The corresponding 95% confidence intervals are (2.4307, 7.5391), (0.0187, 0.0558)

and (-0.4075, -0.0239) respectively.

The following Table 1 provides the Kolmogorov-Smirnov (KS) distances between the

empirical distribution function and six different fitted distribution functions namely (i) EGE,

(ii) log-normal (LN), (iii) Birnbaum-Saunders (BS), (iv) generalized exponential (GE), (v)

exponentiated Weibull (EWE) and (vi) generalized Weibull (GWE), the associated p values

and the corresponding log-likelihood values. It may be mentioned that LN, BS and GE have

two parameters each, where as EWE and GWE have three parameters each. Moreover, EWE

and GWE also can have all four possible shapes of the HFs similarly as the EGE model.

Based on the KS distances, and the log-likelihood values among the two-parameter dis-

tributions log-normal provides the best fit, and GE provides the worst fit. Among the

three-parameter distributions EGE provides the best fit in this case. Between EGE and LN

distributions based on the Akaike Information Criterion (AIC), and also comparing the p

values of the KS statistics, we can say that EGE provides a better fit in this case. In Figure

4 we provide the empirical survival function and the best fitted (EGE) and worst fitted (GE)

survival functions. It is clear that EGE provides an excellent fit to the Guinea Pigs data.

Data Set 2: Now we present a data analysis of the strength data originally reported by

Badar and Priest [2]. The data set represents the strength measured in GPA for single
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Distribution K-S Distance p log-likelihood

EGE 0.0912 0.5987 -390.0267
LN 0.0956 0.5263 -395.1656
BS 0.1044 0.4125 -397.2761
GE 0.1157 0.3856 -398.8674

EWE 0.0924 0.5823 -391.1176
GWE 0.0936 0.5810 -393.3419

Table 1: Kolmogorov-Smirnov distances, associated p values and the log-likelihood values
for EGE, GE, log-normal, Birnbaum-Saunders (BS), exponentiated Weibull and generalized
Weibull distribution functions.

GE

EGE

EMP
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 0.6
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 0  50  100  150  200  250  300  350  400

Figure 4: The empirical survival function, fitted survival functions for GE and EGE distri-
butions

carbon fibers and impregnated at gauge lengths of 1, 10, 20 and 50 mm. Impregnated tows

of 1000 fibers were tested at gauge lengths of 20, 50, 150 and 300 mm. We have taken the

data set of single fibers of 20 mm, with sample size n = 69. Surles and Padgett [24] and

Kundu and Gupta [17] already analyzed this data set by subtracting 0.75 for all the data

points, using generalized Rayleigh and Weibull distributions respectively. We want to use

the proposed EGE model to analyze this data set. The histogram of the data indicates that

the data are slightly skewed and the scaled TTT transform indicates that the empirical HF

is an increasing function.
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In this case also first we fit a two-parameter GE distribution and obtain the MLEs of

α and λ as 16.6816 and 1.9743. The high value of α indicates that the data are nearly

symmetric. Now to fit the EGE model, as before we obtain α0 = 16.6816, λ0 = 1.9743 and

β0 = 0.1 as the initial estimates of α, λ and β respectively. Finally we obtain the MLEs of

the unknown parameters as 6.1748, 0.9169 and 0.3493 respectively. The corresponding 95%

confidence intervals are (4.1959, 8.1537), (0.5012, 1.3326) and (0.1764, 0.5222) respectively.

Now we provide the Kolmogorov-Smirnov (KS) distances between the empirical distri-

bution function and six different fitted distribution functions namely (i) EGE, (ii) Weibull

(WE), (iii) Gamma (GA) and (iv) generalized exponential (GE), (v) generalized Weibull

(GWE) and (vi) exponentiated Weibull (EWE), the associated p values and the correspond-

ing log-likelihood values in the following Table 2. It is immediate that based on the KS

distances, and the log-likelihood values among the two-parameter distributions Weibull pro-

vides the best fit, and GE provides the worst fit. Among the three-parameter distribution

GWE performs the best, but the performance of the proposed EGE distribution is very good.

Using Akaike Information Criterion (AIC) it can be easily seen that the performance of EGE

is better than any of the two-parameter distribution. In Figure 5 we provide the empirical

survival function and the best fitted (EGE) and worst fitted (GE) survival functions. It is

clear that although, EGE does not perform the best in this case, but it provides an excellent

fit to the strength data.

6 Monte Carlo Simulations

In this section we perform some simulation studies, just to verify how the MLEs work for

different sample sizes and for different parameter values for the proposed EGE model. All

the calculations have been performed using Intel dual core processor and all the program

codes are in FORTRAN-77. We have used RAN2 uniform random number generator of Press
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Distribution K-S Distance p log-likelihood

EGE 0.0391 0.9541 -43.1765
WE 0.0461 0.8985 -48.8703
GA 0.0501 0.8105 -51.3215
GE 0.0546 0.7906 -52.2987

GWE 0.0381 0.9582 -43.1423
EWE 0.0401 0.9499 -43.2011

Table 2: Kolmogorov-Smirnov distances, associated p values and the log-likelihood values
for EGE, Weibull, Gamma, GE, GWE and EWE distribution functions.
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Figure 5: The empirical survival function, fitted survival functions for GE and EGE distri-
butions

et al. [22].

We have used the following parameter sets: Model 1: α = 2.0, λ = 1.0, β = -1.0 and

Model 2: α = 2.0, λ = 1.0, β = 1.0, and different sample sizes namely: n = 25, 50, 75 and

100. In all the cases we have calculated the MLEs using the downhill simples method, see

Press et al. [22], and use the true values as the initial guesses. We replicated the process

1000 times and report the average estimates and the associated mean squared errors (MSEs).

The results are presented in Tables 3 and 4.

From the results presented in Tables 3 and 4 the following points are quite clear. It is
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Sample α λ β
Size

25 1.8162 0.9471 -0.7470
(1.1125) (0.9561) (0.1141)

50 2.1385 1.1707 -0.9210
(0.8397) (0.6772) (0.0653)

75 2.0957 1.1117 -0.9462
(0.5257) (0.4579) (0.0526)

100 2.0110 1.0114 -0.9658
(0.5081) (0.3996) (0.0443)

Table 3: Average estimates and the associated MSEs (presented within brackets below) of
the MLEs for different sample sizes, when α = 2.0, λ = 1.0, β = -1.0.

quite clear that the MLEs are working quite well. As the sample size increases the average

biases and the mean squared errors decrease, it verifies the consistency properties of the

MLEs. For all practical purposes MLEs can be used quite effectively for estimating the

unknown parameters of the proposed EGE model.

7 Conclusions

In this paper we have proposed a new three-parameter EGE model by embedding the GE

model in a larger class of distributions. The proposed EGE model has two shape parameters

and one scale parameter, similarly as the exponentiated Weibull model of Mudholkar et al

[20] or the generalized Weibull model of Mudholkar et al [21]. The PDF of EGE model

also can take various shapes depending on the shape parameters. Moreover, similarly as

the exponentiated Weibull model or generalized Weibull model the HF also can all the

four shapes namely (i) increasing, (ii) decreasing, (iii) unimodal or (iv) bathtub shaped,

depending on the shape parameters. Therefore, it can be used quite effectively in analyzing

various lifetime data. We have proposed to use the maximum likelihood method to estimate
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Sample α λ β
Size

25 4.7424 0.8048 1.3232
(2.3564) (0.5361) (0.3165)

50 4.3153 0.9069 1.1633
(1.7015) (0.3899) (0.2401)

75 4.1007 0.9564 1.0134
(1.3231) (0.3217) (0.1901)

100 4.0001 0.9876 1.0011
(1.1561) (0.2511) (0.1521)

Table 4: Average estimates and the associated MSEs (presented within brackets below) of
the MLEs for different sample sizes, when α = 4.0, λ = 1.0, β = 1.0.

the unknown parameters and the performance of the MLEs are quite satisfactory. We have

analyzed two data sets and the proposed EGE model provide very good fit to both the data

sets.

Still there exist several open problems mainly involving the numerical issues. It may be

mentioned that extensive work has been done related to the numerical issues of the different

estimators of the unknown parameters of the generalized Pareto distribution, see for example

Castillo and Hadi [6], Grimshaw [8], Hosking and Wallis [14], Hosking, Wallis and Wood [15],

Bermudez and Kotz [3, 4] and see the references cited therein. It has been observed that the

MLEs may not work properly, even when they exist. Due to these reasons, several algorithms

have been proposed to compute the MLEs. Moreover, several alternative estimators have

been proposed and their performances have been studied quite extensively using Monte

Carlo simulations. Along the same line efficient algorithm to develop the MLEs of the EGE

model can also be developed. Moreover, different other estimators may be thought of, and

their properties will be worth investigating. Recently the authors, see Kundu and Gupta

[18], introduced the bivariate generalized exponential distribution and discuss several of its

properties. Along the same line bivariate EGE model also can be developed. More work is
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needed in these directions.
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Appendix A

Proof of Theorem 1: Without loss of generality it is assumed that λ = 1 and for this

proof only let us assume δ = − 1

β
> 0. In this case the support is the whole positive real

line. The density function of the EGE with the parameter α, δ and λ = 1 can be written as

f(y) = α

(
1 −

(
1 +

y

δ

)
−δ
)α−1 (

1 +
y

δ

)
−δ−1

, 0 < y < ∞. (18)

If we take Z(y) = 1 +
y

δ
, then

f(y) =
α
(
Z(y)δ − 1

)α−1

Z(y)αδ+1
, η(y) = −f ′(y)

f(y)
=

Z(y)δ(1 + δ) − (αδ + 1)

δZ(y)(Z(y)δ − 1)
,

and

η′(y) =
−Z(y)2δ(1 + δ) + Z(y)δ(1 + δ)(2 + αδ − δ) − (αδ + 1)

(δZ(y)(Z(y)δ − 1))2 .

Clearly, as y varies from 0 to ∞, Z(y) varies from 1 to ∞. Since the denominator of η′(y)

does not change sign, it is enough to consider the sign of the numerator only. If we denote

the numerator of η′(y) as u1(y), then observe that u1(0) = (α− 1)δ2 and u1(y) < 0 for large

y. Since u1(y) can change sign at most twice, therefore for α > 1, it will change sign only

once. It implies that the HF is either unimodal or a decreasing function, see Glaser [9]. Since

for α > 1, h(0) = 0, it implies the HF has to be unimodal. For α < 1, u1(0) < 0, therefore,

in this case there are two possibilities (i) it changes sign twice in (0,∞) or (ii) it does not
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change sign in (0,∞). From the quadratic equation −x2 + x(2 + αδ − δ) − αδ + 1

δ + 1
, since

2 + αδ − δ

2
< 1, it follows that u1(y) either changes sign twice below 0 or does not change

sign at all. Therefore, u1(y) < 0 for all y ≥ 0. It implies, the HF is a decreasing function,

see Glaser [9]

Proof of Theorem 2: Observe that the shape of the HF of f(y; α, β, 1) will be same as

the shape of the HF of g(y; α, δ), where δ =
1

β
and

g(y; α, δ) =





α
(
1 − (1 − y)δ

)α−1
(1 − y)δ−1 if 0 < y < 1

0 otherwise,

Let us write

η(y) = −g′(y)

g(y)
= −(αδ − 1)(1 − y)δ − δ + 1

(1 − (1 − y)δ)(1 − y)
,

and the numerator of η′(y) as v1(y), where

v1(y) = (αδ − 1)(1 − y)2δ + (1 − y)δ(αδ2 − αδ − δ − δ2 + 2) + (δ − 1).

We also have v1(0) = (α − 1)δ2 and v1(1) = δ − 1. Note that v1(y) can change sign at

most two times. Clearly, for (a) α > 1 and δ < 1 (β > 1), it will change sign once in (0, 1)

from positive to negative. Therefore, the HF will either be bathtub shaped or an increasing

function, see Glaser [9]. If α > 1, since h(0) = 0, the hazard function is an increasing

function and for α < 1, since h(0) = ∞, the HF will be a bathtub shaped.

Proof of Theorem 3 Part (a) is straight forward and therefore it is omitted. For part (b)

let U(n) denote the largest order statistic of a sample of size n from uniform(0,1) distribution.

Then from the quantile function Q(·) as defined in (14), we obtain

Y(n)
d
= Q

(
U(n)

)
= θ

(
1 −

(
1 − U

1
α

(n)

)β
)

.

Since,

nβ

[
Y(n)

θ
− 1

]
= −

[
n
(
1 − U

1
α

(n)

)]β
,
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therefore,

P
[
n
(
1 − U

1
α

(n)

)
≤ x

]
= P

[
U(n) ≥

(
1 − x

n

)α]
= 1 −

(
1 − x

n

)α

→ 1 − e−αx.

Proof of Theorem 4: Conditional on θ̃, the modified log-likelihood function (16) satis-

fies all the regularity assumptions required for the asymptotic normality of the maximum

likelihood estimators to follows, and therefore the result follows. See Mudholkar et al. [21]

and Smith [23] for similar developments.

Proof of Theorem 5: In this proof only, we denote the true values of α, β and θ as α0,

β0 and θ0. Let γ0 = (α0, β0)
′, γ̃ = (α̃, β̃)′ and γ = (α, β)′. Also let L = L(α, β, θ̃) be the

modified log-likelihood function (16). Let G(γ, θ̃) =
∂L

∂γ
and H(γ, θ̃) =

∂L

∂γ2
be the derivative

vector and the Hessian matrix respectively, of L. Then clearly we have,

G(γ̃, θ̃) = 0. (19)

Expanding (19) around γ0, we get

0 = G(γ0, θ̃) + H(γ0, θ̃)(γ̃ − γ0) + op(1/
√

n). (20)

Taking n large enough, so that θ̃ can be replaced by θ0 in H(γ0, θ̃), we have

0 = G(γ0, θ̃) + H(γ0, θ0)(γ̃ − γ0) + op(1/
√

n). (21)

Consider three different cases (i) β >
1

2
, (ii) β <

1

2
(iii) β =

1

2
.

Case (i)β >
1

2
: From (21) we can write

√
n(γ̃ − γ0) = −

√
nH−1(γ0, θ0)G(γ0, θ̃) + op(1). (22)

Now expanding G(γ0, θ̃) around θ0, we have

√
n(γ̃ − γ0) = −

√
nH−1(γ0, θ0)G(γ0, θ0) −

√
n(θ̃ − θ0)H

−1(γ0, θ0)
∂

∂θ
G(γ0, θ0) + op(1). (23)
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since β >
1

2
, then in view of Theorem 3, part (b), the second term of (23) is negligible

compared to the first term and the asymptotic distribution of γ̃ is a bivariate normal.

Case (ii)β <
1

2
. In this case we will obtain

nβ(γ̃ − γ0) = −nβH−1(γ0, θ0)G(γ0, θ0) − nβ(θ̃ − θ0)H
−1(γ0, θ0)

∂

∂θ
G(γ0, θ0) + op(1). (24)

Since β <
1

2
, the first term is negligible compared to the the second term. Using Theorem

3, part (b) it follows that the second term converges to a bivariate Weibull distribution.

Case (ii)β =
1

2
. From (23) it is clear that for β =

1

2
, it is mixture of normal and Weibull.
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