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1 Introduction

Consider the following lifetime experiment in which n units are put on a test. Each unit

is exposed to some risks. It is assumed that each unit may fail due to different causes and

the corresponding lifetime distributions are independent and identically distributed. The

test is terminated when a pre chosen number R out of n items have failed or when a pre

determined time, T , on the test has been reached. It is also assumed that the failed items

are not replaced.

This particular censoring scheme is known as hybrid censoring scheme. It was first

introduced by Epstein [3] without the presence of competing risks and under the assumptions

that the underlying lifetime distribution is exponential. The hybrid censoring scheme is quite

useful in reliability acceptance test. See for example Childs et al. [1] and Jeong, Park and

Yum [5] for some recent development on hybrid censored sampling plan for the exponential

life time distributions.

In medical studies or in reliability analysis, it is quite common that more than one risk

factor may be present at the same time. An investigator is often interested in the assessment

of a specific risk in presence of other risk factors. Usually, it is observed that the data

consists of a failure time and an indicator denoting the cause of failure. In the statistical

literature, it is known as the competing risks model. For the general introduction of the

competing risks problem, the readers are referred to the recent monograph by Crowder [2].

Without the presence of covariates, it is usually assumed that the competing causes are

independently distributed. For the parametric setup, it is assumed that the different lifetime

distributions follow some specific parametric distributions, namely exponential, Weibull, log-

normal or gamma distributions. Several estimation procedures are proposed for estimating

the unknown parameters in presence of type-I or type-II censoring scheme, see Crowder [2].

In this paper, we assume that the lifetime distribution of the different causes are indepen-
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dent and exponentially distributed. We consider the estimation of the unknown parameters

in presence of hybrid censoring scheme. It is observed that the maximum likelihood estima-

tors (MLEs) of the mean lifetimes of the different causes do not exist always. We propose

the conditional MLEs and obtain the exact distributions of the conditional MLEs. Based

on the exact distributions of the MLEs we can obtain all the moments of the MLEs. Using

the exact distributions of the conditional MLEs it is possible to construct the approximate

confidence intervals of the unknown parameters. Because of the very complicated nature

of the distribution functions, it is not pursued here. Instead, we propose, the asymptotic

confidence intervals and two bootstrap confidence intervals. We also compute the Bayes es-

timates and the credible intervals of the unknown parameters using inverted gamma priors.

Different methods are compared using Monte Carlo simulations and for illustrative purposes,

we analyze one real data set.

2 Model Description, Notation and MLEs

2.1 Model Description and Notation

For notational simplicity, we assume that the number of causes is two. Let Ti be the lifetime

distribution of cause i, for i = 1 or 2. It is assumed in this paper that T1 and T2 are

independent and exponentially distributed with mean θ1 and θ2 respectively. Therefore, the

density function of Ti is;

fTi(x, θ) =
1

θi
e
− x
θi ; x > 0. (1)

Let Z = min{T1, T2}, therefore, Z, has the density function

fZ(z) =
(
1

θ1

+
1

θ2

)
e
−z

(
1

θ1
+ 1

θ2

)
.

Let Z1, . . . , Zn be n independent and identically distributed (i.i.d.) sample of size n from

Z. Suppose, Z1:n < . . . < Zn:n denote, the ordered Z1, . . . , Zn. Moreover, we denote T
∗

= min{ZR:n, T}, where R and T are some prefixed numbers as mentioned in the previous
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section. If δi denotes the cause of failure of the i − th ordered unit, then in this particular

case δi can take only two values. In presence of hybrid censoring, we have the following

observations;

Case I: {(Z1:n, δ1), . . . , (ZR:n, δR)}; if ZR:n < T, or (2)

Case II: {(Z1:n, δ1), . . . , (ZJ :n, δJ)}; if ZJ :n < T < ZJ+1:n. (3)

Here J = total number of observed failures up to time point T for Case II. For Case I, the

experiment stops at ZR:n and for Case II, the experiment stops at T . For Case II, it is known

that ZJ :n < T < ZJ+1:n < . . . < ZR:n and ZJ+1:n < . . . < ZR:n are not observed. We also

denote D1 and D2 as the number of failures due to cause I and cause II respectively. So

J = D1+D2. Suppose D denotes the total number of failures up to time point T . Therefore,

for Case I, D ≥ R and for Case II, D = J .

We also use the following notation in this paper. G(α, λ) and IG(α, λ) for α, λ > 0,

denote the gamma and inverted gamma distributions when x > 0, with density functions

fG(x;α, λ) =
λα

Γ(α)
xα−1e−λx and fIG(x;α, λ) =

λα

Γ(α)
e−

λ
xx−α−1,

respectively.

2.2 Maximum Likelihood Estimators

Based on the observations (2) or (3), the log-likelihood function, L(θ1, θ2), of the observed

data can be written as (ignoring the constant)

L(θ1, θ2) = −D1 ln θ1 −D2 ln θ2 −W
(
1

θ1

+
1

θ2

)
, (4)

where D2 = R − D1 or J − D1 for Case I and Case II respectively. Moreover, W =

∑R
i=1 Zi:n+ (n−R)ZR:n or

∑J
i=1 Zi:n+ (n− J)T represents the total time on tests for Case I

and Case II respectively. It is immediate that for Case I, (W,D1) is a joint minimal sufficient
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statistic and for Case II, (W,D1, J) is a joint minimal sufficient statistic for (θ1, θ2). From

(4), it is clear that the MLE of θ1 (θ2) exists only when D1(D2) > 0 and they are as follows.

θ̂1 =
W

D1

and θ̂2 =
W

D2

. (5)

3 Conditional Distributions of the MLEs

In this section, we obtain the conditional distributions of θ̂1 and θ̂2, namely

Fθ̂1(x) = P [θ̂1 ≤ x|D1 > 0] and Fθ̂2(x) = P [θ̂2 ≤ x|D2 > 0].

In this section, we denote 1
θ
= 1

θ1
+ 1

θ2
. We compute Fθ̂1(x), Fθ̂2(x) can be obtained along

the same line. Now

Fθ̂1(x) = P [θ̂1 ≤ x|D1 > 0] = P [θ̂1 ≤ x, ZR:n ≤ T |D1 > 0] + P [θ̂1 ≤ x, ZR:n > T |D1 > 0]

=
R∑

i=1

P [θ̂1 ≤ x, ZR:n ≤ T,D1 = i|D1 > 0] +
R−1∑

j=1

P [θ̂1 ≤ x, ZR:n > T, J = j|D1 > 0]

=
R∑

i=1

Gi(x)qi +
R−1∑

j=1

j∑

i=1

Gij(x)qij,

where

Gi(x) = P [θ̂1 ≤ x|ZR:n ≤ T,D1 = i,D1 > 0], qi = P [ZR:n ≤ T,D1 = i|D1 > 0],

Gij(x) = P [θ̂1 ≤ x|ZR:n > T, J = j,D1 = i,D1 > 0], qij(x) = P [ZR:n > T, J = j,D1 = i|D1 > 0].

We will provide the expressions for Gi(x), qi, Gij(x) and qij. To compute Gi(x), we use the

conditional moment generating function of θ̂1 conditioning on D1 = i and ZR:n ≤ T . We

have the following results.

Lemma 1: The conditional density function (PDF) of θ̂1 given that D1 = i and ZR:n ≤ T ,

is

fθ̂1|D1=i,ZR:n≤T
(x) =

1

P [ZR:n ≤ T ]
×

[
fG

(
x;R,

i

θ

)
+R

(
n

R

)
R∑

k=1

(
R− 1

k − 1

)
(−1)k

n−R + k
e−

T
θ

(n−R+k)×

fG

(
x;
T

i
(n−R + k), R,

i

θ

)]
.
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Proof of Lemma 1: The proof mainly follows by writing the conditional moment generat-

ing function of θ̂1 given D1 = i, ZR:n ≤ T and then inverting it. The details can be obtained

from the authors.

Note that for i ≥ 1,

qi = P [D1 = i, ZR:n ≤ T |D1 > 0] =
P [D1 = i, ZR:n ≤ T,D1 > 0]

P [D1 > 0]

=

(
R

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)R−i
×
P [ZR:n ≤ T ]

P [D1 > 0]

and

P [D1 > 0] = 1−
R−1∑

i=0

(
θ1

θ1 + θ2

)i (
n

i

)(
1− e−

T
θ

)i
e−(n−i)T

θ−

(
θ1

θ1 + θ2

)R n∑

i=R

(
n

i

)(
1− e−

T
θ

)i
e−(n−i)T

θ .

Now we would like to computeGij(x) and for that we need the conditional moment generating

function of θ̂1 conditioning on D1 = i, J = j and ZR:n > T . We have the following result

whose proof can be obtained along the same line as the proof of lemma 1.

Lemma 2: The conditional PDF of θ̂1 given D1 = i, J = j and ZR:n > T is given by

fθ̂1|D1=i,J=j,ZR:n>T
(x) =

j∑

k=0

(−1)k
(
j

k

)
e
T
θ

(j−k)fG(x;
T

i
(k + n− j), j,

i

θ
).

Also for j < R,

qij = P [D1 = i, J = j, ZR:n > T |D1 > 0] = P [D1 = i, J = j|D1 > 0] =
P [D1 = i, J = j]

P [D1 > 0]

=
P [D1 = i|J = j]P [J = j]

P [D1 > 0]
=

(
j

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)j−i
P [J = j]

P [D1 > 0]
.

If we denote

pj = P [J = j] =

(
n

j

)(
1− e−

T
θ

)j
e−(n−j)T

θ ,

then

qij =

(
j

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)j−i
pj(

1−
∑R−1

i=0

(
θ1

θ1+θ2

)i
pi −

(
θ1

θ1+θ2

)R∑n
i=R pi

) .
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Therefore, we have the final result.

Theorem 1: The conditional PDF of θ̂1, conditioning on D1 > 0, is given by

fθ̂1(x) =
1

P [D1 > 0]





R∑

i=1

(
R

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)R−i
×

[
fG(x;R,

i

θ
) + R

(
n

R

)
R∑

k=1

(
R− 1

k − 1

)
(−1)k

n−R + k
× e−

T
θ

(n−R+k)fG

(
x;
T

i
(n−R + k), R,

i

θ

)]

+
R−1∑

j=1

j∑

i=1




j∑

k=0

(−1)k
(
j

k

)
e
T
θ

(j−k)fG(x;
T

i
(k + n− j), j,

i

θ
)



(
j

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)j−i
pj



 .

Similarly, we can obtain the conditional PDF of θ̂2, conditioning on D2 > 0, by interchanging

the role of θ1 and θ2. Note that Theorem 1, can be used to derive different moments of θ̂1.

For example,

E(θ̂1) =
1

P [D1 > 0]





R∑

i=1

(
R

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)R−i
×

[
Rθ

i
+ R

(
n

R

)
R∑

k=1

(
R− 1

k − 1

)
(−1)k

n−R + k
× e−

T
θ

(n−R+k) ×

(
T

i
(n−R + k) +

Rθ

i

)]
+

R−1∑

j=1

j∑

i=1

j∑

k=0

(−1)k
(
j

k

)
e
T
θ

(j−k)

(
T

i
(k + n− j) +

jθ

i

)
×

(
j

i

)(
θ2

θ1 + θ2

)i (
θ1

θ1 + θ2

)j
pj



 .

Other moments also can be obtained similarly. Note that using the approach of Kundu and

Basu [6], it is possible to construct the approximate confidence interval of θ̂1, using the PDF

of θ̂1. Since it is computationally quite involved particularly for large R, we recommend the

following confidence intervals for large R and n.

4 Confidence Intervals

First we propose to use the asymptotic confidence intervals. Using the asymptotic normality

of the MLEs, we obtain 100(1− α)% confidence intervals of θ1 and θ2 as

θ̂1 ± zα
2

W

D
3

2

1

, and θ̂2 ± zα
2

W

D
3

2

2

.

Here zα
2
is the upper α

2
-th percentile point of N(0, 1).
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We propose the following two parametric Bootstrap confidence intervals, namely per-

centile Bootstrap (Boot-p) and Bootstrap-t (Boot-t) confidence intervals conditioning on

the number of failures within the time interval T .

[1] Determine θ̂1 and θ̂2 from the sample and compute θ̂ by
1
θ̂
= 1

θ̂1
+ 1

θ̂2
.

[2] Case I

(i) First we need to generate a bootstrap sample of J , say J ∗, and it is generated

from the conditional probability mass function;

(
n
i

)(
1− e−

T

θ̂

)i
e−(n−i)T

θ̂

∑n
j=R

(
n
j

) (
1− e−

T

θ̂

)j
e−(n−j)T

θ̂

; i = R, . . . , n. (6)

(ii) Generate a sample of size J∗ from the truncated distribution, which has the non-

zero PDF between (0, T ) as

1
θ̂
e−

x

θ̂

1− e−
T

θ̂

; 0 < x < T. (7)

(iii) Take the first R order statistics from J ∗ and assign Cause I or Cause II to each

failure with probability θ̂2
θ̂1+θ̂2

and θ̂1
θ̂1+θ̂2

respectively.

[2′] Case II

(i) Generate a sample of size D from the truncated distribution function given in (7).

(ii) Assign Cause I or Cause II to each failure with probability θ̂2
θ̂1+θ̂2

and θ̂1
θ̂1+θ̂2

respec-

tively.

[3] From the bootstrap sample compute θ̂∗1 and θ̂
∗
2 and repeat the process NBOOT times.

[4] Let ĈDF (x) = P (θ̂1 ≤ x) be the cumulative distribution function of θ̂1. Define for a

given x, θ̂1,boot(x) = ĈDF
−1
(x). Then, approximate 100(1 − α)% confidence interval

of θ1 is given by
(
θ̂1,boot(α/2), θ̂1,boot(1− α/2)

)
. (8)
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Similarly, we can obtain the confidence interval for θ̂2 also.

The following algorithm is proposed for constructing Boot-t confidence intervals of θ1

and θ2.

[1]-[3] Same as Boot-p.

[4] Determine the statistics T ∗1 and T
∗
2 as follows;

T ∗1 =
(θ̂∗1 − θ̂1)√
V (θ̂∗1)

and T ∗2 =
(θ̂∗2 − θ̂2)√
V (θ̂∗2)

,

where V (θ̂∗1) and V (θ̂
∗
2) are the asymptotic variances of θ̂

∗
1 and θ̂

∗
2 respectively, and they

can be obtained using the Fisher information matrix.

[5] Repeat [1] - [4] NBOOT times and determine the upper and lower bounds of θ1 as

follows. Let ĈDF 1(x) = P (T1 ≤ x) be the cumulative distribution function of T1. For

a given x, define

θ̂1,Boot−t(x) = θ̂1 +
√
V (θ̂1)ĈDF

−1

1 (x).

The approximate 100(1− α)% Boot-t confidence interval for θ1 is given by

(
θ̂1,Boot−t(α/2), θ̂1,Boot−t(1− α/2)

)
. (9)

Similarly the approximate 100(1 − α)% Boot-t confidence interval for θ2 can also be

obtained.

5 Bayesian Analysis

In this section, we approach the problem from the Bayesian point of view. In the context

of exponential lifetimes, θ̂1 and θ̂2 may be reasonably modeled using the inverted gamma

priors. We assume that θ̂1 and θ̂2 are independently distributed with IG(a1, b1) and IG(a2, b2)

respectively. The parameters a1, b1, a2, b2 are all assumed to be positive. Note that when

a1 = a2 = b1 = b2 = 0, they are the non-informative priors of θ1 and θ2 respectively.
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The joint posterior density function of θ1 and θ2, given the data can be written as

l(θ1, θ2|Data) ∝
1

θD1+a1+1
1

e
−
W+b1
θ1 ×

1

θD2+a2+1
2

e
−
W+b2
θ2 . (10)

From (10), it is clear that the posterior density function of θ1 and θ2 are independent.

Moreover, the posterior density function of θ1 given the data, l(θ1|data), is IG(D1+a1,W +

b1). Similarly, the posterior density function of θ2 given the data, l(θ2|data), is IG(D2 +

a2,W + b2). The Bayes estimators of θ1 and θ2, under squared error loss functions are;

θ̂1,Bayes =
W + b1
D1 + a1

, and θ̂2,Bayes =
W + b2
D2 + a2

. (11)

Interestingly, when a1 = b1 = a2 = b2 = 0, the Bayes estimators coincide with the corre-

sponding MLEs.

The credible intervals for θ1 and θ2 are obtained easily from the joint posterior distribution

function. We observe that a posteriori;

Z1 =
2(W + b1)

θ1

and Z2 =
2(W + b2)

θ2

,

follow χ2
2(D1+a1)

and χ2
2(D2+a2) respectively provided 2(D1 + a1) and 2(D2 + a2) are positive

integers. Therefore, 100(1− α)% credible intervals for θ1 and θ2 are


 2(W + b1)

χ2
2(D1+a1),1−α/2

,
2(W + b1)

χ2
2(D1+a1),α/2


 and


 2(W + b2)

χ2
2(D2+a2),1−α/2

,
2(W + b2)

χ2
2(D2+a2),α/2


 (12)

for D1 + a1 > 0 and D2 + a2 > 0 respectively.

Therefore, if no prior information is available, the non-informative priors can be used

to compute the credible intervals for θ1 and θ2 using (12). Note that if 2(D1 + a1) and

2(D2 + a2) are not integers then the corresponding credible intervals can be obtained using

gamma distributions.
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6 Numerical Results and Data Analysis

6.1 Numerical Results

Note that the performances of the different confidence intervals can not be compared the-

oretically. In order to compare the performances of the different confidence intervals we

consider Monte Carlo simulations for different sample sizes, for different parameter values

and for different censoring schemes. We consider different sample sizes, namely n = 25, 50,

75 and 100 and two different R values, i.e. R = [0.75×n] (25% censoring) and R = [0.60×n]

(40% censoring), where [a] means the largest integer less than or equal to a. Without loss

of generality, we take θ1 = 1 and two different values of θ2, i.e. θ2 = 2.0 and θ2 = 1.75. We

consider two different values of T also, namely, T = 1.5 and T = 2.25.

The generation of the sample is as follows. For a fixed n, θ1 and θ2, first we generate n

exponential random variables with mean θ1θ2
θ1+θ2

. From the n exponential random variables

we obtain the hybrid censored data based on R and T . To each uncensored observation we

assign failure Cause 1 or Cause 2 with probability θ2
θ1+θ2

and θ1
θ1+θ2

respectively. For each

hybrid censored competing risks data we compute the 95% confidence intervals using three

different methods, i.e asymptotic, Boot-p and Boot-t methods. For comparison purposes,

we also compute the 95% Bayes credible intervals using non-informative prior. We replicate

the process 1000 times in each case and report the average confidence/ credible lengths and

the coverage percentages. The results are reported in Tables 1 - 6.

Some of the points are quite clear from these results. For all the methods as the sample

size increases the average confidence/ credible lengths decrease as expected. Interestingly,

for all the cases considered here, the asymptotic, Boot-p and Bayes confidence/ credible

intervals have the coverage percentages quite close to the nominal level, where as the Boot-t

confidence intervals have the coverage percentages far below than the nominal level.

Now we compare the performances of the different confidence intervals for different cen-
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Table 1: T = 1.5, R = 0.75 × n, θ1 = 1.0, θ2 = 2.0

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.2075 (0.92) 1.2794 (0.95) 1.3761 (0.85) 1.4508 (0.94)
θ2 4.3905 (0.92) 5.3413 (0.95) 5.4536 (0.80) 10.8348 (0.95)

n = 50 θ1 0.8109 (0.93) 0.8135 (0.93) 0.8717 (0.87) 0.9648 (0.95)
θ2 2.5011 (0.93) 3.0880 (0.96) 2.7617 (0.86) 3.0611 (0.96)

n = 75 θ1 0.6578 (0.94) 0.6611 (0.94) 0.6949 (0.90) 0.7336 (0.95)
θ2 1.9472 (0.94) 2.0937 (0.95) 2.0342 (0.87) 2.4223 (0.96)

n = 100 θ1 0.5635 (0.95) 0.5599 (0.94) 0.5849 (0.91) 0.6098 (0.95)
θ2 1.6575 (0.94) 1.7743 (0.95) 1.7471 (0.88) 1.9796 (0.95)

Table 2: T = 1.5, R = 0.60 × n, θ1 = 1.0, θ2 = 2.0

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.3430 (0.92) 1.4499 (0.96) 1.3761 (0.85) 1.6619 (0.94)
θ2 5.1202 (0.91) 6.1737 (0.96) 5.4536 (0.80) 15.6571 (0.94)

n = 50 θ1 0.9120 (0.92) 0.9184 (0.95) 0.8717 (0.87) 1.1334 (0.96)
θ2 2.8390 (0.93) 3.7174 (0.94) 2.7617 (0.86) 3.6010 (0.95)

n = 75 θ1 0.7372 (0.93) 0.7586 (0.95) 0.6949 (0.90) 0.8475 (0.95)
θ2 2.2164 (0.93) 2.4462 (0.94) 2.0342 (0.87) 2.7323 (0.95)

n = 100 θ1 0.6333 (0.94) 0.6325 (0.94) 0.5849 (0.91) 0.7006 (0.95)
θ2 1.8729 (0.93) 2.0634 (0.95) 1.7471 (0.88) 2.3217 (0.95)

Table 3: T = 2.25, R = 0.60 × n, θ1 = 1.0, θ2 = 2.0

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.3430 (0.92) 1.6092 (0.95) 1.5697 (0.84) 1.6619 (0.94)
θ2 5.1202 (0.91) 5.9609 (0.96) 6.2160 (0.81) 15.6571 (0.94)

n = 50 θ1 0.9120 (0.92) 0.9359 (0.94) 1.0166 (0.88) 1.1334 (0.96)
θ2 2.8390 (0.93) 3.7793 (0.95) 3.2016 (0.88) 3.6010 (0.95)

n = 75 θ1 0.7372 (0.93) 0.7444 (0.93) 0.7857 (0.90) 0.8475 (0.95)
θ2 2.2164 (0.93) 2.5140 (0.94) 2.3534 (0.86) 2.7323 (0.95)

n = 100 θ1 0.6333 (0.94) 0.6283 (0.94) 0.6553 (0.90) 0.7006 (0.95)
θ2 1.8728 (0.93) 2.1077 (0.94) 2.0300 (0.89) 2.3217 (0.95)
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Table 4: T = 2.25, R = 0.75 × n, θ1 = 1.0, θ2 = 2.0

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.2070 (0.92) 1.3030 (0.95) 1.4141 (0.82) 1.4502 (0.94)
θ2 4.3902 (0.92) 5.8993 (0.96) 5.3139 (0.81) 10.8340 (0.95)

n = 50 θ1 0.8109 (0.93) 0.8309 (0.93) 0.8852 (0.88) 0.9648 (0.95)
θ2 2.5012 (0.93) 2.9463 (0.95) 2.6926 (0.87) 3.0611 (0.95)

n = 75 θ1 0.6579 (0.94) 0.6606 (0.93) 0.6931 (0.90) 0.7336 (0.95)
θ2 1.9472 (0.94) 2.0992 (0.94) 2.0306 (0.86) 2.4223 (0.95)

n = 100 θ1 0.5636 (0.95) 0.5662 (0.93) 0.5876 (0.91) 0.6098 (0.96)
θ2 1.6575 (0.94) 1.8016 (0.94) 1.7651 (0.89) 1.9796 (0.95)

Table 5: T = 1.50, R = 0.75 × n, θ1 = 1.0, θ2 = 1.75

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.2388 (0.92) 1.3826 (0.95) 1.4043 (0.82) 1.4974 (0.95)
θ2 3.5890 (0.91) 4.4814 (0.95) 4.0705 (0.81) 8.1218 (0.95)

n = 50 θ1 0.8329 (0.93) 0.8408 (0.93) 0.8853 (0.89) 1.0003 (0.95)
θ2 2.0701 (0.94) 2.4439 (0.94) 2.2854 (0.86) 2.5271 (0.96)

n = 75 θ1 0.6730 (0.94) 0.6826 (0.95) 0.7123 (0.91) 0.7548 (0.95)
θ2 1.6274 (0.94) 1.7423 (0.95) 1.7254 (0.89) 2.0146 (0.95)

n = 100 θ1 0.5772 (0.95) 0.5792 (0.94) 0.6005 (0.92) 0.6272 (0.95)
θ2 1.3802 (0.94) 1.4583 (0.95) 1.4486 (0.90) 1.6208 (0.96)

Table 6: T = 1.50, R = 0.60 × n, θ1 = 1.0, θ2 = 1.75

S.S. Parameters Asymp Boot-p Boot-t Bayes

n = 25 θ1 1.3815 (0.92) 1.6268 (0.96) 1.5876 (0.83) 1.7307 (0.94)
θ2 4.0537 (0.91) 5.0761 (0.95) 5.3880 (0.82) 10.3670 (0.95)

n = 50 θ1 0.9381 (0.92) 0.9595 (0.93) 1.0573 (0.88) 1.1736 (0.96)
θ2 2.3549 (0.93) 3.1240 (0.93) 2.6570 (0.85) 2.9292 (0.95)

n = 75 θ1 0.7575 (0.94) 0.7556 (0.94) 0.8050 (0.90) 0.8780 (0.95)
θ2 1.8285 (0.94) 2.0771 (0.95) 1.9306 (0.88) 2.2681 (0.96)

n = 100 θ1 0.6505 (0.95) 0.6517 (0.94) 0.6774 (0.91) 0.7238 (0.95)
θ2 1.5507 (0.94) 1.6678 (0.94) 1.6465 (0.90) 1.9016 (0.95)

13



soring schemes, namely for 25% and 40% censoring when the other variables are fixed.

Comparing Tables 1 & 2 and Tables 3 & 4 it is quite clear that as the censoring percentages

increase then average confidence/ credible lengths increase at it should be. On the other

hand comparing Tables 1 & 4 and Tables 2 & 3 it is clear that T does not have much effect

on the performances of the different estimators.

Now we compare the performances of the different estimators for the different parameter

values. Comparing Tables 1 & 5 and Tables 2 & 6, it is clear that as θ2 becomes closer to

θ1, the average confidence/ credible lengths increase for θ1 but the corresponding lengths

decrease for θ2.

Comparing all the methods it is observed that the asymptotic confidence intervals perform

quite good even when the sample size is only 25. The confidence lengths of the asymptotic

confidence intervals are the smallest although their coverage percentages are slightly lower

than the nominal level. The performances of the Boot-p confidence intervals are very good.

The average lengths of the Boot-p confidence intervals are quite close to the corresponding

asymptotic confidence lengths and the coverage percentages are closer to the nominal level.

The performances of the Boot-t confidence intervals are quite poor in terms of the coverage

percentages, they are much lower than the nominal level. Interestingly, the Bayes credible

intervals maintain the nominal level in all the cases considered, but the lengths of the credible

intervals are significantly larger than the other confidence intervals. Computationally, the

asymptotic confidence intervals and the Bayes credible intervals are much easier to compute

than the bootstrap confidence intervals. Considering all the points we recommend to use the

asymptotic confidence intervals, if the computation is not of a major concern Boot-p method

also can be used.

6.2 Data Analysis

For illustrative purposes we analyze one data set using the proposed methods. We consider

the data set, which was originally analyzed by Hoel [4]. The data arose from a laboratory
14



Table 7: 95% Confidence and credible intervals for θ1 and θ2.

Methods θ1 θ2

Asymptotic (731.2911, 1785.7997) (909.3463, 2782.3872)
Bootstrap-p (810.9471, 1432.7617) (1019.3655, 2652.1709)
Bootstrap-t (500.7881, 1410.3297) ( 397.6293, 2280.5234)

Bayes (862.5344, 2008.2250) (1178.7345, 3297.9966)

experiment in which male mice received a radiation dose of 300 roentgens at 5 to 6 weeks of

age. The cause of death of each mouse was determined by autopsy to be thymic lymphoma

(Cause 1) or reticulum cell sarcoma (Cause 2). Although, Hoel [4] had the complete data,

we created artificially hybrid censored data from the total sample (n = 60) by considering

R = 50 and T = 600. We have the following hybrid censored data:

(159 1), (189 1), (191 1), (198 1), (200 1), (207 1), (220 1), (235 1), (245 1), (250 1), (256 1), (261

1), (265 1), (266 1), (280 1), (317 2), (318 2), (343 1), (356 1), (383 1), (399 2), (403 1), (414 1),

(428 1), (432 1), (495 2), (525 2), (536 2), (549 2), (552 2), (554 2), (557 2), (558 2), (571 2), (586

2), (594 2), (596 2).

From the above data we obtain the following J = 37,
∑37

i=1 Zi = 13888, D1 = 22, D2

= 15, and W = 13888 + (60-37) × 600 = 27688. Therefore, θ̂1 =
27688

22
= 1258.5455 and

θ̂2 =
27688

15
= 1845.8667. The asymptotic standard deviations of θ̂1 and θ̂2 becomes 268.32

and 476.6 respectively. The different 95% confidence/ credible intervals for θ1 and θ2 are

presented in Table 7.

It is interesting to observe that for the data example Boot-p confidence interval has the

smallest length and the Bayes confidence interval has the maximum length. Moreover, if we

want to test the hypothesis; H0 : θ1 = θ2, vs. H1 : θ1 6= θ2, then we can not reject the null

hypothesis by any of these methods at the 5% significance levels.
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