Debasis Kundu
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur

Part of this work is going to appear in Technometrics.
What is a Progressive Censoring?

Associated Problems

Existing Methods

Proposed Solutions

Some Open Problems

References
What is a Progressive Censoring?
OUTLINE OF THE TALK

- What is a Progressive Censoring?
- Associated Problems
OUTLINE OF THE TALK

- What is a Progressive Censoring?
- Associated Problems
- Existing Methods
OUTLINE OF THE TALK

- What is a Progressive Censoring?
- Associated Problems
- Existing Methods
- Proposed Solutions
OUTLINE OF THE TALK

- What is a Progressive Censoring?
- Associated Problems
- Existing Methods
- Proposed Solutions
- Some Open Problems
OUTLINE OF THE TALK

- What is a Progressive Censoring?
- Associated Problems
- Existing Methods
- Proposed Solutions
- Some Open Problems
- References
Progressive Censoring

- Put n items on test.
- Prefix m, R_1, \ldots, R_m, such that
 \[R_1 + \ldots + R_m + m = n \]
- At the i-th failure time say $X_{i:n}$ remove R_i items from the remaining items.
- Stop the experiment at $X_{m:n}$.
1st failure remove \(R_1 \)
2nd failure remove \(R_2 \)
m-th failure remove \(R_m \)

0 \(X_{1:n} \) \(X_{2:n} \) \(X_{m:n} \)
ASSOCIATED PROBLEMS?
ASSOCIATED PROBLEMS?

- Inference on the Lifetime Distribution.
ASSOCIATED PROBLEMS?

- Inference on the Lifetime Distribution.
- Optimal Censoring Plans
EXISTING METHODS
EXISTING METHODS

- Parametric Approach
EXISTING METHODS

- Parametric Approach
- Frequentist Solution
EXISTING METHODS

- Parametric Approach
- Frequentist Solution
- Find MLEs or Some Other Estimators
Existing Methods

- Parametric Approach
- Frequentist Solution
- Find MLEs or Some Other Estimators
- Find Exact or Asymptotic Distributions
EXISTING METHODS

- Parametric Approach
- Frequentist Solution
- Find MLEs or Some Other Estimators
- Find Exact or Asymptotic Distributions
- Find Optimal Censoring Plans Using E or D Optimality
PROPOSED METHODS

Parametric Approach
Assume Weibull Lifetime Distributions
Bayesian Solution
Obtain Bayes Estimates and Credible Intervals using MCMC
Propose New Optimal Censoring Plans
PROPOSED METHODS

- Parametric Approach

Assume Weibull Lifetime Distributions
Bayesian Solution
Obtain Bayes Estimates and Credible Intervals using
MCMC
Propose New Optimal Censoring Plans
PROPOSED METHODS

- Parametric Approach
- Assume Weibull Lifetime Distributions
PROPOSED METHODS

- Parametric Approach
- Assume Weibull Lifetime Distributions
- Bayesian Solution
PROPOSED METHODS

- Parametric Approach
- Assume Weibull Lifetime Distributions
- Bayesian Solution
- Obtain Bayes Estimates and Credible Intervals using MCMC
PROPOSED METHODS

- Parametric Approach
- Assume Weibull Lifetime Distributions
- Bayesian Solution
- Obtain Bayes Estimates and Credible Intervals using MCMC
- Propose New Optimal Censoring Plans
PRIORS AND POSTERIORS:

- No Conjugate Priors Exist
- Assume the Shape and Scale Parameters have Independent Gamma Priors
- Approximate Bayes Estimates (Lindleys' Approximations)
- Posteriors are Log-Concave
- Posteriors are Approximated
- Bayes Estimates and Credible Intervals are Obtained Using MCMC
PRIORS AND POSTERIORS:

- No Conjugate Priors Exist
PRIORS AND POSTERIORS:

- No Conjugate Priors Exist
- Assume the Shape and Scale Parameters have Independent Gamma Priors
PRIORS AND POSTERIORS:

- No Conjugate Priors Exist
- Assume the Shape and Scale Parameters have Independent Gamma Priors
- Approximate Bayes Estimates (Lindleys’ Approximations)
PRIORS AND POSTERIORS:

- No Conjugate Priors Exist
- Assume the Shape and Scale Parameters have Independent Gamma Priors
- Approximate Bayes Estimates (Lindley’s Approximations)
- Posteriors are Log-Concave
Priors and Posteriors:

- No Conjugate Priors Exist
- Assume the Shape and Scale Parameters have Independent Gamma Priors
- Approximate Bayes Estimates (Lindley’s Approximations)
- Posteriors are Log-Concave
- Posteriors are Approximated
No Conjugate Priors Exist

Assume the Shape and Scale Parameters have Independent Gamma Priors

Approximate Bayes Estimates (Lindleys’ Approximations)

Posterior is Log-Concave

Posterior is Approximated

Bayes Estimates and Credible Intervals are Obtained Using MCMC
Posterior Density Function, Approximate Posterior Density Function and the Generated MCMC Samples
OPTIMAL CENSORING PLANS:

What is an Optimal Censoring Plan?

For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters.

What is the meaning of Information?

Trace or Determinant of the Fisher Information matrix. Not Scale Invariant.

The variance of the p-th percentile estimator Criterion depends on p. – p.10/17
What is an Optimal Censoring Plan?

- For fixed m and n, the choice of $R_1; \ldots; R_m$ which provides the maximum Information regarding the unknown parameters.

- What is the meaning of Information? Trace or Determinant of the Fisher Information matrix. Not scale invariant.

- The variance of the p-th percentile estimator. Criterion depends on p.
Optimal Censoring Plans:

- What is an Optimal Censoring Plan?
- For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters.

Information
- Trace or Determinant of the Fisher Information matrix.
- Not scale invariant.
- The variance of the p-th percentile estimator.
- Criterion depends on p. – p.10/17
What is an Optimal Censoring Plan?

For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters.

What is the meaning of Information?
What is an Optimal Censoring Plan?

For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters.

What is the meaning of Information?

Trace or Determinant of the Fisher Information matrix
Optimal Censoring Plans:

- What is an Optimal Censoring Plan?
- For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters
- What is the meaning of Information?
- Trace or Determinant of the Fisher Information matrix
- Not Scale Invariant
OPTIMAL CENSORING PLANS:

- What is an Optimal Censoring Plan?
- For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum Information regarding the unknown parameters
- What is the meaning of Information?
- Trace or Determinant of the Fisher Information matrix
- Not Scale Invariant
- The variance of the p-th percentile estimator
What is an Optimal Censoring Plan?

For fixed m and n, the choice of R_1, \ldots, R_m which provides the maximum *Information* regarding the unknown parameters.

What is the meaning of *Information*?

Trace or Determinant of the Fisher Information matrix.

Not Scale Invariant.

The variance of the p-th percentile estimator.

Criterion depends on p.
Frequentist Approach:

Criterion 1:

\[C_1(P) = f(V(P) \ln T_p) \]

Criterion 2:

\[C_2(P) = R_1^0 V(C(P)) \ln T_p dW(p) \]

\[= R_1^0 V(C(P)) \ln T_p dW(p) \]
Frequentist Approach:

\[
C_1(P) = f_V(P)(\ln T_p)g_f_V(C)(\ln T_p)g_p
\]

\[
C_2(P) = R_1^0 V(P)(\ln T_p)dW(p)R_1^0 V(C)(\ln T_p)dW(p)
\]
Frequentist Approach:

Criterion 1:

\[C_1(P) = \frac{\{V(P)(\ln T_p)\}}{\{V(C)(\ln T_p)\}} \]
Frequentist Approach:

Criterion 1:

\[C_1(P) = \frac{\left\{ V(P)(\ln T_p) \right\} }{\left\{ V(C)(\ln T_p) \right\}} , \]

Criterion 2:

\[C_2(P) = \frac{\int_0^1 V(P)(\ln T_p) dW(p) }{\int_0^1 V(C)(\ln T_p) dW(p) } , \]
INFORMATION MEASURES

Bayesian Approach

Criterion 1:

\[C_1(P) = \mathbb{E}_{\text{data}} \mathbb{f}_{\text{posterior}}(P) \ln \mathbb{T}_{\text{p}} \]

Criterion 2:

\[C_2(P) = \mathbb{E}_{\text{data}} \mathbb{R}_{10} \mathbb{V}_{\text{posterior}}(P) \ln \mathbb{T}_{\text{p}} \]
INFORMATION MEASURES

- Bayesian Approach
Bayesian Approach

Criterion 1:

\[C_1(P) = \frac{E_{\text{data}} \{ V_{\text{posterior}}(P)(\ln T_p) \}}{E_{\text{data}} \{ V_{\text{posterior}}(C)(\ln T_p) \}}, \]
INFORMATION MEASURES

- Bayesian Approach
- Criterion 1:

\[
C_1(P) = \frac{E_{\text{data}} \{ V_{\text{posterior}}(P) (\ln T_p) \}}{E_{\text{data}} \{ V_{\text{posterior}}(C) (\ln T_p) \}},
\]

- Criterion 2:

\[
C_2(P) = \frac{E_{\text{data}} \int_0^1 V_{\text{posterior}}(P) (\ln T_p) dW(p)}{E_{\text{data}} \int_0^1 V_{\text{posterior}}(C) (\ln T_p) dW(p)},
\]
OPTIMAL CENSORING PLANS:

Choose P so that C_1 or C_2 is maximum.
Optimal Censoring Plans:

- Choose P so that C_1 or C_2 is maximum
SOME OPEN PROBLEMS:

- Find a discrete optimization algorithm
- Extend it to other lifetime distributions
- Extend it to other censoring plans
Some Open Problems:

- Find a discrete optimization algorithm
SOME OPEN PROBLEMS:

- Find a discrete optimization algorithm
- Extend it to other lifetime distributions
SOME OPEN PROBLEMS:

- Find a discrete optimization algorithm
- Extend it to other lifetime distributions
- Extend it to other censoring plans

REFERENCES:

Thank You