
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [SENACYT Consortium - trial account]
On: 24 November 2009
Access details: Access Details: [subscription number 910290633]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Statistical Computation and Simulation
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713650378

Consistent method for estimating sinusoidal frequencies: a non-iterative
approach
Amit Mitra a; Debasis Kundu a

a Department of Mathematics, Indian Institute of Technology, Kanpur

To cite this Article Mitra, Amit and Kundu, Debasis'Consistent method for estimating sinusoidal frequencies: a non-
iterative approach', Journal of Statistical Computation and Simulation, 58: 2, 171 — 194
To link to this Article: DOI: 10.1080/00949659708811829
URL: http://dx.doi.org/10.1080/00949659708811829

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713650378
http://dx.doi.org/10.1080/00949659708811829
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J. Statist. Comput. Simul., 1997, Vol. 58, pp. 171-194 O 1997 OPA (Overseas Publishers Association) 
Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands under 
Photocopying permitted by license only license by Gordon and Breach Science Publishers 

Printed in India 

CONSISTENT METHOD FOR ESTIMATING 
SINUSOIDAL FREQUENCIES: 

A NON-ITERATIVE APPROACH 

AMIT MITRA and DEBASIS KUNDU* 

Department of Mathematics, Indian Institute of Technology, Kanpur-208016 

(Received I May 1995; Znjinal form 29 January 1997) 

In this paper, we consider the problem of estimating the sinusoidal frequencies by a non- 
iterative technique. We establish the strong consistency of the proposed estimate. We 
further propose a modification of the non-iterative technique. It is observed in the 
simulation study that the proposed method works very well for reasonably small sample 
sizes. The mean squared errors of the proposed method reaches the Cramer-Rao lower 
bound in many situations. We also propose three different confidence intervals and 
compare their performances by simulation. 

Keywords: Sinusoidal frequency; bootstrap confidence intervals; TLS-ESPRIT 

AMS Subject ClassiJication: 62502, 62E25 

1. INTRODUCTION 

We consider the following time series model; 

Here y,'s are observed at equidistant time points, for t = 1 , .  . . , N. 
(wi, . . . , W M ) ,  ( A I ,  . . . ,AM)  and (B1 , .  . . , BM) are the unknown para- 
meters, wx's are distinct real numbers lying in (0, T). M, the number of 
signals is assumed to be known apriori. { E , )  is a sequence of real 

*Corresponding author. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
E
N
A
C
Y
T
 
C
o
n
s
o
r
t
i
u
m
 
-
 
t
r
i
a
l
 
a
c
c
o
u
n
t
]
 
A
t
:
 
0
6
:
0
6
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
0
9



172 A. MITRA AND D. KUNDU 

valued i.i.d. random variables with 

E(E,)  = 0 and V(E,) = a 2  (1 4 
The problem is to estimate the unknown parameters wk, Ak and Bk 

for k = 1 , .  . . , M and a2.  The estimation of the parameters of the 
model (1.1) is a fundamental problem in signal processing (Kay and 
Marple; 1981) and time series analysis. The asymptotic theory of the 
least squares estimates (LSE) for this model has a long history. Whittle 
(1953) obtained some of the earliest results. More recent results are by 
Hasan (1982), Hannan (1973) and Walker (1971). They formalized and 
extended Whittle's results. Walker (1971) introduced the concept of 
an approximate LSE for the model (1.1). He first estimated the 
frequencies by finding the maximum of the periodogram and then 
computing the estimates of the amplitudes. The approximate LSE 
were shown to be strongly consistent and the asymptotic normality of 
the estimates were also obtained. It may be noted that although 
asymptotically the approximate LSE estimates are equivalent to the 
exact LSE, for finite sample sizes the performance of the exact LSE are 
better than the approximate ones in terms of lower mean squared 
errors (Kundu and Mitra; 1996). Kundu (1993a) was the first one to 
give a direct proof of consistency of the exact LSE for the model (1.1) 
under the assumption of normality of the error random variables, the 
consistency and asymptotic normality for general error random 
variables can be found in (Kundu and Mitra, 1996). 

It may be noted that although the least squares estimates are the 
most desired estimates, the problem of finding the estimates is well 
known to be numerically difficult. Rice and Rosenblatt (1988) 
discussed the computational complexities involved to obtain the 
LSE. The model (1.1) being a nonlinear one, to obtain the LSE some 
sort of iterative search procedure must be employed. Typically, search 
methods start from an initial guess value and then proceed by a 
sequence of Gauss-Newton steps. For this nonlinear least squares 
problem it turns out that there are many local minima with a 
separation in frequency of about N-I which makes the stationary 
point to which the iterative scheme converges extremely sensitive to 
the starting values. This problem gets worse as the sample size 
increases. It is also observed (Rice and Rosenblatt; 1988) that unless 
the frequency is resolved at the first step with order O(N-I), the failure 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
E
N
A
C
Y
T
 
C
o
n
s
o
r
t
i
u
m
 
-
 
t
r
i
a
l
 
a
c
c
o
u
n
t
]
 
A
t
:
 
0
6
:
0
6
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
0
9



ESTIMATING SINUSOIDAL FREQUENCIES 173 

to converge to the global minimum may give a very poor estimate of 
the amplitude. The problem becomes especially severe if one is 
estimating the parameters of several harmonic components simulta- 
neously, since in that situation the iteration is taking place in a higher 
dimensional space with many local minima. The method of Walker 
(1971) for estimating the initial values by finding the maximum of the 
periodogram turns out to have drawbacks. A bias can arise for 
moderate sample sizes that is appreciable compared to the standard 
deviation suggested by asymptotic theory (Rice and Rosenblatt; 1988). 
The initial values provided to the search algorithms are thus critical. A 
direct search of the periodogram at a fine grid of points substantially 
finer than that given by the frequencies 27ri/N used by fast Fourier 
transform is appealing, but unfortunately has its drawbacks as well. 
Thus the problem to estimate efficiently the initial values to be 
provided to the search methods remains. 

Recently the total least squares approach becomes quite popular to 
estimate the sinusoidal frequencies, references may be made to the 
works of Hua and Sarkar (1990) and if the errors are correlated then 
the generalized least squares approach can be used, see for example 
Mackisack and Poskitt (1989) and Dragosevic and Stankovic (1989). 
Another interesting problem is to estimate the number of sinusoidal 
components, i.e., ' M ' ,  of (1.1). It is a very important but difficult 
problem, see for example Ensor and Newton (1988), Fuchs (1988), 
Reddy and Biradar (1993), Hannan (1993), Kavalieris and Hannan 
(1994) and Kundu (1996). 

In this article, we propose a new non-iterative method for estimating 
the frequencies of the model (1.1) which can be used as an efficient 
initial values. First we transform the model (1.1) to an undamped 
superimposed exponential signals model and then use extended order 
modeling and singular value decomposition technique to estimate the 
frequencies. We call the new estimate as Noise Space Decomposition 
(NSD) estimates. The linear parameters can then be obtained using 
separable regression technique of Richards (1961). The proposed 
method is shown to give strongly consistent estimates. Since the 
proposed method is strongly consistent, a further one step modified 
estimate is also proposed which already have the same asymptotic 
properties as the exact LSE. Some confidence intervals of the 
frequencies are also proposed. 
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174 A. MITRA AND D. KUNDU 

The organization of the paper is as follows; in Section 2 we describe 
the estimation procedure and the consistency results are stated. 
Modified estimators are proposed in Section 3, different confidence 
intervals are discussed in Section 4. Some Monte Carlo simulations 
study is presented in Section 5 and finally we draw conclusions in 
Section 6. We provide the proof of consistency in the Appendix. 

2. ESTIMATION PROCEDURE 

Observe that the model (1.1) can be written as a linear combination of 
2M complex exponential terms in the following way; 

where C, = (1 12) (A, - i B,) and D, = (1 12) (A, + i B,) and i = 6 l .  
It is well known (Prony; 1795, see Kundu; 1993b also) that in the 

noiseless case there exists an unique vector C = (cl, . . . , C ~ M + ~ )  such 
that; 

forall t = O  ,..., N - 2 M - l , l l C l l = l  and c1>0 .  

The unknown constants ( q ,  . . . , c ~ ~ + ~ )  are such that the roots of 
the polynomial equation 

are of the form Xk = exp (f iwK) Thus if we can estimate C, we can 
estimate the unknown frequencies wk's using (2.3). Now observe that 
(Kahn et. al., 1993), the condition that the roots be purely imaginary 
means (2.3) must factorize in the form 

This implies that ck = C ~ M + ~ - K ;  k = 1, . . . , 2M + 1 and the roots are 
XK = exp(& iwK), where 2 - ?-& = 2cos(wK). 
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ESTIMATING SINUSOIDAL FREQUENCIES 

Consider the following N - L x L + 1 data matrix 

for any positive integer L such that 2M 5 L < N - 2M. 
Let's denote by T the L + 1 x L + 1 matrix given by 

where '*' denotes the conjugate transpose of a matrix or a vector. 
Observe that in the noiseless case the matrix T has rank 2M. Let the 
singular value decomposition of T (see Rao; pp. 42, 1973) be as 
follows; 

where 8: > 6: > . . . > are the ordered eigenvalues of T and uj 
is the normalized eigenvector corresponding to b?. The subspace 
generated by { u 1 , .  . . , u 2 M )  is denoted by S and that of { U ~ M + ~ ,  . . . , 
uL+1) is denoted by N. We call S the signal subspace and N the noise 
subspace. Let B1 be any basis of the noise subspace N. We write 

Observe that because of (2.2), in the noiseless situation there exists an 
unique basis of N which has the following form D

o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
E
N
A
C
Y
T
 
C
o
n
s
o
r
t
i
u
m
 
-
 
t
r
i
a
l
 
a
c
c
o
u
n
t
]
 
A
t
:
 
0
6
:
0
6
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
0
9



176 A. MITRA AND D. KUNDU 

Now observe that B1 = [ u ~ ~ + ~ ,  . . . , uL+1] forms a basis of the 
estimated noise space. Our main aim is to obtain a basis of N which 
has the form similar to (2.9) and to estimate C from these. 

Let's partition the matrix B1 as follows; 

for k = 0,1, .  . . , L - 2M. Now consider the matrix 

Since the above is a random matrix, it is of rank L-2M. Therefore 
we can conclude that there exists an unique L+ 1-2M vector 
Xk+l # 0, such that 

Consider the 2M+ 1 vector EK+', where 

EK+1 = (2~+1,1,. . . , ~ K + I , ~ M + I )  = BIZXK+I (2.12) 

By properly normalizing we can make t K + 1 , ~  > 0 and 112 K+l 1 1  = 1 for 
k = 0, .  . . , L - 2M. Therefore we can conclude that there exist vectors 
Xi,.  . . , XL+1-2M S U C ~  that 

I 
&,I 0 .  0 

22,l . 0 
0 
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ESTIMATING SINUSOIDAL FREQUENCIES 177 

where Ek,l > 0 and 1lekl = 1 for k =  1, . . . ,  L +  1 - 2 M .  Observe 
that in the noiseless situation 

Let J be the L + 1 x L  + 1 exchange matrix given by 

Consider the matrix T given by 

Observe that the eigenvalues of T and T are same and if x is an 
eigenvector of T corresponding to the eigenvalue A, i.e., 

then Jx is an eigenvector for T corresponding to A. Let's denote by rn 
the subspace generated by { J U ~ M + ~ ~ .  . . J ~ L + I ) ,  we call h the noise 
space of T. 

It can be easily seen that in the noiseless situation there exists an 
unique basis of the noise space of T of the form 
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178 A. MITRA AND D. KUNDU 

In this case also our aim is to obtain the basis of the estimated noise 
space N, i.e., 

A 

B1 = [ J U ~ M + ~  : '. : J U L + ~ ]  (2.1 8) 

to the form similar to (2.17). Proceeding exactly as in the case of N, we 
reduce the basis to the following form 

A 
A* such that for each C$ = ($,,, . . . ,cg2,+,), k = 1 , .  . . , L  - 2 M +  1 ;  

E;,, > 0 and = 1 .  As in the case of N, in the noiseless situation 

It is further observed that G = J B 1 [ X l  : . . . : XL-2M+l], i.e., 
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ESTIMATING SINUSOIDAL FREQUENCIES 179 

Now observe that since (2.14) and (2.20) are true, it is quite natural 
thatanyoneoftheCK for k = 1, .  . . , L  - 2M+ 1 or 6~ fork = 1 , .  . . , 
L - 2M + 1 can be used to estimate the frequencies. In fact the use of 
6 A 

C z  = 4 (CK + C i ) ;  k = I , .  . . , L - 2M + 1 always ensure that the 
estimated coefficients of the polynomial prediction equation (2.3) satisfy 
the symmetry constraint and roots of 

are of the form exp (f iijK), for k = 1, .  . . , L - 2M + 1. We use all 
A 

C**; k =  1, ..., L -  2M+ 1 to estimate w. We take the average of all 
,K 
Cp 's  and use (2.3) to get the final estimate ŵ  of w. We call the 
resulting estimate 2, the Noise Space Decomposition (NSD) estimates. 

The following consistency result can be established. 

THEOREM 1 Under the assumptions of the model (1.1), the estimate 
2 of w obtained by the method described above is strongly consistent, i.e., 

For the proof of Theorem 1, see Appendix. 

3. MODIFIED NOISE SPACE DECOMPOSITION METHOD 

It is well known (Harvey; 1981, Ch. 4.5) that when a regular likelihood 
(differentiable up to third order) is maximized through the Newton- 
Raphson, scoring or a related algorithm, the estimates obtained after 
one single round of iteration already have the same asymptotic 
properties as the exact least squares estimates. This holds, if the 
starting values have been chosen f i  - consistently. Now, since the 
NSD method is strongly consistent we combine the NSD method with 
one single round of scoring algorithm. This way the asymptotic error 
variances should (in theory, at least) coincide with the asymptotic 
variance irrespective of the distributional form of the error term. We 
call the resulting estimates obtained after one round of iteration with 
NSD as starting values, the Modified Noise Space Decomposition 
(MNSD) estimates. 

One way of implementing this idea would be the following: 
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180 A. MITRA AND D. KUNDU 

Let us write the model (1.1) in the vector form 

where A(w) = [Al (w)A2(w) . . . AN(w)]= with A ~ ( w )  = [cos(wlk) sin(w1, 
k) . . . cos(wMk) ~in(wMk))~,  a = (A,& . . . AMBM), Y = (Yl . . . Y N ) ~  

T and E = (el . . . EN) . 
Now consider the concentrated residual sum of squares 

Y * [I  - PA (w)] Y = Y * [I  - ~ ( w )  [A* (w)A(w)]-I A* (w)] Y (3.2) 

To obtain the least squares estimates first (3.2) can be minimized with 
respect to w and then the estimate of a can be obtained using linear 
regression technique. For details see Kundu (1993b). We obtain the 
MNSD estimates after one step minimization of (3.2) using NSD 
estimates as starting values. 

4. CONFIDENCE INTERVALS 

In this section we propose different confidence intervals for the 
frequencies. We propose an asymptotic confidence interval and two 
bootstrap confidence intervals. 

4.1. Asymptotic Confidence Intervals 

In this subsection we discuss the confidence intervals for the 
frequencies based on their asymptotic distribution. It may be observed 
that (Kundu and Mitra; 1996) that the asymptotic distribution of the 
exact LSE of the frequencies is of the following form 

which eventually coincides with the distribution of the approximate 
LSE proposed by Walker (1971). 

Since the MNSD estimates proposed in Section 3 has the same 
asymptotic properties as the exact LSE, we take the MNSD estimates 
as ij, in (4.12). 
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ESTIMATING SINUSOIDAL FREQUENCIES 181 

4.2. Percentile Bootstrap Confidence Intervals 

In this subsection we construct the percentile bootstrap confidence 
intervals for wk's using the method suggested by Efron (1982). 

Suppose we have a sample of size N; yl,  . . . , y~ coming from (1.1).  
We propose the following algorithm to obtain the confidence intervals 

(1) Estimate (wl, . . . , wM) from yl,  . . . , y~ using MNSD method. 
(2) Estimate i i  = yi - jji, i = 1, . . . , N, where 

(Here ~k and ~k are obtained using linear regression, see Kundu 
(1994)) 

(3) Draw a random sample of size N from {&,. . . ,iN) with 
replacement, let it be { t ~ ,  , . . . , iBN). 

(4) Obtain bootstrap sample y?, . . . , yh; where 

(5) Estimate (wl,.  . . , wM) from yi,  . . . , yh using MNSD method. 
Denote it by w i ,  K = 1, .  . . , M. 

(6) Repeat the steps (3) to (5) NBOOT times. 
(7) Order these NBOOT estimates corresponding to each wk. 
(8) Estimate ~ p ~ ( a / 2 )  by NBOOT 4 2 t h  order statistics and 

cpB(cr/2) by NBOOT (I-a/2)th order statistics for each set of 
wi and claim that (ipB(a/2), ~ p ~ ( a / 2 ) )  to be the 100(1-a)% 
percentile bootstrap-t confidence intervals for wk. 

4.3. Bootstrap-t Confidence Intervals 

In this subsection we construct the bootstrap-t confidence intervals 
based on the method suggested by Hall (1988). 

We propose the following algorithm for computing the bootstrap-t 
confidence intervals, 
Step (1) to (4) same as Percentile Boot Strap method. 

(5) Estimate ( w ~ , .  . . , wM) from yi,  . . . , y; using MNSD method, 
denote it by Ljr: and also the estimate of a2 as 6;. 
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182 A. MITRA AND D. KUNDU 

6) Obtain for each wk, k = 1,.  . . , M  

(7) Repeat the steps (3) to (6) NBOOT times. 
(8) For each wk, order the NBOOT number of Tk,i'~. Estimate 

eTB(a/2) by ~ j k  + fi? (NBOOT a12 th order statistics from 
Tk,i'~) and uTB(a/2) by ijk + fi8 (NBOOT (I-a/2) th order 
statistics from T~,~'s) .  NOW claim that (iTB(a/2), 6TB(C?/2)) to be 
the 100 (1 -a)% bootstrap-t confidence interval for wk. 

5. MONTE CARL0 SIMULATIONS 

We have performed Monte Carlo simulation study to ascertain the 
behavior of NSD and MNSD estimates for moderate sample sizes and 
different ranges of the error variances 0'. All these simulations have 
been done on the HP-9000 computer at the Indian Institute of 
Technology Kanpur, using the IMSL random deviate generator. 

We consider the following models; 

The error random variable { E , )  is white and Gaussian with 
variances 02. The frequency w is taken to be 0 . 2 5 ~ ~  0 . 5 0 ~ ~  0 . 7 5 ~  for 
(5.1) and wl = 0.5, w = 2.5 for (5.2). In each case, 500 independent 
trials using different E ,  sequences are performed. The variance of the 
error random variables is varied from 0.01 to 1.5. In each case we 
computed (wl, . . . , w ~ )  by NSD, MNSD, TLS-ESPRIT (Roy and 
Kailath; 1989) and Quinn's (Quinn; 1994) methods. For each w, we 
computed the average estimates and the mean squared errors (MSE) 
over 500 replications and also the corresponding Cramer-Rao lower 
bound (CRLB). 

It is observed that the performance of the NSD estimates changes 
with the different values of L. We observed that the MSE starts 
decreasing as L increases and for N=25, the best performance (min 
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ESTIMATING SINUSOIDAL FREQUENCIES 183 

MSE) of the NSD occurs at L= 15 (r(3/5)N).  The performance of 
the MNSD estimates does not seem to be much affected with the 
variation of L. We report the best performance of NSD and MNSD 
along with their CRLB in Table I for the model (5.1) and that of 
model (5.2) in Table 111. 

TABLE I 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 
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184 A. MITRA AND D. KUNDU 

TABLE I (Continued) 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

MNSD 

TLS-ESP 

QUINN 

We also performed a simulation study to investigate the perfor- 
mance of the different confidence intervals discussed in Section 4 with 
respect to their average length and coverage probabilities. We consider 
the simulation model (5.1) with E ,  white and Gaussian having error 
variance a2. Results are obtained for w = O.257r, 0 . 5 0 ~  and 0 .75~ .  For 
each w, simulations were performed for a2= 0.01, 0.05 and 0.1. 
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TABLE I1 

Asymptotic 
(Cov. Prob.) 
Per- Boot 
(Cov. Prob.) 
Bootstrap-t 
(Cov. Prob.) 

Asymptotic 
(Cov. Prob.) 
Per-Boot 
(Cov. Prob.) 
Bootstrap-t 
(Cov. Prob.) 

Asymptotic 
(Cov. Prob.) 
Per-Boot 
(Cov. Prob.) 
Bootstrap-t 
(Cov. Prob.) 

TABLE I11 

CRLB 0.500000 2.500000 
3.41333E-06 1.92000E-06 

NSD 0.500032 2.499929 
3.3 1704E-06 5.46915E-06 

0.01 MNSD 0.499997 2.499955 
2.09698E-06 3.27784E-06 

TLS-ESP 0.500009 2.499931 
2.50940E-06 4.37303E-06 

QUINN 0.497793 2.497986 
1.04618E-05 1.30069E-05 

CRLB 0.500000 2.500000 
6.82667E-06 3.84000E-06 

NSD 0.500056 2.499883 
6.63565E-06 1.09256E-05 

0.02 MNSD 0.499992 2.499951 
4.19578E-06 6.55044E-06 

TLS-ESP 0.500019 2.499903 
5.02088E-06 8.73761E-06 

QUINN 0.497850 2.497994 
1.68289E-05 2.19167E-05 
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TABLE I11 (Continued) 

cZ wl = 0.5 wz = 2.5 

CRLB 0.500000 2.500000 

NSD 

0.03 MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

0.04 MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

0.05 MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

0.5 MNSD 

TLS-ESP 

QUINN 

CRLB 

NSD 

1 .O MNSD 

TLS-ESP 

QUINN 
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TABLE I11 (Continued) 

CRLB 0.500000 
5.12000E-04 

NSD 0.504321 
5.72005E-04 

1.5 MNSD 0.499018 
3.4391OE-04 

TLS-ESP 0.496528 
2.47949E-03 

QUINN 0.499606 
8.53128E-04 

Average length of the confidence intervals (with nominal level 0.90) 
and the corresponding coverage probabilities over 500 simulations are 
reported for all the methods in Table 11. The bootstrapping number 
NBOOT is taken as 100 for both the bootstrap methods. 

6. CONCLUSIONS 

In this article, we propose a new non-iterative method for estimating 
the frequencies of the model (1.1) when the number of frequencies is 
known apriori. If the number of harmonic components is unknown, 
then we can first estimate the number of frequencies by the method of 
Kundu (1992) and then use the proposed method to estimate the 
frequencies. First we transform the model (1.1) to an undamped 
superimposed exponential signals model, then use extended order 
modeling and decompose the noise space by singular value decom- 
position technique. It is further proved that the proposed non-iterative 
technique yields estimates that are strongly consistent. 

Simulation results show very satisfactory performance of NSD 
estimates even at high values of error variance and moderate sample 
sizes for both single sinusoid as well as multiple sinusoids. The 
proposed one step modified estimate MNSD, performs even much 
better than the NSD in the simulations study. The performance of 
MNSD almost attains the CRLB in the cases considered. 

The choice of L obviously affects the performance of the NSD 
estimates. Clearly L should be at least M+ 1, but the natural question 
is why it should be larger than that? Although no theoretical 
justifications have been given in the literature, but it is observed that 
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extended order modeling always helps to improve the performance of 
the estimators. Some heuristic justifications can be found in Tufts and 
Kumaresan (1982). It seems more theoretical work is needed in this 
direction. Here we have observed that as L increases the MSE starts 
decreasing for NSD. It reaches a minimum at L = 15 (E 3/5N), when 
the sample size is 25. The performance of the MNSD estimates does 
not seem to be affected much with variation in L. 

Among the three confidence intervals for the frequencies discussed 
in Section 4, the bootstrap-t confidence intervals gives the highest 
coverage probabilities although the average length of these intervals is 
marginally larger than the other two. It is also observed that the 
asymptotic confidence interval performs better than the percentile 
bootstrap intervals in terms of shorter average length and higher 
coverage probabilities when w = 0 . 5 0 ~ .  But the percentile bootstrap 
gives higher coverage probabilities and almost same length intervals 
when w = 0 . 2 5 ~  or 0 . 7 5 ~  as compared with the asymptotic confidence 
intervals. It is further observed that all the three confidence intervals 
are symmetric about the true parameter in the cases considered. Based 
on the results of the simulations, we recommend to use bootstrap-t 
method for finding confidence intervals. 
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APPENDIX 

For the proof of Theorem 1 ,  we need the following lemmas. 

L E M M A  1 Let P=((pi i ) )  and Q=((qii)) are two Hermitian m x m 
matrices with spectral decompositions 

where 6,'s and Xi's are eigen values of P and Q respectively, pi and q i are 
orthogonal normalized eigenvalues associated with 6, and Xi respectively 
for i = 1, . . . , m. Further assume that 

and that Ipik - qikl < a,  i, k = 1, .  . . , m then there is a constant M 
independent of a such that 

Proof It follows from Von-Neumann's (1937) inequality, see also 
Bai, Miao and Rao (1991). rn 
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Proof We have 

with the following renaming of the parameters of (2.2) as 

Ci for i =  1 ,  . . . ,  M 
Qi = 

Di-M for i = M + l ,  ..., 2M (A.5) 

Wi for i =  1 ,  . . . ,  M  
-wiMM for i = M + l ,  . . . ,  2M (*.6) 

we have the following 

1 1 N-L-I 

z t i k  = 3 C Bl+i~I+k 
I=O 

(E U= 1 &u ~ x P ( @ u ( ~  + k)) + E I + ~  
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2M 

exp(-iPU(l +i)) 

2M 

exp(iPu(l + k)) + E[+X 

Observe that R2 = 0(1/N) and Rg = O(doglogN/N) a.s. and 
R 4  = O(d-N/N) a s .  (see Petrove (1975, page 375) and by the 
law of iterative logarithm of M dependent sequence 

this proves lemma 2. 

LEMMA 3 Let g,(x) be a sequence of polynomials of degree k, with 
( roots xf) ,  . . . , x!) for each n. Let g(x) be a polynomial of degree Q, with 

roots X I , .  . . , xq, Q 5 k. I f  gn(x) -+ g(x) and n -+ oo then with proper 
rearrangement the roots of g,(r), xjn) converge to the roots of g(x), i.e.. 
to xj. 

Proof See Bai et al. (1986) 

Proof of Theorem 1 From Lemma 2 it follows that; 

Observe that the eigen values of S are of the form 

X 1 2 X 2  >_.. . . . . . . .>_ X 2 ~ > X 2 M + 1 = . . . = X L + 1 = ~ 2  (A.8) 

since is of rank 2M. Let the singular value decomposition 
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where si is the normalized eigenvector corresponding to the eigenvalue 
Xi and si's are orthogonal to each other. Therefore using Lemma 1  

(A.  10) 

( A . 9 )  implies that the vector space generated by { & M + l , .  . . , &+I) 
converges to the vector space generated by { & M + I ,  . . . , S L + I ) .  

Now the former one has a unique basis of the form 

( A .  1 1 )  

with i?k,l > o and j l i .kll=l where P = ( i . k , l , .  . . , 2 k , 2 M + 1 )  f o r k =  1 , .  . .  , 
L - 2M + 1 ,  whereas the later one has a unique basis of the form 

where cl > 0 and IICII = 1  with C = ( c l ,  . . . , c 2 M f l ) .  
This implies that 

ek% C for k = 1 ,  . . . ,  L - 2 M + 1  ( A . 1 3 )  
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Similar analysis for shows that 

C for k =  1 ,  . . .  , L - 2 M + l  (A.14) 

Thus we have 

Er C for k = l  , . . .  , L - 2 M f l  ( A .  1 5 )  

Therefore from Lemma 3 we can say that the roots obtained using ?? 
are consistent estimators of g's for all k = 1 ,  . . . , L  - 2M + 1. 
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