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Highlights

• A generalized Freund bivariate model for two-component load-sharing
systems is posed.

• New bivariate distributions can be generated by combining baseline
distributions.

• Maximum likelihood estimation of this model is implemented by a ge-
netic algorithm.

• A procedure to generate synthetic two-dimensional data from this model
is described.

• The proposed model is applied to three real engineering data sets evi-
dencing the load-sharing effect.
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Abstract

Motivated by reliability systems whose components fail one by one and share a common

load, this work provides a generalized Freund bivariate class of distributions for modeling

the two component lifetimes of a parallel redundant system. When a component fails, such

load-sharing systems can be repaired meanwhile the surviving one endures the total load,

modifying its two-dimensional lifetime model, which is of interest in maintenance and stress-

strength reliability modeling. The proposed model is based on the overload of the surviving

component after the �rst failure, causing both the proportional failure rate parameters and

the baseline distribution of the component to change. A genetic algorithm is employed to �nd

the maximum likelihood estimation, and a simulation study illustrates its implementation

and e�ciency. Applications in three real engineering data sets are carried out, revealing the

usefulness of the proposed class for modeling the load-sharing e�ect.

Keywords: load-sharing system, genetic algorithm, lifetime distribution, proportional

failure rate, reliability

1. Introduction

In reliability engineering, the stochastic behavior of the lifetimes of load-sharing parallel

systems has been widely studied, since the contribution of Daniels [9] in the textile industry.

In the real world, electrical generator systems, CPUs in a multiprocessor computer system,

cables in a suspension bridge, valves or pumps in a hydraulic system are all load-sharing

structures [3, 16, 18]. The components of these dynamic reliability systems fail one by one,

and the lifetimes of the surviving ones are in�uenced by the redistribution of the shared
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load (stress, weight, electrical power, tra�c, ...). Constructing reliability models which

incorporate stochastic dependence among the components is crucial in reliability engineering

[5, 29], inasmuch few options are available for modeling dependent systems [16], such as load-

sharing con�gurations. In particular, the system reliability is enhanced using redundancy

by connecting several components in parallel [3, 18, 29, 34, 36], and whose dependence may

be also modeled by incorporating frailty [2]. Although di�erent approaches and extensions

have been considered, Wang et al. [33] point out that most of them assume memoryless

load-sharing models and/or all the components follow the same lifetime distribution [20,

37]. Thus, it is essential to look for distributions capable of handling the reliability and

dependence of load-sharing systems e�ectively.

Physically motivated by the reliability of two-component parallel redundant systems,

Freund [12] introduced an absolutely continuous bivariate extension (FBE) of the exponential

model, which does not satisfy the strong version of bivariate memoryless property given by

(2.5) of Marshall and Olkin [22], although it does the relaxed version (2.8) in [22]. In such

systems, the exponential residual lifetime of one component depends on the working status

of the other one [28], and the �rst failure induces a higher failure rate of the overloaded

component. Considered one of the �rst prototype distributions for load-sharing structures

[32], the system under the FBE model is repaired whenever a component fails, which is of

interest in maintenance and stress-strength reliability modeling [6, 7].

A number of papers have been addressed to extend the FBE model in di�erent ways.

Some of them are based on functional representations of this distribution to overcome re-

strictions as the constant failure rates, e.g., by replacing exponential lifetimes with Weibull

[21, 28, 30, 35]. Recently, Asha et al. [1] have provided an extension, named the extended

Freund's bivariate (EFB) distribution, where the lifetime distributions of the components

have proportional failure rate (PFR) with a common baseline distribution. In all these ex-

tensions, after the �rst failure, the total load is imposed on the surviving component which

leads the PFR parameter to change, whereas the baseline distribution stays the same.

The main goal of this work is to propose a more �exible generalized Freund bivariate

(GFB) model for two-component load-sharing systems. Its construction is based on how the

lifetime distributions change after the �rst failure, given that the occurrence of this event

a�ects the PFR parameter of the surviving component and its baseline distribution. The

2

                  



remaining component has to endure extra load or stress which shortens its residual lifetime.

A priori, the lifetimes of both components have the same baseline distribution, but the

failure of one of them causes changes on the performance of the surviving component, and

consequently, on its underlying model.

From a practical viewpoint of modeling, choosing appropriate initial values always poses

a challenge in the estimating procedure. If these values are far from the true parameters, the

algorithm may take a large number of steps to converge or even may result in divergence. In

order to avoid this issue, a genetic algorithm (GA) [8, 17] is applied to �nd the maximum

likelihood estimations (MLE) of the unknown parameters of this GFB model, encouraging the

usefulness of this meta-heuristic search technique in modeling of the system reliability when

there are no explicit expressions for the MLEs. The GA proposed to approximate the MLEs

(GA-MLE) is an appropriate parameter estimation method for reliability of load-sharing

systems, without restrictions on the underlying distributions. In addition, the GA-MLE

avoids the weakness of other estimation algorithms pointed out by Park [25].

The rest of the paper is organized as follows. In Section 2, a class of generalized Freund

bivariate distribution is derived for modeling the reliability of a load-sharing system of two

components. Some distributional properties are also supplied for this lifetime model applica-

ble for the stochastically dynamic load. Section 3 is devoted to �nd the maximum likelihood

estimates of the unknown parameters via a GA. The estimation procedure is described for

its implementation by combining the GA and the MLE criterion. In Section 4, a simulation

study analyzes the performance of the GA-MLE procedure for the GFB model. Further, the

usefulness of the GFB class for modeling the load-sharing e�ect is illustrated with three real

engineering data. Finally, the conclusions are given in Section 5.

2. The generalized Freund bivariate model

This section is devoted to the construction of a generalized class of absolutely continuous

bivariate distributions based on the physical interpretation of the FBE model [12]. Further-

more, the joint reliability function and the marginal probability density functions (pdf) are

also provided.

3

                  



2.1. The model construction

Here, a more �exible option to model the stochastic behavior of the lifetimes T1 and

T2 of two components C1 and C2 in a load-sharing parallel system is provided, referred

to as the GFB family. The basic idea behind this model is to assume that both compo-

nents are simultaneously working, their corresponding lifetimes are independent and not

necessarily identically distributed with reliability functions from the same PFR class with a

common baseline reliability RB and parameters θB and θi, i.e., Ri(t) = P (Ti > t) is given by

Ri(t) = (RB(t, θB))θi , shortly denoted by Ti ∈ PFR(RB(·, θB), θi), i = 1, 2. When one of the

components fails, the surviving one is overloaded and the structural dependence can cause

the change of its baseline reliability and its PFR parameter. Figure 1 shows the impact of

load changing on lifetimes of a two-component parallel redundant system. Without loss of

generality, the baseline parameter θB is omitted to denote RB(·, θB) by RB.

- �
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Figure 1: Schematic of failures on a two-component parallel redundant system.

� If C1 fails before C2, i.e., T1 < T2, the lifetime of C2 changes from T2 to T ∗2 ∈
PFR(R∗B, θ

∗
2). The system fails as soon as C2 fails, observing (T1, T

∗
2 ).

� If C2 fails �rst, i.e., T2 < T1, then C1 changes its lifetime from T1 to T
∗
1 ∈ PFR(R∗B, θ

∗
1).

The system fails as soon as C1 fails, observing (T ∗1 , T2).

From now on, the two-dimensional random variable (Y1, Y2) denotes the lifetimes of the two

components, assuming that (Y1, Y2) = (T ∗1 , T2) if Y1 > Y2, and (Y1, Y2) = (T1, T
∗
2 ) if Y1 < Y2.

Therefore, let T1 and T2 be random variables independently distributed belonging to the

PFR class with baseline reliability RB and parameters θ1 and θ2, respectively. Moreover, let

T ∗1 and T ∗2 be random variables belonging to the PFR class with baseline reliability R∗B and

parameters θ∗1 and θ
∗
2, respectively. The joint pdf of (Y1, Y2) can be expressed as:

f(y1, y2) =





θ∗1θ2f
∗
B(y1)fB(y2) (R∗B(y1))

θ∗1−1 (RB(y2))
θ1+θ2−1 (R∗B(y2))

−θ∗1 , if y1 > y2 > 0

θ1θ
∗
2fB(y1)f

∗
B(y2) (RB(y1))

θ1+θ2−1 (R∗B(y2))
θ∗2−1 (R∗B(y1))

−θ∗2 , if y2 > y1 > 0

(2.1)
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being fB (f ∗B) the pdf associated withRB (R∗B). It is denoted by (Y1, Y2) ∼ GFB(RB, R
∗
B,
−→
θ =

(θ1, θ2, θ
∗
1, θ
∗
2), θB, θ

∗
B), with PFR parameters θ1, θ2, θ

∗
1, θ
∗
2 > 0, and baseline parameters θB and

θ∗B, respectively. The detailed derivation of (2.1) is provided in Appendix A.1.

Accordingly, when it is analyzed the two-component load-sharing parallel system relia-

bility with initial independent lifetimes while both components are working, the GFB class

may well help in modeling the stochastic dependence between Y1 and Y2, introduced by the

automatic transfer of load to the surviving component after the �rst failure, allowing its

underlying lifetime to change due to the e�ect of the overload on its residual lifetime.

Note that the bivariate distributions supplied by [1, 12, 21, 30] can be directly derived

from the GFB class as particular load-sharing system models. More details can be found

in the Supplementary Material S.1. In addition, other particular load-sharing models of

the GFB class are those in which also change the baseline distribution of the surviving

component, i.e., when RB ≡/ R∗B. In this setting, the GFB family can be used to generate

new bivariate lifetime models by combining di�erent baseline reliability functions RB and

R∗B. Some new speci�c cases of GFB models can be found in the Supplementary Material

S.2, which are also considered in Section 4. For simplicity and without loss of generality,

let us consider from now on that the scale parameters of the baseline distributions can be

equal to 1, since such GFB models are equivalent by a simple reparametrization of their

PFR parameters.

2.2. GFB's reliability functions

Now, the joint reliability function for (Y1, Y2) of a load-sharing system under the GFB

model is provided by integrating (2.1) over the times y1 and y2, which can be written as:

R(y1, y2) =





(RB(y1))
θ1+θ2 + θ2 (R∗B(y1))

θ∗1

∫ y1

y2

fB(t)
(RB(t))θ1+θ2−1

(R∗B(t))θ
∗
1

dt, if y1 > y2 > 0

(RB(y2))
θ1+θ2 + θ1 (R∗B(y2))

θ∗2

∫ y2

y1

fB(t)
(RB(t))θ1+θ2−1

(R∗B(t))θ
∗
2

dt, if y2 > y1 > 0.

(2.2)

The detailed derivation of (2.2) is provided in Appendix A.2.

In particular, if R∗B ≡ RB then the reliability function of the EFB model [1] can be
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derived from (2.2) as follows:

R(y1, y2) =





(RB(y1))
θ1+θ2 +

θ2(RB(y1))
θ∗1

(
(RB(y2))

θ1+θ2−θ∗1−(RB(y1))
θ1+θ2−θ∗1

)

θ1+θ2−θ∗1
, if y1 > y2 > 0

(RB(y2))
θ1+θ2 +

θ1(RB(y2))
θ∗2

(
(RB(y1))

θ1+θ2−θ∗2−(RB(y2))
θ1+θ2−θ∗2

)

θ1+θ2−θ∗2
, if y2 > y1 > 0

when θ1 + θ2 6= θ∗i , i = 1, 2. Otherwise, it can be also rewritten by taking into account, for

i = 1, 2, that

∫ b

a

fB(t) (RB(t))θ1+θ2−θ
∗
i−1 dt = logRB(a)− logRB(b), if θ1 + θ2 = θ∗i .

Some reliability properties for the GFB model, which play a important role in policies

for preventive maintenance, can be derived from (2.1) and (2.2). For instance, the time to

the earliest failure, Y1:2 = min(Y1, Y2), is determined by

P (Y1:2 > y) = (RB(y))θ1+θ2 , (2.3)

and the probability that C1 is the surviving component can be expressed as

P (Y1 > Y2) =
θ2

θ1 + θ2
. (2.4)

More details can be found in Appendix A.3.

2.3. GFB's marginal distributions

Note that by letting y1 = 0 (y2 = 0) in (2.2), the marginal reliability function of Y1 (Y2)

can be easily obtained for the GFB(RB, R
∗
B, θ1, θ2, θ

∗
1, θ
∗
2, θB, θ

∗
B). Furthermore, by integrat-

ing (2.1) with respect to y2 or y1, the marginal pdfs of Y1 and Y2 is given by:

f1(y1) = θ∗1θ2 (R∗B(y1))
θ∗1−1 f ∗B(y1)

∫ y1

0

(RB(t))θ1+θ2−1 fB(t)

(R∗B(t))θ
∗
1

dt+ θ1 (RB(y1))
θ1+θ2−1 fB(y1)

(2.5)

and

f2(y2) = θ1θ
∗
2 (R∗B(y2))

θ∗2−1 f ∗B(y2)

∫ y2

0

(RB(t))θ1+θ2−1 fB(t)

(R∗B(t))θ
∗
2

dt+ θ2 (RB(y2))
θ1+θ2−1 fB(y2).
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As a particular case, the marginal pdfs of the EFB model [1] can be obtained from (2.5)

when R∗B ≡ RB:

f1(y1) =





fB(y1)(RB(y1))
θ∗1−1

θ1+θ2−θ∗1

(
θ∗1θ2 − (RB(y1))

θ1+θ2+θ∗1 (θ1 + θ2)(θ
∗
1 − θ1)

)
, if θ1 + θ2 6= θ∗1

fB(y1) (RB(y1))
θ∗1−1 (θ1 − θ∗1θ2 logRB(y1)) , if θ1 + θ2 = θ∗1.

Example 2.1. The GFB model with baseline Rayleigh switching to exponential after the

�rst failure, has joint pdf given by

f(y1, y2) =





2θ∗1θ2y2e
−(θ1+θ2)y22e−θ

∗
1(y1−y2), if y1 > y2 > 0

2θ1θ
∗
2y1e

−(θ1+θ2)y21e−θ
∗
1(y2−y1), if y2 > y1 > 0

and its marginal pdf can be written as

f1(y1) = 2θ1y1e
−(θ1+θ2)y21 +

θ∗1θ2
θ1 + θ2

(e−θ
∗
1y1 − e−(θ1+θ2)y21) +

θ∗21 θ2
θ1 + θ2

√
π

(θ1 + θ2)
e−θ

∗
1y1

+
θ∗21

4(θ1 + θ2)

(
Φ

(
√

2(θ1 + θ2)y1 −
θ∗1√

2(θ1 + θ2)

)
− Φ(

−θ∗1√
2(θ1 + θ2)

)

)

where Φ is the cumulative distribution function of the standard normal model.

3. Maximum likelihood estimation of the GFB model

In many studies related to load-sharing system reliability, baseline parameter values are

supposed to be known which is a restrictive assumption in practice, since such parameters

are usually unknown and have to be computed by using estimation techniques. In this

section, the MLEs are obtained for the unknown parameters of the bivariate load-sharing

model proposed by applying a GA in the optimization process.

Without assuming any underlying distributions, the MLEs of the parameters of the

GFB(RB, R
∗
B,
−→
θ , θB, θ

∗
B) model are derived under each of the three following conditions

on θB and θ∗B parameters of the baseline reliability functions RB and R∗B, respectively: (i)

both are known, (ii) one of them is unknown, and (iii) both are unknown.

For notation convenience, we suppose n independent and identically distributed (iid)

load-sharing parallel systems, each consisting of two components put on test simultaneously.

From (Y1, Y2) ∼ GFB(RB, R
∗
B,
−→
θ , θB, θ

∗
B), their failure times {(y1i, y2i), i = 1, ..., n} are
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recorded. It is denoted as I1 = {i : y1i > y2i}, I2 = {i : y1i < y2i}, I = I1 ∪ I2, n1 = #I1

and n2 = #I2, with n1 + n2 = n since the probability of ties is zero. From the observed

sample, the log-likelihood function in terms of the paremeters
−→
θ = (θ1, θ2, θ

∗
1, θ
∗
2), θB and

θ∗B, l(
−→
θ , θB, θ

∗
B) = logL(

−→
θ , θB, θ

∗
B), can be written as

l(
−→
θ , θB, θ

∗
B) = n1 log θ∗1 + θ∗1

∑
i∈I1 log

R∗
B(y1i,θ

∗
B)

R∗
B(y2i,θ∗B)

+ n2 log θ∗2 + θ∗2
∑

i∈I2 log
R∗
B(y2i,θ

∗
B)

R∗
B(y1i,θ∗B)

+n2 log θ1 + n1 log θ2 + (θ1 + θ2)
∑

i∈I logRB(min(y1i, y2i), θB)

+
∑

i∈I log
f∗B(max(y1i,y2i),θ

∗
B)

R∗
B(max(y1i,y2i),θ∗B)

+
∑

i∈I log fB(min(y1i,y2i),θB)
RB(min(y1i,y2i),θB)

. (3.6)

Note that it is assumed that n1 > 0 and n2 > 0, since the MLE of θ∗1 does not exist if n1 = 0.

Analogously, the MLE of the θ∗2 does not exist if n2 = 0.

By di�erentiating (3.6) with respect to the PFR parameters, the following relationships

among all the parameters are obtained:

θ1(θB, θ
∗
B) =

−n2∑
i∈I logRB(min(y1i, y2i), θB)

, θ2(θB, θ
∗
B) =

−n1∑
i∈I logRB(min(y1i, y2i), θB)

θ∗1(θB, θ
∗
B) =

n1∑
i∈I1 log

R∗
B(y2i,θ∗B)

R∗
B(y1i,θ∗B)

, θ∗2(θB, θ
∗
B) =

n2∑
i∈I2 log

R∗
B(y1i,θ∗B)

R∗
B(y2i,θ∗B)

. (3.7)

It is noteworthy that the two �rst equations only depend on the initial PFR parameter θB,

whereas the two rest ones only depend on the altered baseline parameter θ∗B.

In general, the �tness function to estimate the parameters based on the MLE criterion

is the log-likelihood function given by (3.6). However, there are no closed form solutions

for the parameters, and the six-dimensional nonlinear optimization problem might be also

cumbersome in practice. In this setting, the four PFR parameters are determined by (3.7)

in terms of the baseline parameters, and the pro�le log-likelihood function is obtained by

substituting (3.7) into (3.6), which reduces the dimensionality to the baseline parameters.

Hence, the MLEs of the baseline parameters can be obtained by maximizing the pro�le

log-likelihood function, and then the MLEs of the remaining parameters can be calculated

thereafter. Thereby, such a pro�le function can be considered the �tness function of the

optimization problem.

Unlike the conventional numerical procedures such as the Newton-type methods, GA is a
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nonlinear optimization approach that may well be considered an appropriate global stochastic

search process in practice [11, 17]. In particular, Li et al. [19] suggest its application especially

for direct constrained optimization of the pro�le log-likelihood. For a detailed overview of

GA, see [8, among others], and more recent advances and applications of GA can be found

in [15, 17, and the references therein].

In the formulation of the GA estimation of the N unkonwn parameters θ = (θ1, ..., θN)

subject to the feasibility into the parametric space Θ, the proposed approach is based on

the MLE criterion wherein the objective function Z(θ) in the genetic setup of this nonlinear

optimization problem is the pro�le log-likelihood function p(θ). Thereby, the optimal so-

lution is searched by applying iteratively the three genetic operators of selection, crossover

and mutation, over the successive stages: evaluation, selection and reproduction, being the

result a N -tuple of the real-valued decision variables θ ∈ Θ.

Although MLEs can be approximated using quasi-Newton methods for solving con-

strained nonlinear optimization problem, such numerical procedures require proper initial

values of θ0 to converge at the optimal solution. However, GA formulation setup does only

need a parametric range of the parameter vector θ ∈ Θ, to generate the initial population of

possible solutions. Speci�cally, let θ ∈ Θ be the vector of unknown parameters of the GFB

model, the pseudo-code of the GA-MLE introduced as a parameter estimation approach for

reliability of load-sharing parallel systems is summarized in Figure 2.

Initial step:
t← 0

Initialize the population Pt of random individuals θ = (θ1, ..., θN ) ∈ Θ ⊂ RN , N number of unknown parameters
Evaluate the fitness function on the population Pt (i.e. compute the profile log-likelihood for θ ∈ Pt)

Iterative step:
While stop condition is not met (i.e. maximum profile log-likelihood is not achieved) do

t← t+ 1

Select individuals from Pt−1 for Pt
Crossover individuals and save the siblings in Pt
Mutate individuals in Pt
Evaluate the fitness function on the population Pt

End while

Output:
Select the best fitness (i.e. θt = (θ1t, ..., θNt) ∈ Pt with maximum profile log-likelihood)

Figure 2: Pseudocode GA-MLE
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3.1. Known baseline parameters

In this case, known baseline parameters, θB and θ∗B, are assumed, and therefore the

baseline distributions are completely determined. Accordingly, by maximizing the log-

likelihood function with respect to the unknown PFR parameters θ = (θ1, θ2, θ
∗
1, θ
∗
2) the

MLEs (θ̂1, θ̂2, θ̂∗1, θ̂
∗
2) can be explicitly calculated by

θ̂1 =
−n2∑

i∈I logRB(min(y1i, y2i))
, θ̂2 =

−n1∑
i∈I logRB(min(y1i, y2i))

θ̂∗1 =
n1∑

i∈I1 log
R∗
B(y2i)

R∗
B(y1i)

, θ̂∗2 =
n2∑

i∈I2 log
R∗
B(y1i)

R∗
B(y2i)

. (3.8)

3.2. One unknown baseline parameter

To deal with the aforesaid second case, θB is supposed to be known whereas θ∗B unknown.

In this case, the two �rst PFR estimates, θ̂1 and θ̂2, are fully determined by (3.8). However,

θ∗1 and θ∗2 depend on θ∗B, and thence it should be considered the partial derivative of (3.6)

with respect to such a parameter θ∗B. Anyway, there are no explicit form solutions to θ∗1, θ
∗
2

and θ∗B in general. Therefore, by substituting θ∗1(θ
∗
B) and θ∗2(θ

∗
B) from (3.7) into (3.6), the

resulting pro�le log-likelihood function for θ∗B is given by

p(θ∗B) = n1 log θ∗1(θ
∗
B) + n2 log θ∗2(θ

∗
B) + n2 log θ̂1 + n1 log θ̂2 − 2n

+
∑

i∈I log
f∗B(max(y1i,y2i),θ

∗
B)

R∗
B(max(y1i,y2i),θ∗B)

+
∑

i∈I log fB(min(y1i,y2i))
RB(min(y1i,y2i))

. (3.9)

In order to maximize the pro�le log-likelihood function p(θ∗B) with respect to θ∗B, the

estimation of θ∗B, θ̂
∗
B, can be obtained by applying a GA, and then the MLEs of θ∗1 and θ∗2

are calculated by θ∗1(θ̂
∗
B) and θ∗2(θ̂

∗
B), respectively.

Analogously, when θ∗B is known and θB is unknown, the estimations can be obtained by

using the pro�le log-likelihood function for θB which can be derived similarly to (3.9).

3.3. Unknown baseline parameters

Let us �nally assume that θB and θ∗B are unknown. In general, there are no closed form

expressions to obtain estimates for the baseline parameters. However, the MLEs can be

approximated by the pro�le log-likelihood function for unknown θB and θ∗B, which is derived
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by substituting (3.7) into (3.6), and it can be expressed as

p(θB, θ
∗
B) = n1 log θ∗1(θ

∗
B) + n2 log θ∗2(θ

∗
B) + n2 log θ1(θB) + n1 log θ2(θB)− 2n

+
∑

i∈I log
f∗B(max(y1i,y2i),θ

∗
B)

R∗
B(max(y1i,y2i),θ∗B)

+
∑

i∈I log fB(min(y1i,y2i),θB)
RB(min(y1i,y2i),θB)

. (3.10)

Similarly to the above subsection, this pro�le function can be maximized with respect

to both baseline parameters by using GA-MLE in order to obtain the MLEs of the baseline

and PFR parameters.

3.4. Statistical tests

The existence of a load-sharing e�ect in a two-component parallel redundant system may

be also analyzed by testing whether the baseline lifetimes are a�ected in a GFB model. For

such a purpose, the deviance test statistic dn based on the likelihood ratio test can be used,

which approximately follows a chi-square distribution with m degree of freedom, where m

is the di�erence in the parameter number between the two GFB models tested [29]. The

statistic dn is also suitable from the GA-MLE solution θ̂ based on two-stage estimation

procedure of the pro�le log-likelihood, because θ̂ has asymptotic properties similar to that

of the MLE [23].

Therefore, assuming the same distribution family for both baselines, the deviance test

statistic dn could be applied to test whether the baseline distribution is not a�ected by the

�rst failure by comparing its baseline parameters, i.e., H0 : θB = θ∗B v.s. H1 : θB 6= θ∗B, which

can be derived from the knowledge of the baseline parameters discussed in the previous

subsections. Analogously, the signi�cance of a baseline distribution for the GFB model with

respect to other particular one (e.g., exponential versus Weibull) can be also testing by dn.

Nevertheless, it is noteworthy that the components of the GFB model might di�er in

their PFR parameters even though they come from the same baseline in the same stage.

In that case, it is necessary to consider additional assumptions on the PFR parameters in

order to test whether they are identical. For instance, the hypothesis that the components

are identically distributed before the �rst failure, i.e., H0 : θ1 = θ2 v.s. H1 : θ1 6= θ2, can be

also analyzed by applying the deviance test statistic. To do that, under the restriction of
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the null hypothesis, the log-likelihood function given by (3.6) can be rewritten as:

l(
−→
θ , θB, θ

∗
B) = n1 log θ∗1 + θ∗1

∑
i∈I1 log

R∗
B(y1i,θ

∗
B)

R∗
B(y2i,θ∗B)

+ n2 log θ∗2 + θ∗2
∑

i∈I2 log
R∗
B(y2i,θ

∗
B)

R∗
B(y1i,θ∗B)

+n log θ1 + 2θ1
∑

i∈I logRB(min(y1i, y2i), θB)

+
∑

i∈I log
f∗B(max(y1i,y2i),θ

∗
B)

R∗
B(max(y1i,y2i),θ∗B)

+
∑

i∈I log fB(min(y1i,y2i),θB)
RB(min(y1i,y2i),θB)

. (3.11)

where
−→
θ = (θ1, θ

∗
1, θ
∗
2) are the PFR parameters, since θ1 = θ2. By di�erentiating in (3.11)

with respect to
−→
θ , we have the following relationships among all the parameters:

θ1(θB) =
−n/2∑

i∈I logRB(min(y1i, y2i), θB)
,

θ∗1(θ
∗
B) =

n1∑
i∈I1 log

R∗
B(y2i,θ∗B)

R∗
B(y1i,θ∗B)

, θ∗2(θ
∗
B) =

n2∑
i∈I2 log

R∗
B(y1i,θ∗B)

R∗
B(y2i,θ∗B)

. (3.12)

From now on, the maximum log-likelihood estimation under the null hypothesis can be

approximated through the GA-MLE procedure in the pro�le log-likelihood function, by

substituting (3.12) into (3.11). Thus, it is needed to derive such pro�le functions according

to the knowledge of the baseline parameter in a similar way to the former developments in

Subsections 3.1-3.3 without the restriction of the null hypothesis, i.e., θB and θ∗B are known,

one of them is unknown, or both are unknown.

For instance, when baseline parameters are unknown, the pro�le log-likelihood function

under the null hypothesis can be written as:

p(θB, θ
∗
B) = n1 log n1 + n2 log n2 + n log(n/2)− 2n− n log

(∑
i∈I logRB(min(y1i, y2i), θB)

)

−n1 log
(∑

i∈I1 log
R∗
B(y2i,θ

∗
B)

R∗
B(y1i,θ∗B)

)
− n2 log

(∑
i∈I2 log

R∗
B(y1i,θ

∗
B)

R∗
B(y2i,θ∗B)

)

+
∑

i∈I log
f∗B(max(y1i,y2i),θ

∗
B)

R∗
B(max(y1i,y2i),θ∗B)

+
∑

i∈I log fB(min(y1i,y2i),θB)
RB(min(y1i,y2i),θB)

. (3.13)

which can be maximized with respect to both baseline parameters by using GA-MLE in order

to obtain the MLEs of the baseline and PFR parameters under stated terms. Therefore, the

deviance test statistic can be computed by using GA-MLE procedure to maximize (3.10)

and (3.13, which will approximately follow a chi-square distribution with 1 degree of freedom

under the null hypothesis.
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Analogously, the testing hypotheses that the components of the GFB model are identi-

cally distributed after the �rst failure (H0 : θ∗1 = θ∗2) or they have identical distribution before

and after the �rst failure but changing the baseline distribution (H0 : (θ1 = θ2, θ
∗
1 = θ∗2)),

can be derived similarly to the above case.

4. Simulation and real data analysis

In this section, the practical application of the proposed GFB model has been conducted

by using di�erent baseline component distributions. Speci�cally, fourteen load-sharing sys-

tem models have been considered by combining exponential, Weibull, LFR and Gamma base-

line lifetimes in the GFB class. Such particular GFB models are those whose components

have the following baseline lifetimes (RB, R
∗
B): (Exp,Exp) given in (S.1), (W (θB),W (θB))

in (S.2), (LFR(θB), LFR(θB)) in (S.4), (Exp,W (θB)) in (S.5), (Exp, LFR(θB)) in (S.6),

(W (θB), Exp), (W (θB),W (θ∗B)) in (S.7), (W (θB), LFR(θ∗B)), (LFR(θB),W (θ∗B)), (LFR(θB),

LFR(θ∗B)), (G(θB),G(θB)), (G(θB), W (θ∗B)), (W (θB), G(θ∗B)), and (G(θB), G(θ∗B)), where

θB = (θB1 , θB2) and θ
∗
B = (θ∗B1

, θ∗B2
) for the Gamma distribution.

Two of them are considered in the simulation study for the performance evaluation of

the GA-MLE approach from lifetimes of the randomly generated samples, and the fourteen

settings of the GFB model have been �tted to three real data sets of the reliability engineering

�eld, revealing the load-sharing e�ect.

In the genetic formulation setup, the size of initial population is �xed at 50 individuals

after testing di�erent sizes with non-signi�cant improvements in the algorithm performance.

For each load-sharing model derived from the GFB class, the parameter initialization for

genetic search is done according to their ranges so as to generate the initial population of

possible solutions. Speci�cally, broad search domains are considered for the parameters,

intending to give more �exibility to the optimization process which constitutes itself a clear

advantage over the other estimation methods, as mentioned before. Regarding the selection

operator, the �tness proportional selection with the �tness linear scaling is used to avoid the

stalled evolutions and premature convergence which may be caused by assuming that the

probability of individual selection for reproduction is proportional to its �tness. The �tness

linear scaling prevents the dominance in the initial generation, helps the examination of the

whole search space and strengthen the selection pressure to converge at the exact optimum
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[14]. For e�ective genetic operation, blend crossover and uniform random mutation operators

are applied to the solution population at each iteration. In particular, crossover and mutation

probabilities for the GA-MLE are experimentally set to 0.8 and 0.01, respectively, because

these values performed the best than others. The blend crossover operator applied chooses a

value for each o�spring from two parent solutions using the uniform distribution inside the

range and tunable parameter 0.5 according to the recommendations made by [10]. The elitist

strategy is considered in which the top 5% individuals survive at each iteration. Furthermore,

the termination criterion adopted herein has been 50 generations without improving the best

�tness value or the maximum number of 2000 generations is reached.

For both simulated and real data, the GA-MLE is proposed as parameter estimation

method to �nd the MLEs of the unknown parameters of the GFB model following the

procedure shown in Figure 2. The MLEs of the PFR parameters are calculated for each

GFB model analyzed. The R package 'GA' [27] has been used to apply the GA procedure

along with the R package 'maxLik' [13], for estimating all the load-sharing system models.

4.1. Simulation study

In order to analyze the GA-MLE approach performance in the parameter estimations by

the previously listed fourteen load-sharing models, we assume two di�erent baseline Weibull

distributions to generate 1000 two-dimensional random samples (y1i, y2i), i = 1, ..., n, of sizes

n=25, 50, 100, 200 and 500, from the GFB model given in (S.7), for the following values

of parameters
−→
θ = (θ1 = 1, θ2 = 0.75, θ∗1 = 0.5, θ∗2 = 2), θB = 0.5, and θ∗B = 2. The

simulation procedure from a GFB(RB, R
∗
B,
−→
θ , θB, θ

∗
B) model is based on a modi�ed version

of the algorithm suggested by [1, 2], see Figure 3.

From the simulated samples, we evaluate the standard error (SE) and mean squared error

(MSE) of the estimations.

Table 1 summarizes the parameters estimated along with the empirical SE and MSE

for the GFB model with baseline lifetimes (RB, R
∗
B) ∼ (W (θB),W (θ∗B)) given by (S.7), and

Figure 4 depicts the curves of the empirical SE and MSE of the parameters for the �tted

GFB models. Analogously, Appendix A.4 presents the experimental results obtained for

baseline lifetimes (RB, R
∗
B) ∼ (W (θB), G(θ∗B1

, θ∗B2
)) given by (S.8).

From Table 1 and Figure 4a, we observe that as the sample size increases, standard errors
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Initial step:
Identify the baseline distributions (e.g. RB ∼W (θB), and R∗

B ∼W (θ∗B))
Identify the PFR parameters (θ1, θ2, θ∗1 , θ∗2)
Generate three independent random samples, ui, vi and wi, i = 1, 2, ..., n, of size n from the uniform distribution,
U(0, 1)

Structure of load-sharing system step:
For each i, ui defines the first failure:

If ui ≤ θ1
θ1 + θ2

, then y1i = y1:2,i = R−1
B

(
(1− vi)1/(θ1+θ2)

)
and y2i = (R∗

B)
−1

(
(1− wi)1/θ

∗
2R∗

B(y1i)
)

If ui > θ1
θ1+θ2

, then y2i = y1:2,i = R−1
B

(
(1− wi)1/(θ1+θ2)

)
and y1i = (R∗

B)
−1

(
(1− vi)1/θ

∗
1R∗

B(y2i)
)

End for

Output:
Two-dimensional sample (y1i, y2i), i = 1, 2, ..., n, of size n from the GFB(RB , R

∗
B ,
−→
θ = (θ1, θ2, θ

∗
1 , θ

∗
2), θB , θ

∗
B)

Figure 3: Simulation procedure of two-dimensional samples from the GFB class

θ1 θ2 θ∗1 θ∗2 θB θ∗B
n = 25 Estimates 1.06745848 0.79886184 0.52263955 2.15115350 0.52404280 2.14153692

St.Error 0.00031634 0.00026525 0.00022217 0.00068904 0.00008638 0.00034599
MSE 0.10452455 0.07267485 0.04982437 0.49715451 0.00803268 0.13961923

n = 50 Estimates 1.03147675 0.77885149 0.51521476 2.07172413 0.51431082 2.05935779
St.Error 0.00019920 0.00017330 0.00014128 0.00043671 0.00006010 0.00021731
MSE 0.04063364 0.03083454 0.02017269 0.19566713 0.00381342 0.05070059

n = 100 Estimates 1.00890580 0.76434516 0.50927975 2.03899785 0.50539974 2.02895728
St.Error 0.00013535 0.00011788 0.00010273 0.00029190 0.00003981 0.00014628
MSE 0.01837988 0.01408698 0.01062950 0.08664137 0.00161203 0.02221417

n = 200 Estimates 1.00218613 0.75690113 0.50791328 2.02300836 0.50301511 2.00879176
St.Error 0.00009565 0.00008273 0.00006900 0.00019353 0.00002774 0.00010046
MSE 0.00914433 0.00688512 0.00481854 0.03794669 0.00077799 0.01015936

n = 500 Estimates 1.00346712 0.75200567 0.50141798 2.01439874 0.50145609 2.00520707
St.Error 0.00005815 0.00005173 0.00004336 0.00012028 0.00001713 0.00006115
MSE 0.00339033 0.00267745 0.00188051 0.01465985 0.00029543 0.00376314

Table 1: Estimates, SEs and MSEs of the parameters based on 1000 simulated samples for sizes n =25,
50, 100, 200 and 500, when the true load-sharing system model is GFB with di�erent baseline Weibull
distributions, initialW (0.5) switching toW (2) after the �rst failure, and PFR parameters ~θ = (1, 0.75, 0.5, 2).

of the parameter estimates decrease, leading to increase the precision in the estimation

of the GFB model. Analogous trends are observed for MSE in estimating the baseline

parameters and all the PFR parameters (Figure 4b). Such a tendency is an evidence of

the appropriateness of the proposed simulation procedure to generate two-dimensional data

from a GFB class with known baseline distributions and PFR parameters. The results and

plots empirically display as MSE's quickly converge to zero when the sample size increases.

4.2. Real data analysis

The three real data sets used for illustrative purposes are available in the reliability engi-

neering literature. In order to assess the GFB models adequacy to the data, the performance

15

                  



100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

100 200 300 400 500

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

25 50 100 200 300 400 500

Sample size n

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

04
0.

00
05

0.
00

06
0.

00
07

S
ta

nd
ar

d 
E

rr
or

θ1
θ2
θ1*
θ2*
θB
θB*

(a) Plots of trend in standard error.
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(b) Plots of trend in mean squared error.

Figure 4: Plots of the parameter estimates θ̂'s for varying the sample size n =25, 50, 100, 200 and 500.

evaluation is reported by using the Akaike Information Criteria (AIC) and Bayesian Infor-

mation Criteria (BIC) as appropriate goodness-of-�t criteria for the selection of the �tted

models with di�erent number of parameters. Furthermore, we also analyze whether there

exists a load-sharing tendency in the data by testing whether the component lifetimes are

a�ected in a system under the GFB model, using the deviance test statistic.

For comparison purposes, it is noteworthy that the results of the FBE model are also

displayed in all the tables, as a basic model with underlying exponential lifetimes, and whose

MLEs are explicitly determined by (3.8). Moreover, Appendix A.5 presents a summary

table of the following real data analysis along with the experimental results by the Broyden-

Fletcher-Goldfarb-Shanno algorithm for maximizing the log-likelihood function, disclosing

that the GA-MLE procedure performed as well or slightly better than such a quasi-Newton

method for solving this constrained nonlinear optimization problem.

4.2.1. Failure times of a two-motor system

The �rst reliability data set used to illustrate the performance of the GFB family was

studied by [31]. Such a set consists of the chronological failure times of both components

in 18 parallel redundant systems with two identical motors. As long as both motors are

functioning, the total load is equally shared between them, but after the �rst motor failure
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the entire load is shifted to the working motor. Based on the underlying LFR distribution,

[31] concluded the existence of such a load-sharing e�ect for this motor data set.

The fourteen load-sharing system models derived from the GFB class are �tted to the

motor lifetimes. The estimates of the unknown parameters are reported in Table 2, along

with the log-likelihood value, and AIC and BIC criteria only for those GFB models which

achieved the best �t in terms of the log-likelihood or AIC values for this two-motor system

data set.

θ1 θ2 θ∗1 θ∗2 θB θ∗B logL AIC BIC
E 0.003110420 0.002488336 0.02179837 0.01893939 -211.97 431.94 435.50
WE 0.000000007 0.000000006 0.02179837 0.01893939 3.42512 -199.83 409.65 414.10
2W 0.000000007 0.000000006 0.00000002 0.00000001 3.42512 1.82975 -199.13 410.27 415.61

Table 2: Summary of �tted models for the two-motor systems. E model represents a GFB with identical
baseline exponential, WE model denotes a GFB with initial baseline Weibull switching to exponential after
the �rst failure, and 2W model is a GFB with di�erent baseline Weibull distributions.

According to the information criterion values displayed in Table 2, both WE model and

2W model are more appropriate than FBE model for the motor data. In addition, the

values of the deviance test statistics are signi�cant for both FBE model vs. WE model

(dn = 24.29204, d.f. = 1, p = 8.27806e−7) and FBE model vs. 2W model (dn = 25.67368,

d.f. = 2, p = 2.660916e−6), i.e., {H0 : θB = 1 vs. H1 : θB 6= 1} and {H0 : θB = θ∗B = 1 vs.

H1 : θB 6= θ∗B}, respectively, which strongly suggest that FBE model is rejected to model the

reliability of this two-motor system. However, the value of the deviance test statistics for

WE model (H0 : θB = θ∗B) vs. 2W model (H1 : θB 6= θ∗B) is not signi�cant (dn = 1.381644,

d.f. = 1, p = 0.2398213).

Thereby, we can conclude that the extra load placed on the surviving motor after the

�rst failure a�ects its residual lifetime since its underlying lifetime itself changes, as it can

be seen in Figure 5, supporting the usefulness of the proposed GFB class to model such

a load-sharing e�ect in this two-motor system. From Figure 5, the di�erence between two

reliability curves can be ignored before the �rst failure, and after that, Motor A (C1) will be

lightly more a�ected by the overload.

4.2.2. Failure and repair times of a nuclear power plant reactor

The second real data set represents 30 paired observations of failure time and repair

time for a nuclear reactor obtained from an operational performance system for nuclear
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Figure 5: Change in the behaviour of the underlying reliability of the surviving motor, and bivariate reliability
and density functions of the GFB model �tted with identical baseline exponential.

power plants [26]. After concluding that these two variables were signi�cantly dependent by

Kendall's τ method, they were employed as factors for warranty policy to conduct a warranty

cost analysis [26]. Namely, a cost model where such two factors were stochastically correlated

by the FBE model was investigated in [26]. From the fourteen GFB models considered, Table

3 displays the estimates of the parameters for those which are better in �tting the data set

because they reported the highest log-likelihood or the smallest AIC values. Thus, both WG

model and 2G migth be more suitable than FBE model for the nuclear power plant data.

θ1 θ2 θ∗1 θ∗2 θB1
θB2

θ∗B1
θ∗B2

logL AIC BIC

E 0.1180312 0.236063 0.0755684 0.3429747 -172.60 353.19 358.80
WG 0.1210064 0.242013 0.0215423 0.0976824 0.9827450 0.285233 7.16439 -170.95 355.89 365.70
2G 0.7937402 1.587481 0.5309025 2.3751090 0.9591324 7.16439 0.285224 7.16439 -170.93 357.86 369.07

Table 3: Summary of �tted models for the nuclear power plant data. WG model denotes a GFB with initial
baseline Weibull switching to Gamma after the �rst failure, and 2G model is a GFB with di�erent baseline
Gamma distributions.

Nevetheless, the values of the deviance test statistics are signi�cant neither for FBE

model vs. WG model nor FBE model vs. 2G model, i.e., {H0 : θB = θ∗B1
= θ∗B2

= 1 vs.

H1 : not all θ′s are 1} and {H0 : θB1 = θB2 = θ∗B1
= θ∗B2

= 1 vs. H1 : not all θ′s are 1}.
Concretely, these experimental values achievable from Table 3 are {dn = 3.301513, d.f. = 3,

p = 0.3474322} and {dn = 3.333169, d.f. = 4, p = 0.5036942}, respectively.
Therefore, there are no signi�cant di�erences with respect to the GFB model with identi-

cal baseline exponential, which was studied in [26]. Thus, the GFB distribution is also useful

for modeling the stochastic dependence shown between both times, re�ecting the overload

of the warranty services due to the failure times of the reactor. From Figure 6, we can see

that the repair times (C2) will be strongly a�ected by the overload due to the failure times
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of the nuclear reactor.
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Figure 6: Change in the behaviour of the underlying reliability of the failure and repair times, and bivariate
reliability and density functions of the GFB model �tted with identical baseline exponential.

4.2.3. Failure data of caterpillar tractors

Finally, we considered the real data set on paired �rst failure times of the transmission

and the transmission pump on 15 DQG-66A caterpillar tractors [4]. These components might

be positively dependent as it was indicated in [4], which also were analyzed by a FBE model

by [24]. For that reason, its failure dependent structure could be modeled by the proposed

GFB class. Thus, the fourteen particular GFB models are applied to describe the behavior of

such paired �rst failure times. Table 4 presents the parameter estimations for those models

achieving the best values of the log-likelihood, AIC and BIC criteria.

θ1 θ2 θ∗1 θ∗2 θB θ∗B logL AIC BIC
E 0.002633311 0.003949967 0.00970481 0.01450151 -182.56 373.12 375.95
W 0.000000479 0.000000719 0.00000049 0.00000078 2.656673 -173.80 357.60 361.14
2W 0.000000241 0.000000362 0.00000023 0.00000037 2.787074 2.3375886 -173.71 359.43 363.68

Table 4: Summary of �tted models for the failure data of caterpillar tractors. W model represents a GFB
with identical baseline Weibull distributions.

Thereby, both W and 2W models are more appropriate than the FBE distribution for

modeling the failure dependent structure on caterpillar tractors. Indeed, the values of the

deviance test statistics are signi�cant both for FBE model vs. W model and FBE model vs.

2W model, i.e., {H0 : θB = 1 vs. H1 : θB 6= 1} and {H0 : θB = θ∗B vs. H1 : θB 6= θ∗B}. These
experimental values calculable from Table 4 are {dn = 17.52357, d.f. = 1, p = 2.837679e−5}
and {dn = 17.6931, d.f. = 2, p = 1.438772e−4}, respectively, which strongly suggest that

FBE model is rejected to model the failure time of transmission and transmission pump.
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Nevertheless, there is no signi�cant evidence against the GFB model with the same baseline

Weibull, i.e., for testing W model (H0 : θB = θ∗B) vs. 2W model (H1 : θB 6= θ∗B), being

its experimental results {dn = 0.1695299, d.f. = 1, p = 0.6805299}. In Figure 7, it can be

seen the change in the behaviour of the surviving component after the �rst failure. In initial

period, the di�erence between two reliability curves of the transmission and transmission

pump can be ignored but after the �rst failure the transmission pump (C2) will be more

a�ected by the load-sharing e�ect than the transmission (C1) of this caterpillar tractors.

Furthermore, it is worthy to notice that both components of this load-sharing system are

not equally reliable, since P (Y1 > Y2) is approximately 0.6 for the three GFB models of

Table 4.
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Figure 7: Change in the behaviour of the underlying reliability of the transmission and transmission pump,
and bivariate reliability and pdf of the GFB model �tted with two di�erent baseline Weibull distributions.

5. Concluding remarks

In this study, a generalized Freund bivariate (GFB) family has been proposed to model the

stochastic dependence caused by the load-sharing e�ect in a two-component system. While

both components are working, their lifetimes are assumed independent and not necessarily

identically distributed with reliability functions from the same PFR class. However, upon

the �rst failure, the GFB model permits changes in the PFR parameter and the base lifetime

of the surviving component to re�ect the undergone alterations in its failure pattern.

Load-sharing system models supplied by [1, 12, 21, 30] may be derived from the GFB

model. New bivariate models can be generated from the GFB class by combining di�erent

baseline distributions, such as it has been illustrated by four particular examples available

in the Supplementarty Material.
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The GA-MLE introduced as a parameter estimation approach of the load-sharing system

reliability can be applied under any baseline lifetimes of the components, which constitutes a

clear edge over other estimation algorithms developed. In particular, the GA-MLE may well

be appropriate to approximate the unknown parameters when the MLEs do not have closed

form expressions, such as it happens when at least one of the baseline parameters of the GFB

model is unknown. In practice, this estimating procedure performed as well or slightly better

than a quasi-Newton method for solving this constrained nonlinear optimization problem.

A procedure to generate synthetic two-dimensional data from a GFB model is described,

which allows one to simulate samples of a two-component load-sharing parallel system with

predetermined baseline distributions and PFR parameters. Simulation outcomes revealed

that the performance both of the GFB model and the GA-MLE estimating procedure are

quite satisfactory.

Experimental results showed that the proposed GFB model has been well suited to the

three real data sets of the reliability engineering �eld, which support the existence of such

a load-sharing e�ect in such applications. Moreover, the most of comparisons re�ected that

the extra load on the surviving component a�ected its underlying lifetime distribution in

addition to its PFR parameter, which evidence the usefulness of the GFB family to model

two-component load-sharing systems.

However, further study is needed to develop inferential issues of the GFB model for

censored data as well as to incorporate the information about covariates shared by two com-

ponents. Another point of interest would be to extend the GFB model to multi-component

load-sharing systems and its application to step-stress models, although its extensibility does

not seem easy due to the number of parameters and the complexity of the likelihood function.
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Appendix A. Appendix

A.1. Joint pdf

The joint pdf of the two-dimensional lifetime (Y1, Y2) is de�ned by

f(y1, y2) = lim
(h1,h2)→(0,0)

P (y1 ≤ Y1 < y1 + h1, y2 ≤ Y2 < y2 + h2)

h1h2
. (A.1)

Thus, when (Y1, Y2) follows a GFB model, by using the law of total probability, we have

for y1 > y2 that the numerator of (A.1) can be rewritten as:

P (y1 ≤ T ∗1 < y1 + h1, y2 ≤ T2 < y2 + h2) = P (y1 ≤ T ∗1 < y1 + h1, y2 ≤ T1:2 < y2 + h2, T1 > T2)

= A×B (A.2)

where A = P (y2 ≤ T1:2 ≤ y2 + h2, T1 > T2), B = P (y1 ≤ T ∗1 ≤ y1 + h1 | y2 ≤ T1:2 ≤
y2 + h2, T1 > T2) and T1:2 = min{T1, T2}.

Now let us determine each of these probabilities denoted as A and B, respectively. Firstly,

the probability A can be expressed as

A = P (y2 ≤ T2 ≤ y2 + h2, T1 > T2) =

∫ y2+h2

t2=y2

∫ ∞

t1=t2

fT1(t1)fT2(t2)dt1dt2

=
θ2

θ1 + θ2

(
(RB(y2))

θ1+θ2 − (RB(y2 + h2))
θ1+θ2

)
. (A.3)

Secondly, the probability B can be rewritten as

B = P (y1 ≤ T ∗1 ≤ y1 + h1 | y2 ≤ T2 ≤ y2 + h2, T
∗
1 > y2)

=

∫ y1+h1

t1=y1

fT ∗
1 |T ∗

1>y2,y2≤T2≤y2+h2(t1)dt1 =
(R∗B(y1))

θ∗1 − (R∗B(y1 + h1))
θ∗1

(R∗B(y2))θ
∗
1

. (A.4)

Therefore, by plugging (A.3) and (A.4) into (A.2), we have that

f(y1, y2) = lim
(h1,h2)→(0,0)

A×B
h1h2

=
θ2

(θ1 + θ2)(R∗B(y2))θ
∗
1

d

dy2

(
(RB(y2))

θ1+θ2
) d

dy1

(
(R∗B(y1))

θ∗1
)

and hence, the joint pdf of the GFB model for y1 > y2 is given by (2.1).

Analogously, the expression of the joint pdf can be obtained for y2 > y1.
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A.2. Joint reliability

The joint reliability function of (Y1, Y2), for y1 > y2, can be expressed as

R(y1, y2) = P (Y1 > y1, Y2 > y2) =

∫

R1∪R2∪R3

f(t1, t2)dt1dt2 = A1 + A2 + A3 (A.5)

where

R1 = {(t1, t2) : y1 ≤ t1 <∞, t1 < t2 <∞}
R2 = {(t1, t2) : y1 ≤ t2 <∞, t2 < t1 <∞}
R3 = {(t1, t2) : y1 ≤ t1 <∞, y2 < t2 < y1} y1

y2

�
�
�

q
R1

R2

R3

and Ai = P ((Y1, Y2) ∈ Ri), i = 1, 2, 3. In this way,

Ai =

∫ ∞

ti=y1

∫ ∞

tj=ti

θiθ
∗
jfB(ti)f

∗
B(tj)

(RB(ti))
θ1+θ2−1(R∗B(tj))

θ∗j−1

(R∗B(ti))
θ∗j

dtidtj

=
θi

θ1 + θ2
(RB(y1))

θ1+θ2 ,

for i 6= j ∈ {1, 2}, and

A3 =

∫ ∞

t1=y1

∫ y1

t2=y2

θ∗1θ2f
∗
B(t1)fB(t2)

(R∗B(t1))
θ∗1−1(RB(t2))

θ1+θ2−1

(R∗B(t2))θ
∗
1

dt1dt2

= (R∗B(y1))
θ∗1

∫ y1

t2=y2

θ2fB(t2)
(RB(t2))

θ1+θ2−1

(R∗B(t2))θ
∗
1

dt2.

By plugging A1, A2 and A3 into (A.5), it is obtained the joint reliability function of the

GFB model given by (2.2) for y1 > y2.

Analogously, the expression of the joint reliability function can be obtained for y2 > y1.

A.3. First failure probability

Taking into account that P (Y1:2 > y) = limh→0R(y+h, y), and the above probability A3

converges to 0 as y1 = y + h→ y2 = y, (2.3) is obtained from (A.5).

Finally, (2.4) is also obvious from the above A2, since P (Y1 > Y2) = limy1→0 P ((Y1, Y2) ∈
R2).

A.4. Simulation results from di�erent baseline distributions

Table A.5 displays the parameter estimates and some empirical measures from the sim-

ulation of the GFB model with baseline lifetimes (RB, R
∗
B) ∼ (W (θB), G(θ∗B1

, θ∗B2
)) given
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by (S.8), and in Figure A.8 it can be seen the empirical curves of the SE and MSE of

the parameters, respectively. These results are based on 1000 simulated samples for sizes

n =25, 50, 100, 200 and 500, which were generated from a GFB model with baseline Weibull,

RB ∼ W (0.5), switching to Gamma distribution, R∗B ∼ G(2, 1), after the �rst failure, and

PFR parameters ~θ = (1, 0.75, 0.5, 2).

θ1 θ2 θ∗1 θ∗2 θB θ∗B1
θ∗B2

n = 25
Estimates 1.06067105 0.79381635 0.7892713 1.77941909 0.51487137 3.98125896 4.40551394
St.Error 0.00031505 0.00026458 0.0005457 0.00116679 0.00011070 0.00329859 0.00458082
MSE 0.10284085 0.07185368 0.3811723 1.40868232 0.01246248 14.79522856 32.56047263

n = 50
Estimates 1.02574866 0.77437093 0.68565022 1.5633098 0.50598615 3.45563581 4.05985245
St.Error 0.00020104 0.00017314 0.00043763 0.0009161 0.00008588 0.00291258 0.00440812
MSE 0.04103900 0.03054037 0.22579442 1.0290949 0.00740414 10.59352188 28.77480447

n = 100
Estimates 1.00606320 0.76200902 0.62685574 1.4372523 0.49846533 3.07422560 3.28520440
St.Error 0.00013735 0.00011776 0.00035722 0.0007218 0.00005503 0.00239965 0.00399073
MSE 0.01888287 0.01399660 0.14357158 0.8371583 0.00302743 6.90650442 21.13214863

n = 200
Estimates 0.99965538 0.75506522 0.54334429 1.27233871 0.49759339 2.50198580 2.82324852
St.Error 0.00009510 0.00008303 0.00023016 0.00048824 0.00003876 0.00153309 0.00346754
MSE 0.00903587 0.00691299 0.05480141 0.76762803 0.00150689 2.59999418 15.33606588

n = 500
Estimates 1.00202960 0.75093341 0.49339840 1.17587629 0.49778216 2.1753039 1.95674867
St.Error 0.00005846 0.00005194 0.00012094 0.00026047 0.00002490 0.0007514 0.00240532
MSE 0.00341788 0.00269542 0.01465653 0.74695571 0.00062409 0.5947682 6.69513598

Table A.5: Estimates, SEs and MSEs of the parameters based on 1000 simulated samples for sizes n =25,
50, 100, 200 and 500, according to a load-sharing system from a GFB model with baseline Weibull switching
to Gamma distribution after the �rst failure, and PFR parameters ~θ = (1, 0.75, 0.5, 2).

A.5. Additional experimental results

The three reliability data analysis presented in Section 4.2 are gathered in Table A.6,

along with the experimental results obtained by the Broyden-Fletcher-Goldfarb-Shanno al-

gorithm for maximizing the log-likelihood function. It can be seen that the GA-MLE proce-

dure performed as well or slightly better than such a quasi-Newton method for solving this

constrained nonlinear optimization problem.
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(a) Plots of trend in standard error.
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Figure A.8: Plots of the parameter estimates θ̂'s for varying the sample size n =25, 50, 100, 200 and 500.

θ1 θ2 θ∗1 θ∗2 θB1
θB2

θ∗B1
θ∗B2

logL AIC BIC

Motors A & B

E

MLE 0.003110994 0.002488436 0.02179863 0.01894344 -211.97 431.94 435.50

WE

BFGS 0.000001604 0.000001258 0.02182493 0.01885467 2.428203 -201.14 412.28 416.73

GA-MLE 0.000000007 0.000000006 0.02179837 0.01893939 3.42512 -199.83 409.65 414.10

2W

BFGS 0.000001135 0.000000939 0.02001849 0.01638703 2.490958 1.010757 -200.98 413.96 419.29

GA-MLE 0.000000007 0.000000006 0.00000002 0.00000001 3.42512 1.82975 -199.13 410.27 415.61

Nuclear reactor

E

MLE 0.1180323 0.236063 0.0755688 0.3429770 -172.59 353.19 358.79

WG

BFGS 0.1209730 0.241942 0.1700659 0.5940733 0.9829146 0.001249 2.84839 -170.88 355.77 365.58

GA-MLE 0.1210064 0.242013 0.0215423 0.0976824 0.9827450 0.285233 7.16439 -170.95 355.89 365.70

2G

BFGS 1.2877660 2.575524 0.1705124 0.5951608 0.9660629 11.63064 0.001231 2.85734 -170.87 357.75 368.96

GA-MLE 0.7937402 1.587481 0.5309025 2.3751090 0.9591324 7.16439 0.285224 7.16439 -170.93 357.86 369.07

Caterpillar tractors

E

MLE 0.002633354 0.003950023 0.00970491 0.01450175 -182.56 373.12 375.95

W

BFGS 0.000011906 0.000017846 0.00001796 0.00002743 2.043840 -174.67 359.34 362.88

GA-MLE 0.000000479 0.000000719 0.00000049 0.00000078 2.656673 -173.80 357.60 361.14

2W

BFGS 0.000000197 0.000002899 0.00009325 0.00014309 2.391356 1.7619374 -174.17 360.35 364.59

GA-MLE 0.000000241 0.000000362 0.00000023 0.00000037 2.787074 2.3375886 -173.71 359.43 363.68

Table A.6: Summary of �tted GFB models for the three real data. MLE corresponds to estimations de-
termined by (3.8) for the standard Freund bivariate model. GA-MLE rows are the results summarized in
Tables 2, 3 and 4, and BFGS rows correspond to the results obtained by applying the Broyden-Fletcher-
Goldfarb-Shanno algorithm for maximizing the log-likelihood function.
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