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1 Introduction

In this paper we analyze lifetime data when they are “middle-censored”. Middle censoring

occurs if a data point is not observable when it falls inside a random interval. The middle

censoring scheme can be described as follows. Suppose n identical items are put on test and

the life times of these items are T1, . . . , Tn. For the ith item, there is a random censoring

interval (Li, Ri), which follows some unknown bivariate distribution. For the ith item, Ti is

observable only if Ti /∈ [Li, Ri], otherwise it is not observable. Suppose δi = I(Ti /∈ [Li, Ri]),

where I(·) denotes the indicator function. Therefore, when δi = 1, the observation is not

censored and we observe the actual value Ti. In this case we do not observe (Li, Ri). On the

other hand, when δi = 0, we observe only the censoring interval [Li, Ri]. For the ith item,

we observe the following;

(Yi, δi) =
{

(Ti, 1) if Ti /∈ [Li, Ri]
([Li, Ri], 0) otherwise.

(1)

Thus, the data obtained here is not the same as that obtained in the interval censoring case.

Based on the observations, the problem is to estimate the lifetime distribution functions of

Ti’s and develop necessary inferential procedures.

The middle censoring scheme was first introduced by Jammalamadaka and Mangalam

(2003) under a non-parametric set up. It is an important variation and also a generalization

of the existing left censoring, right censoring and double censoring schemes. All the above

three censoring schemes can be obtained as special cases of this middle censoring scheme by

suitably choosing censoring intervals, which can be infinite. At first glance, middle censoring,

where a random middle part is missing, appears as complementary to the idea of double

censoring in which the middle part is what is actually observed. However, a careful reflection

and analysis shows them to be quite different ideas; see Jammalamadaka and Mangalam

(2003) for details.
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Before getting into technical details, we mention a few situations where middle censoring

occurs. In any lifetime study if the subject is temporarily withdrawn from the study (eg.

an individual leaves town for a temporary period and returns, if still alive), we obtain this

middle censoring situation. Middle-censoring also occurs when the measuring equipment

breaks down for a temporary period or if the clinic where the observations are being taken,

is closed for a period, due to an external emergency such as the outbreak of war or a strike.

In such cases the event of interest (or failure) could take place during the period when an

observation is not possible or is not being made.

In Jammalamadaka and Mangalam (2003), T1, . . . , Tn are taken to be independent and

identically distributed (i.i.d.) random variables with some unknown distribution function

F (·). Also, (L1, R1), . . . , (Ln, Rn) are i.i.d. with some unknown bivariate distribution func-

tion G(·, ·) and they are independent of Ti. Based on this, they obtain the non-parametric

maximum likelihood estimator of the unknown distribution function F (·) and show that it is

a self-consistent estimator under the condition that one of the ends is non-random (see the

review article of Tarpey and Flury (1996) for a nice account of the self-consistent estimators).

In this paper we consider a parametric formulation of the problem. It is assumed that

T1, . . . , Tn are i.i.d. exponential random variables with mean 1
θ0

i.e. with the probability

density function (PDF) given below;

f(x; θ0) =
{

θ0e
−θ0x, x > 0
0 otherwise.

(2)

Moreover, (L1, Z1), . . . , (Ln, Zn) are i.i.d. where Li and Zi = Ri − Li are independent ex-

ponential random variables and they are independent of Ti. It is also assumed that Li and

Zi have means 1
α

and 1
β

respectively and they do not depend on θ0. It implies that the

censoring mechanism is independent of the lifetime of the population of interest and has no

information on this lifetime.
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Such assumptions as the independence, are very standard in the lifetime data analysis.

See for example Kaplan and Meier (1958), Turnbull (1974), Babu, Rao and Rao (1992),

Jammalamadaka and Mangalam (2003), Jammalamadaka and Iyer (2004) and the references

cited there, who make this assumption for a variety of censoring schemes. There are several

reasons for that and we mention a couple. First of all, in most of the real life situations it is

unlikely that the censoring mechanism depends on the lifetime of the population and that it

provides any information on the population distribution function. In all the examples we gave

earlier, middle censoring occurs because of an external cause that does not have anything

to do with the “life-times”. There are a few papers in the literature (see eg. Robertson

and Uppuluri (1984)) which discuss non-parametric estimation of the lifetime distribution

in the case when the lifetimes and the censoring intervals are dependent. Recently Hongyu

et. al. (2005) consider the problem of right censoring in a semi-parametric model in which

the dependence between the censoring mechanism and the lifetimes is modeled via a gamma

fraility copula. In the parametric set-up that we consider, an analytically tractable model

for dependence between the lifetimes and the censoring intervals has to be formulated before

the estimation questions are tackled. The authors hope to address this question in a future

paper.

Based on the above assumptions we obtain different estimators of θ0 and study their

properties. We provide the maximum likelihood estimator (MLE) of θ0. It is observed that

the MLE can not be obtained in a closed form. We propose a simple iterative procedure

for finding the MLE and the sufficient condition for the convergence of the iterative method

is also provided. We also suggest the EM algorithm which can be used to compute the

MLE and provide sufficient condition for its convergence. It is shown that the MLE of θ0

is consistent and asymptotically normal. As might be expected, the asymptotic variance of

MLE of θ0 depends on the censoring parameters α and β. Thus for constructing asymptotic

confidence intervals for θ0 we use the empirical Fisher information matrix.
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We also compute the Bayes estimate of θ0 under the assumption of Gamma prior distri-

bution on θ0. No prior distributions on the censoring parameters are assumed. Moreover, the

censoring is assumed to be non-informative. After noting that the exact Bayes estimate is

difficult to compute in this case, we propose to use the Gibbs sampling procedure to compute

the Bayes estimate as well as the highest posterior density (HPD) credible interval of θ0.

The rest of the paper is organized as follows. In Section 2, we provide the MLE and

the proposed EM algorithm followed by the theoretical results in Section 3. The Bayesian

formulation and the simulation results are presented in Sections 4 and 5 respectively. An

illustrative data analysis and results are given in Section 6 and conclusions in Section 7.

2 Maximum Likelihood Estimator

After re-ordering the data as necessary, we can assume without loss of generality, that the

first n1 and the rest n2 are the uncensored and censored observations respectively. Therefore,

we have the following observed data:

{(T1, 1), . . . , (Tn1 , 1), (Ln1+1, Rn1+1), . . . , (Ln1+n2 , Rn1+n2)}, (3)

where n1 + n2 = n. Thus, Ti /∈ (Li, Ri) for the first n1 observations, while Ti ∈ (Li, Ri)

for the last n2 observations. Based on the above information the likelihood function of the

observed data is given by

l(θ) = cθn1e−θ
∑n1

i=1
ti

n1+n2∏

i=n1+1

(
e−θli − e−θri

)
, (4)

where c is the normalizing constant which depends on α and β. Since we are not interested in

estimating α and β, we are not making it explicit. Based on (4), the log-likelihood becomes

ln l(θ) = L(θ) = ln c + n1 ln θ − θ
n1∑

i=1

ti +
n1+n2∑

i=n1+1

ln
(
e−θli − e−θri

)
. (5)
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Taking the derivative of L(θ) and setting it equal to 0, we obtain

∂L

∂θ
=

n1

θ
−

n1∑

i=1

ti +
n1+n2∑

i=n1+1

(ri − li)

eθ(ri−li) − 1
−

n1+n2∑

i=n1+1

li = 0. (6)

Therefore, θ̂, the MLE of θ, can be obtained by solving equation (6). Since (6) does not

admit an explicit solution, we provide an iterative procedure to solve for the MLE. Note

that (6) can be written as

h(θ) = θ, (7)

where

h(θ) =
1

∑n1+n2
i=n1+1 li +

∑n1
i=1 ti


n1 + θ

n1+n2∑

i=n1+1

zie
−θzi

1− e−θzi


 . (8)

Therefore, a simple iterative procedure can be used to solve (7). For example. we can start

with an initial guess θ(1), then obtain θ(2) = h(θ(1)) and so on. The iterative procedure may

be stopped if |θ(i) − θ(i+1)| < ε, where ε is some preassigned small positive number. For an

initial choice of θ, we can use θ(1) = n1/
∑n1

i=1 ti.

Alternatively, the EM algorithm also can be used to find the MLE of θ. First let us

obtain E(T |L < T < R), where L and R are fixed quantities and T follows an exponential

distribution with mean 1
θ
. Now

E(T |L < T < R) =
e−θL

(
L + 1

θ

)
− e−θR

(
R + 1

θ

)

e−θL − e−θR
. (9)

Note that (9) can be used to compute the EM algorithm. The pseudo likelihood function

will take the following form:

l(θ) = θn1+n2e
−θ

(∑n1
i=1

Ti+
∑n1+n2

i=n1+1
T

(s)
i

)
, (10)

where

T
(s)
i =

e−θLi

(
Li + 1

θ

)
− e−θRi

(
Ri + 1

θ

)

e−θLi − e−θRi
. (11)

Therefore, we use (9) for the ‘E’ step and then the ‘M’ step becomes quite trivial. The

details are given below.
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EM Algorithm:

• Step 1: Suppose θ(j) is the jth iterate of θ̂.

• Step 2: Compute T
(s)
i(j) by using (11) replacing θ by θ(j).

• Step 3: θ(j+1) = n1+n2∑n1
i=1

Ti+
∑n1+n2

i=n1+1
T

(s)

i(j)

3 Theoretical Results

Theorem 1: The iterative process provided in (7) will converge if

n1+n2∑

i=n1+1

ri ≤ 2
n1∑

i=1

ti + 3
n1+n2∑

i=n1+1

li. (12)

Proof of Theorem 1: Consider

|h′(θ)| = 1
∑n1

i=1 ti +
∑n1+n2

i=n1+1 li

∣∣∣∣∣∣

n1+n2∑

i=n1+1

zie
−θzi

(
1− e−θzi − θzi

)

(1− e−θzi)2

∣∣∣∣∣∣
.

Note that

|e−x||(1− e−x − x)|
|1− e−x|2 ≤ 1

2
for all x ≥ 0,

therefore,

|h′(θ)| ≤ 1

2

∑n1+n2
i=n1+1 zi∑n1

i=1 ti +
∑n1+n2

i=n1+1 li

We know that the iterative process converges if |h′(θ)| < 1, therefore, the result follows.

Now we need the following lemma to prove the consistency of the MLE.

Lemma 1:

1

n
L(θ) −→ g(θ) a.s.,

where

g(θ) = c′ + p(θ0) ln θ − θ

{
1

θ0

− (1− p(θ0))(α + β + 2θ0)

(α + θ0)(β + θ0)

}
− θ

(1− p(θ0))

(α + θ0)
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− αβ

α + θ0

[ ∞∑

i=1

1

i(β + iθ)
−

∞∑

i=1

1

i(β + iθ + θ0)

]
,

p(θ) =
αβ + βθ + θ2

(α + θ)(β + θ)
, andc′ =

1

n
ln c. (13)

Proof of Lemma 1: Note that

1

n
L(θ) = c′ +

n1

n
ln θ − θ

n

n1∑

i=1

Ti − θ

n

n1+n2∑

i=n1+1

Li +
1

n

n1+n2∑

i=n1+1

ln
(
1− e−θZi

)
.

The density function of T , conditional on the event that T /∈ (L, R) can be written as

fT |T /∈(L,R)(t) =
1

p(θ0)

{
θ0e

−θ0t

(
1− αe−βt

α− β

(
1− e−(α−β)t

))}
if α 6= β (14)

and

fT |T /∈(L,R)(t) =
1

p(θ0)

{
θ0e

−θ0t
(
1− αte−αt

)}
if α = β. (15)

Note that

p(θ) = Pθ (T /∈ (L,R)) ,

is as defined in (13). Now using (14) and (15)

E(T |T /∈ (L,R)) =
1

p(θ0)

[
1

θ0

− θ0

(α + θ0)2

]
if α = β,

=
1

p(θ0)

[
θ0

(α + θ0)2
+

1

θ0

− θ0

(α + θ0)2
− αθ0

α− β

(
1

(β + θ0)2
− 1

(α + θ0)2

)]

if α 6= β.

Using the fact that the density function of L conditional on the event T ∈ (L,R) is

fL|T∈(L,R)(x) =
1

1− p(θ0)
× αθ0

(β + θ0)
e−(α+θ0)x, for x > 0,

we have,

E(L|T ∈ (L,R)) =
1

1− p(θ0)
× αθ0

(β + θ0)(α + θ0)2
.

Similarly, since the density function of Z = R− L conditioned on T ∈ (L,R) is

fZ|T∈(L,R)(z) =
1

1− p(θ0)
× αβe−βz

(α + θ0)

(
1− e−θ0z

)
, for z > 0,
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therefore,

E
(
ln

(
1− e−θ0z

))
= − 1

1− p(θ0)
× αβ

(α + θ0)

[ ∞∑

i=1

1

i(β + iθ)
−

∞∑

i=1

1

i(β + iθ + θ0)

]
.

Now the result follows using n1

n
→ p(θ0) a.s., and the strong law of large numbers.

Lemma 2: g(θ) is a unimodal function, with a unique maximum.

Proof of Lemma 2: It follows from the fact that g′(0) = ∞, g′(∞) < 0 and g′′(θ) < 0.

Lemma 3: The MLE of θ0, say θ̂, will converge to θ∗, where θ∗ is the unique solution of the

non-linear equation

g′(θ) =
p(θ0)

θ
− 1

θ0

+
(1− p(θ0))(α + β + 2θ0)

(α + θ0)(β + θ0)
− 1− p(θ0)

(α + θ0)

− αβ

(α + θ0)

[ ∞∑

i=1

1

(β + θ0 + iθ)2
−

∞∑

i=1

1

(β + iθ)2

]
= 0, (16)

where p(θ) is as defined in (13).

Proof of Lemma 3: In this particular proof we denote θ̂ by θ̂n

Case 1: θ̂n is bounded for all n.

Suppose θ̂n does not converge to θ∗. Therefore, there exists a subsequence {nk} of {n}
and θ̃ 6= θ∗, such that θ̂nk

→ θ̃. Since θ̂nk
is the MLE,

1

nk

L(θ̂nk
) ≥ 1

nk

L(θ∗)

Taking limits on both sides of (3) we get

g(θ̃) ≥ g(θ∗),

which leads to a contradiction because θ∗ is the unique maximum of g(θ).
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Case 2: θ̂n is not bounded.

In this case there exists a subsequence {nk} of {n} such that θ̂nk
→∞. Note that

1

nk

L(θ̂nk
) ≥ 1

nk

L(θ∗),

and as θ̂nk
→∞, 1

nk
L(θ̂nk

) → −∞. Since 1
nk

L(θ∗) converges to a fixed number, it leads to a

contradiction.

Now since θ0 is a solution of (16), we have

Theorem 2: The MLE of θ is a consistent estimator of θ0.

Now we provide the asymptotic distribution of the MLE.

Theorem 3: The maximum likelihood estimator has the following asymptotic distribution

√
n(θ̂ − θ0)

d→ N(0,
σ2

c2
),

where

σ2 =

[
E

{(
T − 1

θ0

)2
∣∣∣∣∣ T /∈ (L,R)

}
−

({
E

(
T − 1

θ0

)∣∣∣∣ T /∈ (L,R)
}2

)]

+
[
E(L2|T ∈ (L,R))− (E(L|T ∈ (L,R)))2

]

+


E





(
Ze−θ0Z

1− e−θ0Z

)2
∣∣∣∣∣∣
T ∈ (L,R)



−

[
E

{(
Ze−θ0Z

1− e−θ0Z

)∣∣∣∣∣ T ∈ (L,R)

}]2



and

c =
p(θ0)

θ2
0

+ (1− p(θ0))

{
E

(
Z2e−θ0Z

(1− e−θ0Z)2

)∣∣∣∣∣ T ∈ (L,R)

}
.

To prove Theorem 3, we need the following lemma;

Lemma 4: Suppose Ui’s are a sequence of independent and identically distributed random

variables with E(U1) = 0, V (U1) = 1 and {N(n)} follows Binomial(n, p), i.e., the probability

mass function of N(n) is:

P (N(n) = i) =

(
n

i

)
pi(1− p)n−i; i = 0, . . . , n,
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where 0 < p < 1. Then as n →∞,

1√
N(n)

N(n)∑

i=1

Ui
d→ N(0, 1).

Proof of Lemma 4: Suppose

YN(n) =
1√

N(n)

N(n)∑

i=1

Ui

and the characteristic function of YN(n) is φN(n)(t). Then,

φN(n)(t) = E
(
eitYN(n)

)
= E

(
e

it 1√
N(n)

∑N(n)

i=1
Ui

)

=
n∑

k=0

E
(

e
it 1√

k

∑k

i=1
Ui

∣∣∣∣ N(n) = k
) (

n

k

)
pk(1− p)n−k.

Now if φU(.) denotes the characteristic function of U1, then for fixed t,

∣∣∣∣φN(n)(t)− e−
t2

2

∣∣∣∣ ≤
n∑

k=0

∣∣∣∣E
(

e
it 1√

k

∑k

i=1
Ui

∣∣∣∣ N(n) = k
)
− e−

t2

2

∣∣∣∣
(
n

k

)
pk(1− p)n−k

=
n∑

k=0

∣∣∣∣∣∣

(
φU

(
t√
k

))k

− e−
t2

2

∣∣∣∣∣∣

(
n

k

)
pk(1− p)n−k.

Since by Central Limit Theorem

lim
k→∞

φU

(
t√
k

)k

= e−
t2

2 ,

therefore, for a given ε > 0, choose N1(t) large enough so that for k ≥ N1(t)

∣∣∣∣∣∣
φU

(
t√
k

)k

− e−
t2

2

∣∣∣∣∣∣
≤ ε.

Moreover, for fixed N1(t), choose n large enough so that

N1(t)∑

i=0

(
n

i

)
pi(1− p)n−i ≤ ε.
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Therefore,

∣∣∣∣φN(n)(t)− e−
t2

2

∣∣∣∣ ≤
N1(t)∑

k=0

∣∣∣∣∣∣

(
φU

(
t√
k

))k

− e−
t2

2

∣∣∣∣∣∣

(
n

k

)
pk(1− p)n−k

+
n∑

k=N1(t)+1

∣∣∣∣∣∣

(
φU

(
t√
k

))k

− e−
t2

2

∣∣∣∣∣∣

(
n

k

)
pk(1− p)n−k

≤ 2ε + ε = 3ε.

Since ε is arbitrary, the result follows from the fact that e−
t2

2 is the characteristic function

of N(0, 1) random variable.

Proof of Theorem 3. Note that

L(θ) = n1 ln θ − θ
n1∑

i=1

Ti − θ
n1+n2∑

i=n1+1

Li +
n1+n2∑

i=n1+1

ln
(
1− e−θZi

)
,

L′(θ) =
n1

θ
−

n1∑

i=1

Ti −
n1+n2∑

i=n1+1

Li +
n1+n2∑

i=n1+1

Zie
−θZi

(1− e−θZi)
,

and

L′′(θ) = −n1

θ2
−

n1+n2∑

i=n1+1

Z2
i e
−θZi

(1− e−θZi)2
.

Using mean value theorem,

L′(θ̂)− L′(θ0) = (θ̂ − θ0)L
′′(θ̄),

where θ̄ is a point between θ̂ and θ0. Therefore,

√
n(θ̂ − θ0) = −

1√
n
L′(θ0)(

1
n
L′′(θ̄)

) .

Now the proof will be complete once we show that:

1√
n

L′(θ0) −→ N(0, σ2) in distribution (17)

and

1

n
L′′(θ̄) −→ c. a.s. (18)

Now note that (17) follows from Lemma 4. The proof of (18) follows from the fact that θ̄

converges to θ0 a.s and from the strong law of large numbers.
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4 Bayesian Analysis

In this section we consider a Bayesian formulation of the problem of estimating the parameter

θ. We will assume that the parameter θ has a gamma prior distribution with the shape

parameter a and scale parameter b, denoted by Gamma(a, b). The density function of the

prior density of θ for a, b > 0, is

π(θ) = π(θ|a, b) =
ba

Γ(a)
θa−1e−bθ. (19)

No prior distribution on the censoring parameters are assumed. Based on the above assump-

tion, the likelihood function of the observed data is

l(data|θ) = c θn1e−θ
∑n1

i=1
ti

n1+n2∏

i=n1+1

(
1− e−θzi

)
e
−θ

∑n1+n2
i=n1+1

li . (20)

By a slight abuse of the notation, writing zi = zn1+i and li = ln1+i we can rewrite (20) as

l(data|θ) = c θn1e−θ
∑n1

i=1
ti

n2∏

i=1

(
1− e−θzi

)
e−θ

∑n2
i=1

li . (21)

Based on (19), the joint density of the data and θ is

l(data|θ)π(θ). (22)

Based on (22), we obtain the posterior density of θ given the data as

π(θ|data) =
l(data|θ)π(θ)∫∞

0 l(data|θ)π(θ)dθ
. (23)

We can write the numerator of the right hand side of (23) as;

l(data|θ)π(θ) = c θa+n1−1e−θ(b+
∑n1

i=1
ti+

∑n2
i=1

li)
n2∏

i=1

(
1− e−θzi

)
. (24)

Note that
n2∏

i=1

(
1− e−θzi

)
=

∑

Pj

(−1)|Pj |e−θ(z.Pj), (25)
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where Pj is a vector length n2 and each entry of Pj is either a 0 or a 1. |Pj| denotes the sum

of elements of Pj and z = (z1, . . . , zn2). The summation on the right hand side of (25) is

over 2n2 elements and (z.Pj) denotes the usual dot product between the two vectors of equal

lengths. Using (25), the numerator of (23) can be written as

l(data|θ)π(θ) = c
∑

Pj

(−1)|Pj | θa+n1−1 e−θ(b+
∑n1

i=1
ti+

∑n2
i=1

li+(z.Pj)). (26)

So we obtain

∫ ∞

0
l(data|θ)π(θ)dθ = c

∑

Pj

(−1)|Pj | Γ(a + n1)

(b +
∑n1

i=1 ti +
∑n2

i=1 li + (z.Pj))a+n1
. (27)

Therefore, the posterior density of θ given the data for θ > 0, is

π(θ|data) =

∑
Pj

(−1)|Pj | θa+n1−1 e−θ(b+
∑n1

i=1
ti+

∑n2
i=1

li+(z.Pj))

∑
Pj

(−1)|Pj |Γ(a+N1)

(b+
∑n1

i=1
ti+

∑n2
i=1

li+(z.Pj))
a+n1

. (28)

Therefore, the Bayes estimate of θ under squared error loss function is

E(θ|data) =

∑
Pj

(−1)|Pj |

(b+
∑n1

i=1
ti+

∑n2
i=1

li+(z.Pj))
a+n1+1

∑
Pj

(−1)|Pj |

(b+
∑n1

i=1
ti+

∑n2
i=1

li+(z.Pj))
a+n1

. (29)

When n2 is small, the evaluation of E(θ|data) is not difficult, but for large n2 it is difficult to

compute numerically. We propose a simple Gibbs sampling technique to compute E(θ|data)

and for constructing the corresponding credible interval. Note that when n2 = 0, then,

π(θ|data) ∼ Gamma(a + n1, b +
n1∑

i=1

ti), (30)

as should be expected. Moreover, the conditional density of T , given T ∈ (L,R), is

fT |T∈(L,R)(x|θ) =
θe−θx

e−θL − e−θR
if L < x < R. (31)

Using (30) and (31) we propose the following Gibbs sampling scheme to generate θ from its

posterior distribution.
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Gibbs Sampling Scheme:

Step 1: Generate θ1,1 from Gamma(a + n1, b +
∑n1

i=1 ti).

Step 2: Generate t(n1+i) for i = 1, . . . , n2 from fT |T∈(ln1+i,rn1+i)(.|θ1,1).

Step 3: Generate θ2,1 from Gamma(a + n1 + n2, b +
∑n1

i=1 ti +
∑n1+n2

i=n1+1 t(i)).

Step 4: Go back to Step 2, and replace θ1,1 by θ2,1 and repeat Steps 2 and 3 for N times.

From the generated N θ2,j, the Bayes estimate of θ0, under squared error loss function

can be be computed as

1

N −M

N∑

j=M+1

θ2,j, (32)

where M is the burn-in sample. Similarly, using the method of Chen and Shao (1999), the

highest posterior density (HPD) credible interval of θ0 also can be constructed.

5 Numerical Results

In this section we mainly compare how the different methods work for small sample sizes

and for different censoring schemes. Simulations were carried out using the random number

generator RAN2 of Press et al. (1992), and based on 1000 replications each. The program

written in FORTRAN-77, can be obtained on request from the authors.

We considered different sample sizes namely n = 10, 20, 30, 40, 50 and different censoring

schemes. For the censoring scheme we considered the following combinations of (1/α, 1/β)

= (0.5, 0.25), (0.5, 0.5), (0.5, 0.75), (1.25, 0.25), (1.25, 0.50) and (1.25, 0.75). In all cases

without loss of generality, we have kept θ0 = 1. Note that the censoring percentages vary

between 10% to 30%. From the given sample we compute maximum likelihood estimator

of θ0 using the EM algorithm and also using the iterative method proposed in section 2.

It is observed that in both cases they converge to the same value. We also compute the

95% confidence intervals based on the asymptotic distribution of the maximum likelihood
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estimator and replacing the expected Fisher information by the empirical Fisher information.

Meeker and Escobar (1998) reported that the confidence interval based on the asymptotic

distribution of ln θ̂ is usually superior to one of θ̂. We computed the confidence interval

based on the asymptotic distribution of ln θ̂. For comparison purposes, the Bayes estimates

under squared error loss function and the corresponding 95% Monte Carlo HPD credible

interval as suggested by Chen and Shao (1999) are also reported in Tables 1 and 2. All

the Bayes estimates are computed using the prior a = 0 and b = 0. Note that the above

prior is non-informative and non-proper prior. Although, the prior is non-proper but the

corresponding posterior has a proper density function. As suggested by Congdon (2001),

we tried the prior a = 0.0001 and b = 0.0001, which is a proper prior but which is almost

non-informative, the results are not significantly different and they are not reported here.

From Table 1 one can see that as the sample size increases, the average biases and mean

squared errors decrease for both the maximum likelihood estimator and Bayes estimator

for all the censoring schemes. It verifies the consistency properties of both the estimators.

For fixed sample size and for fixed α, as 1/β increases (severe censoring), the biases and

the mean squared errors both increase for the maximum likelihood estimates. In case of

Bayes estimates although the mean squared errors decrease, the same can not be said about

the biases. Apart from this, they behave quite similarly both in terms of biases and mean

squared errors.

From Table 2 it is clear that as the sample size increases, the average lengths of the

confidence/ credible intervals decrease for all the 3 suggested methods. Similarly, for fixed

sample size and for fixed α as 1/β increases, the average lengths increase as expected. For

all the three cases, the coverage percentages are quite close to the nominal level (95%) even

when the sample size is as small as 10. The performances of all the methods are quite similar

in nature. The Bayes credible intervals are slightly larger than the asymptotic confidence
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intervals, for moderate sample sizes (namely 20, 30 and 40). The average confidence intervals

based on the transformed maximum likelihood estimators (MEE)are slightly longer compared

to the other two.

6 Data Analysis

For illustrative purposes, we present a real data analysis results using our proposed method.

The data set is taken from Lawless (1982, p. 491) and consists of failure times for 36

appliances subject to an automatic life tests. Although the original data has also the cause

of failure with each failure time, but here we are interested in the overall failure distribution

and we do not consider the cause of failure in this case. This data set was analyzed using

exponential and Weibull models by Kundu and Basu (2000) and it was observed that the

exponential model can be used instead of Weibull model. For the complete data set it is

observed that the maximum likelihood estimate of θ0 is 0.00036. The Kolmogorov-Smirnov

distance between the empirical distribution function and the fitted exponential distribution

function is 0.1944 and the corresponding p value is 0.1317. Therefore, exponential model

can not be rejected.

Now we created an artificial data by middle censoring, whose left end was an exponential

random variable with mean 500 and the width was exponential with mean 1000. The data

after rearranging are presented below:

Data Set: 11, 35, 49, 170, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451, 2471,

2551, 2565, 2568, 2694, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 6367, 6976,

7846, 13403, (118.66, 1224.04), (377.76, 2011.51), (351.65, 720.48), (125.96, 4226.08).

The summary statistics of the data are as follows: n = 36, n1 = 32, n2 = 4,
∑n1

i=1 ti =
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Figure 1: Log-likelihood surface of the given data set.

95125,
∑n2

i=n1+1 ri = 8182.11,
∑n2

i=n1+1 li = 974.03. Therefore, the iterative process starts with

the initial guess θ(1) = 32/95125 = 0.000336. Since ri, ti and li satisfy the condition (12)

of Theorem 1, therefore, the proposed iterative process will converge. The log-likelihood

surface with out the additive constant is provided in Figure 1. It clearly shows that the

log-likelihood surface is a unimodal function, and therefore the EM algorithm should not

have any problem of convergence. The iterative process (7) stops after three iterations and

the solution is 0.000364. The 95% confidence intervals based on the asymptotic distribution

of θ̂ and ln θ̂ are (0.00024, 0.00048) and (0.00026, 0.00051) respectively. The Bayes estimate

(the posterior mean) under the non-informative and non-proper prior becomes 0.000362 and

the corresponding 95% HPD credible interval is (0.00025, 0.00049). The histogram of the

generated posterior sample and the fitted gamma distribution are presented in Figure 2. In

the same figure we have also plotted the fitted posterior density function assuming n2 = 0.

It shows the posterior information of the censored observations.
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Figure 2: Histogram of the generated 1000 posterior sample and the fitted posterior density
functions.

7 Conclusions

In this paper we have considered inference for the exponential distribution when the data is

middle censored. Both the classical and Bayesian frameworks are developed. Although this

paper focuses on exponential lifetime distributions, similar inferential procedures can be de-

veloped for other lifetime distributions such as the Weibull, gamma, log-normal distributions

etc. Moreover, in this paper it is assumed that the censoring mechanism is independent and

non-informative of the lifetime distribution of the population. Although, it will be difficult,

but it might be interesting to consider the case when these assumptions are not valid. We

believe, more work is needed along these directions.
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Table 1: The average estimates and the corresponding mean squared errors (within brackets)
are reported for the different estimators. Here true value of θ0 = 1.

n Methods (0.5,0.25) (0.5, 0.5) (0.5, 0.75) (1.25, 0.25) (1.25, 0.5) (1.25, 0.75)

10 MLE 1.1114 1.1167 1.1295 1.1130 1.1161 1.1237
(0.1506) (0.1618) (0.1836) (0.1547) (0.1609) (0.1738)

Bayes 1.1043 1.1189 1.1157 1.1220 1.1075 1.1389
(0.1492) (0.1629) (0.1796) (0.1799) (0.1589) (0.2022)

20 MLE 1.0422 1.0446 1.0492 1.0416 1.0436 1.0440
(0.0631) (0.0654) (0.0707) (0.0633) (0.0639) (0.0656)

Bayes 1.0479 1.0567 1.0471 1.0744 1.0603 1.0485
(0.0694) (0.0689) (0.0739) (0.0704) (0.0693) (0.0613)

30 MLE 1.0352 1.0366 1.0373 1.0350 1.0361 1.0363
(0.0398) (0.0407) (0.0419) (0.0393) (0.0400) (0.0405)

Bayes 1.0361 1.0349 1.0297 1.0370 1.0335 1.0430
(0.0409) (0.0408) (0.0415) (0.0395) (0.0420) (0.0398)

40 MLE 1.0232 1.0248 1.0254 1.0226 1.0228 1.0239
(0.0277) (0.0283) (0.0287) (0.0276) (0.0277) (0.0286)

Bayes 1.0308 1.0182 1.0313 1.0286 1.0327 1.0282
(0.0321) (0.0265) (0.0314) (0.0299) (0.0303) (0.0301)

50 MLE 1.0178 1.0189 1.0195 1.0176 1.0182 1.0182
(0.0229) (0.0235) (0.0242) (0.0276) (0.0229) (0.0233)

Bayes 1.0133 1.0221 1.0136 1.0191 1.0131 1.0224
(0.0198) (0.0225) (0.0211) (0.0226) 0.0209 (0.0227)
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Table 2: The average lengths of the confidence/ credible intervals and the corresponding
coverage percentages (within brackets) are reported. Here true value of θ0 = 1.

n Methods (0.5,0.25) (0.5, 0.5) (0.5, 0.75) (1.25, 0.25) (1.25, 0.5) (1.25, 0.75)

10 MLE 1.3815 1.4028 1.4440 1.3820 1.3953 1.4194
(0.97) (0.97) (0.97) (0.96) (0.96) (0.96)

Bayes 1.3531 1.3874 1.4043 1.3706 1.3642 1.4160
(0.96) (0.95) (0.95) (0.94) (0.95) (0.94)

MEE 1.4722 1.4969 1.5447 1.4726 1.4879 1.5158
(0.95) (0.95) (0.94) (0.95) (0.95) (0.95)

20 MLE 0.9154 0.9253 0.9418 0.9143 0.9210 0.9289
(0.94) (0.95) (0.94) (0.95) (0.95) (0.94)

Bayes 0.9348 0.9459 0.9480 0.9612 0.9480 0.9402
(0.94) (0.94) (0.94) (0.95) (0.94) (0.96)

MEE 0.9452 0.9559 0.9738 0.9439 0.9512 0.9598
(0.95) (0.95) (0.94) (0.95) (0.94) (0.95)

30 MLE 0.7423 0.7489 0.7584 0.7416 0.7461 0.7519
(0.95) (0.95) (0.94) (0.95) (0.96) (0.95)

Bayes 0.7473 0.7554 0.7646 0.7486 0.7488 0.7644
(0.95) (0.95) (0.95) (0.96) (0.95) (0.95)

MEE 0.7583 0.7653 0.7754 0.7576 0.7624 0.7685
(0.96) (0.95) (0.95) (0.96) (0.96) 0.95

40 MLE 0.6354 0.6411 0.6491 0.6346 0.6379 0.6436
(0.96) (0.96) (0.97) (0.96) (0.96) (0.96)

Bayes 0.6499 0.6433 0.6536 0.6437 0.6534 0.6550
(0.95) (0.96) (0.95) (0.96) (0.96) (0.96)

MEE 0.6456 0.6517 0.6600 0.6449 0.6483 0.6542
(0.96) (0.96) (0.95) (0.96) (0.96) 0.95

50 MLE 0.5652 0.5701 0.5772 0.5648 0.5679 0.5722
(0.95) (0.95) (0.95) (0.96) (0.95) (0.96)

Bayes 0.5642 0.5699 0.5699 0.5631 0.5665 0.5738
(0.95) (0.95) (0.95) (0.95) (0.95) (0.95)

MEE 0.5725 0.5776 0.5850 0.5721 0.5753 0.5798
(0.94) (0.94) (0.95) (0.94) (0.95) (0.95)
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