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Abstract

Acceptance sampling plans for generalized exponential distribution when the lifetime
experiment is truncated at a pre-determined time, are provided in this manuscript.
The tables are provided for the minimum sample size required to ensure a certain
median life of the experimental unit when the shape parameter is two. The operating
characteristic function values of the sampling plans and the associated producer’s risks
are also presented. It is shown that the tables presented here can be used if instead of
median life, other percentile life is chosen as the criterion or if the shape parameter is
not two. Examples are provided for illustrative purposes.
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1 Introduction

Acceptance sampling plan is an essential tool in the Statistical Quality Control. In most

of the statistical quality control experiment, it is not possible to perform hundred percent

inspection, due to various reasons. The acceptance sampling plan was first applied in the US

Military for testing the bullets during World War II. For example, if every bullet was tested

in advance, no bullets were available for shipment, and on the other hand if no bullets were

tested, then disaster might occur in the battle field at the crucial time. Acceptance sampling

plan is a ‘middle path’ between hundred percent inspection and no inspection at all.

In the acceptance sampling plan, a consumer decides to accept or reject the lot based

on a random sample collected from the lot. The problem can be formulated as follows.

Suppose, n units are placed in a life test and the experiment is stopped at a predetermined

time T . The number of failures till the time point T is observed, and suppose it is m. The

lot is accepted if m is less than or equal to the acceptance number, say c, otherwise it is

rejected. Therefore, any acceptance sampling plan provides n, the number of units on test,

and the acceptance number c. For a given acceptance sampling plan, the consumer’s and

producer’s risk are the probabilities that a bad lot is accepted and a good lot is rejected,

respectively. Usually, with every acceptance sampling plan, the associated consumer’s and

producer’s risks are also presented.

The standard approach to handle this problem is to assume a parametric model for the

lifetime distribution and then find the minimum sample size needed to ensure a certain

mean/ median life of the lifetime distribution of the items in the lot, when the experiment

is stopped at a pre-determined time, say T . Therefore, in any time truncated acceptance

sampling plan, other than n, c, T , there will be another component, say θm, where θm is

the specified mean/ median life of the distribution and it acts as a quality parameter for the
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lifetime distribution under consideration.

Extensive work has been done on the acceptance sampling plan since its inception. Dif-

ferent parametric forms have been assumed and extensive tables are available for different

parametric values and for different sample sizes. Acceptance sampling plans based on trun-

cated life tests for exponential distribution was first discussed by Epstein [5], see also Sobel

and Tischendrof [15]. The results were extended for the Weibull distribution by Goode and

Kao [6]. Gupta and Groll [7] and Gupta [8] provided extensive tables on acceptance sampling

plans for gamma, normal and log-normal distributions. Kantam and Rosaiah [11], Kantam et

al. [12], Rosaiah and Kantam [14], and Balakrishnan et al. [4] provide the time truncated ac-

ceptance plans for half-logistics, log-logistics, Rayleigh and generalized Birnbaum-Saunders

distributions respectively.

Recently, it is observed that the generalized exponential distribution has been used quite

effectively to analyze lifetime data. In many cases it is observed that it provides a better fit

than the Weibull, gamma, log-normal or generalized Rayleigh distributions. The main aim

of this paper is to develop the time truncated acceptance sampling plans for the generalized

exponential distribution and compare the results with the existing ones. It is known that

for the generalized exponential distribution mean is not in a compact form, but the median

is in a compact form. Moreover, it is suggested by Gupta [8] that for a skewed distribution

the median represents a better quality parameter than the mean. On the other hand, for a

symmetric distribution, mean is preferable to use as a quality parameter. Since generalized

exponential distribution is a skewed distribution we prefer to use the median as the quality

parameter, and it will be denoted by θm. In this manuscript, based on the assumptions that

the lifetime follows generalized exponential distribution, we present a methodology to find

the minimum sample size required to ensure a specified median life of the items under study.

It is further assumed that the life testing experiment will be stopped at a pre-determined
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time T , if more than c failures does not occur before that stipulated time. Otherwise the

experiment is stopped as soon as (c+ 1)-th failure occurs.

The lot is accepted if the specified median is greater than a specified quantity (to ensure a

certain quality of the product) with a pre-fixed probability 1−P ∗, specified by the consumer

and it is known as the consumer’s risk. For a given acceptance sampling plan, a good lot

might be rejected with a non-zero probability and that is known as the producer’s risk.

For different acceptance plans, we present the associated producer’s risk also, based on the

operating characteristic function values. In practice, instead of median life the consumer

may prefer to characterize the quality based on some other percentile point (may be 75-th

percentile point). We discuss how to use the present tables (based on medians) for other

percentile points also. Two examples have been discussed for illustrative purposes.

Rest of the paper is organized as follows. In section 2, we give a brief description of the

generalized exponential (GE) distribution. Acceptance sampling plans based on the median

are provided in section 3. How these tables can be used for other percentile points also are

discussed in section 4. An approximation of the minimum sample size is provided in section

5. Descriptions of the tables and illustrative examples are provided in section 6 and finally

we conclude the paper in section 7.

2 Generalized Exponential Distribution

The two-parameter generalized exponential distribution has the following probability density

function (PDF);

f(x;α, λ) =
α

λ
e−

x
λ

(
1− e−

x
λ

)α−1
; x > 0. (1)

Here α > 0 and λ > 0 are the shape and scale parameters respectively. From now on a

generalized exponential random variable with the PDF (1) will be denoted by GE(α, λ).
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As the name suggests, this is an extension of the exponential distribution, similarly as the

Weibull and gamma distribution, but in different ways.

The two-parameter generalized exponential distribution was originally introduced by

Gupta and Kundu [9] as a possible alternative to the well known Weibull and Gamma

distributions. Since then extensive work has been done on this distribution. It is further

observed that the generalized exponential distribution can be used quite effectively in many

circumstances, in place of log-normal or generalized Rayleigh distribution also. Statistical

inferences, order statistics, closeness properties with other distributions have been discussed

by several authors. The readers are referred to the recent review article by Gupta and Kundu

[10] for a current account on the generalized exponential distribution.

It is observed that the shape of the PDF and hazard functions (HF) of the generalized

exponential distribution depend on the shape parameter α. The PDF is a decreasing function

or an unimodal function if 0 < α ≤ 1 or α > 1 respectively. The HF of the generalized

exponential distribution is a decreasing function if α < 1 and for α > 1 it is an increasing

function. The PDFs and HFs of the generalized exponential distribution are very similar

to those of Weibull and gamma distributions. It is also observed in different studies that

generalized exponential distribution might fit better than Weibull or gamma distribution in

some cases. In different studies it has been shown that for certain ranges of the parameter

values, it is extremely difficult to distinguish between GE and Weibull, gamma, log-normal,

generalized Rayleigh distributions.

The cumulative distribution function (CDF) of GE(α, λ) is given by

FGE(x;α, λ) =
(
1− e−x/λ

)α
. (2)

If X ∼ GE(α, λ),then the mean and variance of X can be expressed as

E(X) = λ [ψ(α+ 1)− ψ(1)] , V (X) = λ2 [ψ′(1)− ψ′(α + 1)] . (3)
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Here ψ(·) and ψ′(·) are the digamma and polygamma functions respectively, i.e.

ψ(u) =
d

du
Γ(u), ψ′(u) =

d

du
ψ(u), where Γ(u) =

∫ ∞

0
xu−1e−xdx.

It is clear that both the mean and variance are increasing functions of λ. The p-th percentile

point of GE(α, λ), say θp = F−1
GE(p;α, λ) is given by

θp = −λ ln
(
1− p

1
α

)
. (4)

Therefore, the median of GE(α, λ) becomes;

θm = −λ ln

1−

(
1

2

) 1
α


 . (5)

From now on unless otherwise mentioned, we treat θm as the quality parameter. From (5)

it is clear that for fixed α = α0, θm ≥ θ0
m ⇔ λ ≥ λ0

m, where

λ0
m =

θ0
m

− ln
(
1−

(
1
2

) 1
α0

) · (6)

Note that λ0
m also depends on α0, for brevity we do not make it explicit. Now we develop

the acceptance sampling plans for the generalized exponential distribution to ensure that

the median lifetime of the items under study exceeds a pre-determined quality provided by

the consumer say θ0
m, equivalently λ exceeds λ

0
m, with a minimum probability P

∗.

3 Acceptance Sampling Plans

In this section, we provide the acceptance sampling plans under the assumptions that life-

time distribution follows a two-parameter GE(α, λ). It is further assumed that the shape

parameter α is known. In acceptance sampling plans, usually the test terminates at a pre-

specified time T and the number of failures (not the actual failure times) during this time

point are noted. Based on the number of failed items, a confidence limit (lower) on the
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median (in this case) is formed. Alternatively, based on the number of failures, it is then

desired to establish a specified median life with a given probability of at least P ∗, specified

by the consumer. In this proposed acceptance sampling plans, the decision to accept the

specified median takes place, if and only if the number of failures m at the end of the time

point T does not exceed c, the acceptance number. Naturally, if more than c failures already

occurs before T , there is no point in continuing the test. In this case as soon as (c + 1)-th

failure takes place before time point T , the test terminates with the decision not to accept

the lot.

Under these circumstances, one wants to find out the smallest sample size necessary

to achieve these objectives. Therefore, as mentioned earlier an acceptance sampling plan

consists of (a) the number of units n to be used for testing purposes, (b) the acceptance

number c, (c) the ratio
T

λ0
m

, where λ0
m is same as defined in (6), corresponds to θ

0
m, the

specified median life of the given population GE(α, λ) and T is the maximum testing time.

The shape parameter α0 and the prescribed (bare) median life are provided before hand.

The choice of c, T and n will be made in general from the producer’s risk, which is the

probability of rejecting a good lot, i.e., a lot for which the true median life is greater than

or equal to the specified median life. On the other hand the consumer’s risk is fixed in this

formulation and can not exceed 1 - P ∗. Therefore, it can be seen that P ∗ is the confidence

level in the sense that the chance of rejecting a lot having median θ ≤ θ0
m is at least P

∗.

Finally it should be pointed out clearly that whenever we are talking about a lot, it means

a lot of very large size, so that binomial distribution can be used. Moreover, the acceptance

and rejection of the lot are equivalent to the acceptance or rejection of the hypothesis on

the quality parameter, namely θ ≥ θ0
m. The problem can be described mathematically as

follows; given a number 0 < P ∗ < 1, an experimental (maximum) time point T , the median

value θ0
m and an acceptance number c, we want to find the smallest positive integer n, so
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that if the observed number of failures m does not exceed c, it is ensured that θm ≥ θ0
m with

a minimum probability P ∗.

In this case for given c, P ∗, T , α0 and θ
0
m, we need to find n, the smallest positive integer,

which satisfies the inequality

c∑

i=0

(
n

i

)
pi(1− p)n−i ≤ 1− P ∗, (7)

where

p = FGE(T ;α, λ) =
(
1− e−

T
λm

)α
. (8)

It is clear that p depends only on the ratio
T

λ0
m

. It is a monotonically increasing function of

T

λ0
m

and it is a decreasing function of λ0
m. Because of the monotonicity, it may be observed

that in (7) we can establish with probability P ∗ that FGE

(
T

λ

)
≤ FGE

(
T

λ0
m

)
, which implies

λ ≥ λ0
m. Therefore, if n is the smallest integer which satisfies (7), then for the same n,

replacing p with FGE(T ;α0, λ), (7) will satisfy for all λ ≥ λ0
m. Note that p as defined in (8)

depends only on the ratio
T

λ0
m

for fixed α = α0.

In Table 1, we present the minimum values of n, satisfying (7) for P ∗ = 0.75, 0.90, 0.95,

0.99 and for
T

λ0
m

= 0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712, keeping α0 fixed.

We mainly choose these P ∗ and
T

λm
values so that we can compare our results with those

obtained by Gupta and Groll [7], Gupta [8], Kantam et al. [12], Baklizi and El Masri [2] and

Balakrishnan et al. [4].

3.1 Operating Characteristic Functions of the Sampling Plans(
n, c, T

λ0
m

)

The operating characteristic (OC) function of the sampling plan
(
n, c, T

λ0
m

)
provides the

probability of accepting the lot. For the above acceptance sampling plan this probability is
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given by

OC(p) = P{Accepting a lot} =
c∑

i=0

(
n

i

)
pi(1− p)n−i = 1−Bp(c+ 1, n− c), (9)

here Bp(c+ 1, n− c) is the incomplete beta function and here p is as defined in (8). Bp(c+

1, n − c) is an increasing function of p, and therefore, OC(p) is a decreasing function of p.

Moreover, for fixed T , p is a decreasing function of λ ≥ λ0
m. Based on (9), for fixed α =

α0, and c, the operating characteristic function values as a function of
λ

λ0
m

are presented in

Table 2, for different values of P ∗ and for the given acceptance sampling plans.

3.2 Producer’s Risk

The producer’s risk is the probability of rejection of the lot, when θm ≥ θ0
m, or equivalently

λ ≥ λ0
m. It can be computed as follows;

PR(p) = P{Rejecting a lot} = 1− P{Accepting the Lot|λ > λ0
m}

=
n∑

i=c+1

(
n

i

)
pi(1− p)n−i = Bp(c+ 1, n− c).

For the given sampling plan, and for a given value of the producer’s risk, say γ, one may be

interested in knowing the minimum value of
λ

λ0
m

, that will ensure the producer’s risk to be

at most γ. The
λ

λ0
m

is the smallest quantity for which p =
(
1− e−

T
λ

)α0

=

(
1− e

− T

λ0
m
×
λ0
m
λ

)α0

satisfies the inequality

PR(p) =
n∑

i=c+1

(
n

i

)
pi(1− p)n−i ≤ γ. (10)

For a given acceptance sampling plan

(
n, c,

T

λ0
m

)
, and for a given P ∗, the minimum value of

λ

λ0
m

, satisfying (10) are computed and presented in Table 3.
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4 Extensions and Approximations

4.1 Sampling Plans for Other Percentile Points

So far we have discussed the acceptance sampling plans for a given median life. Now in this

section we want to describe how these tables can be used for other percentile points also.

Suppose, it is desired to obtain the acceptance sampling plans for the given p-th percentile

point of GE(α, λ) given by

θp = −λ ln
(
1− p

1
α

)
. (11)

In this case, we are treating θp as the quality parameter and it is desired that given α = α0,

we want an acceptance sampling plans such that θp ≥ θ0
p, equivalently λp ≥ λ0

p, where

λp =
θp

− ln
(
1− p

1
α0

) , and λ0
p =

θ0
p

− ln
(
1− p

1
α0

) .· (12)

Let us denote the time truncation parameter as T̃ which may be different than T . Therefore,

here for given c, P ∗, T̃ , α0, and θ
0
p, we want to find n, the smallest positive integer n, which

satisfies
c∑

i=0

(
n

i

)
pi(1− p)n−i ≤ 1− P ∗, (13)

where

p =

(
1− e

− T̃

λ0
p

)α0

. (14)

Therefore, Table 1 (based on median) can be used for other percentiles also if
T̃

λ0
p

=
T

λ0
m

.

4.2 Sampling Plans for Other Shape Parameters

In Table 1 we have presented the sampling plans when α0 = 2. But the natural question is

how to use this table for other shape parameters also. Let α0 denote the tabulated value and

α denote the true value. In this case also let us denote by T̃ , the time truncation parameter
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associated with the new α value, which may be different than T . In this subsection only let

us denote

λm = −
θm

ln
(
1− 1

2

) 1
α

(15)

and λ0
m is same as defined in (6). Therefore, when the shape parameter is α,

P{Accepting the Lot} =
c∑

i=0

(
n

i

)
pi(1− p)n−i, (16)

here p =
(
1− e−

T̃
λm

)α
. Now equating

p =
(
1− e−

T̃
λm

)α
=
(
1− e

− T

λ0
m

)α0

(17)

we obtain

T̃

λm
= − ln

[
1−

(
1− e

− T

λ0
m

)α0
α

]
. (18)

Therefore, the same table can be used for other α values also, using
T̃

λm
as given in (18),

instead of
T

λ0
m

4.3 Approximations

As it has been mentioned earlier that Tables 1 and 4 have been obtained using a trial and

error method on n, and using the monotonicity property of n with respect to p. In all these

calculations, it has been assumed that the lot is very large and p is not very small, so that

the binomial approximation can be used. If p is very small and n is large, then binomial

distribution is approximated by the Poisson distribution with mean β = np. Therefore, (7)

can be written as
c∑

i=0

e−ββi

i!
≤ 1− P ∗, (19)

where β = n
(
1− e

− T

λ0
m

)α0

. We have

c∑

i=0

e−ββi

i!
= 1−Gc+1(β, 1), (20)
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where Gk(x, δ) denotes the cumulative distribution function of a gamma distribution with

the shape and scale parameters as k and δ respectively, i.e.

Gk(x; δ) =
δk

Γ(k)

∫ x

0
tk−1e−δtdt. (21)

Therefore, if γc+1,P ∗ denotes the P ∗ percentage point of a standardized (scale parameter one)

gamma variable with the shape parameter c+ 1, then

n ≈




γc+1,P ∗

(
1− e

− T

λ0
m

)α0


+ 1, (22)

here [x] represents the largest integer less than or equal to x. Now using the relation between

the gamma and χ2 random variables, we immediately obtain

n ≈




χ2
2c+2,P ∗

2
(
1− e

− T

λ0
m

)α0


+ 1, (23)

here χ2
2c+2,P ∗ denotes the P ∗ percentage point of a χ2 variable with degrees of freedom 2c+2.

4.4 Descriptions of Tables and Examples

In Table 1 we provide the minimum sample size required to ascertain that the median life

exceeds θ0
m with probability at least P

∗, the corresponding acceptance number c and when

α0 = 2. It has been prepared by using (a) trial and error method on n, (b) monotonicity

property of n with respect to p, and (c) binomial probabilities. For example in Table 1, when

P ∗ = 0.90,
T

λ0
m

= 1.571, c = 2, the corresponding table value is 6. It implies that out of 6

items, if 2 items fail before time point T , then a 90% upper confidence interval of λ will be

(
T

1.571
,∞). In other words, if out of 9 items, less than or equal to 2 items fail before time

point T , then we can accept the lot with probability 0.90 with the assurance that

λ ≥ T

1.571
⇔ θm ≥

T

1.571
×

− ln


1−

√
1

2




 = T × 0.782.
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Table 2 represents operating characteristic function values for the time truncated accep-

tance sampling plan obtained from Table 1, for different values of P ∗ and for different values

of
λ

λ0
m

, when c = 2. For example, when P ∗ = 0.90,
T

λ0
m

= 1.571, c = 2, the table value is

0.9556 when
λ

λ0
m

= 4. It implies, if one accepts the above time truncated acceptance sam-

pling plan, i.e. the lot is accepted if out of 6 items, less than or equal to 2 items fail before

time point T , then if λ ≥ 4 × T

1.571
or θm ≥ T × 4 × 0.782, then the lot will be accepted

with probability at least 0.9556.

Table 3 represents the minimum ratio of the true median life to the specified median life

for the acceptance of a lot with the producer’s risk 0.05 and when α0 = 2. In this case for

example, when the consumer’s risk is 10%, i.e. P ∗ = 0.90, c = 2,
T

λ0
m

= 1.571, the table

value
λ

λ0
m

=
θm
θ0
m

= 3.9. It implies if θm ≥ T × 0.782 × 3.9, then with n = 6 (obtained from

Table 1) and c = 2, the lot will be rejected with probability less than or equal to 0.05.

Example 1: Suppose it is assumed that the lifetime distribution of the product under study

follows a generalized exponential distribution with α0 = 2. An experimenter wants to know

the minimum sample size to be considered to make a decision (accepting or rejecting the

lot), when he/ she wants the true median life should be at least θ0
m = 1000 units with the

probability of accepting a bad lot less than or equal to 0.01 or P ∗ = 0.99. It is also assumed

that the maximum affordable time is 767 units and the maximum affordable number of

failures is 2. Since

λ0
m =

1000

− ln
(
1−

(
1
2

) 1
2

) = 814.37, and
T

λ0
m

= 0.942, (24)

from Table 1 we obtain n = 15. Therefore, out of 15 items if not more than 2 items fail before

T = 767 units of time, the lot can be accepted with the assurance that the true median life

is at least 1000 with the probability 0.99.

Example 2: Continuing with the same example, suppose instead of median life the prac-
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titioner wants that the 75-th percentile life should exceed 1275 units, where the affordable

time is 1000 units and the affordable number of failures is 5. In this case

λ0
p =

1275

− ln(1−
√
0.75)

= 634.2 ⇒ T

λ0
p

= 1.57. (25)

If we want P ∗ = 0.95, and c = 5, then using Table 1 we get n = 14, using the column

corresponds
T

λ0
m

= 1.571.

Example 3: Now we consider a data set which was already considered by Wood [17],

Rosaiah and Kantam [14] and recently by Balakrishnan et al. [4]. The data set represents

the failure time in hours of a software, which represents the lifetimes from the starting of the

execution of the software until which the failure of the software is experienced. We have the

following observations; 519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218. The problem can

be stated as follows. If the assured median life is 1000 hours, then with P ∗ = 0.90, whether

the lot can be accepted or not?

First we check whether the generalized exponential distribution can be used or not. The

MLEs of α and λ are 2.6531 and 0.6547 respectively. The Kolmogorov-Smirnov distance

between the observed and fitted distribution functions is 0.125 with the associated p value

0.99. Therefore, generalized exponential distribution provides a very good fit. Now in our

study we have assumed α to be known as 2.65 and T = 1070 hours. Based on that we obtain

λ0
m =

1000

− ln
(
1−

(
1
2

) 1
2.65

) = 680.73, and
T

λ0
m

= 1.572. (26)

From Table 1, corresponds to the column
T

λ0
m

= 1.571, and for P ∗ = 0.90 we obtain n = 9

when c = 4. Therefore, if the number of failures before T = 1070 hours, is less than or equal

to 4, we can accept the lot with the assured median level 1000 hours, with probability 0.90.

Since the number of failures before T = 1070 hours is only 2, therefore we can accept the lot

with the above specifications.
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5 Conclusions

In this paper we have considered the time truncated acceptance sampling plan for the gen-

eralized exponential distribution. It is assumed that the shape parameter is known and

we have presented the table for the minimum sample size required to guarantee a certain

median life of the experimental units. We have also presented the operating characteristic

function values and the associated producer’s risks. Although we have provided the Tables

when the shape parameter is 2, and for the medians only, but the tables can be used for

other shape parameters and other percentiles also. We have provided several examples to

illustrate the tables. It may be pointed out that Aslam and Shabaz [1] also considered the

economic reliability test plans using the generalized exponential distribution. The problem

of interests and the approaches are quite different than the present manuscript.

Finally it should be mentioned that our results can be used for other distributions also

which can be converted to generalized exponential distribution. For example the generalized

Rayleigh (scaled Burr Type X) distribution, introduced by Surles and Padgett [16], see

also Kundu and Raqab [13], can be easily converted to generalized exponential distribution.

Therefore, our tables can be used to develop the acceptance sampling plan for generalized

Rayleigh distribution.
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Table 1: Minimum sample size necessary to assure that the median life exceeds a given
value θ0

m, with probability P
∗ and the corresponding acceptance number c when the shape

parameter α0 = 2.

T/λ0
m

P ∗ c ↓ 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0 5 3 2 2 1 1 1 1
1 9 5 4 3 2 2 2 2
2 13 8 6 5 4 3 3 3
3 17 10 8 6 5 4 4 4
4 21 13 9 8 6 5 5 5

0.75 5 25 15 11 9 7 6 6 6
6 29 17 13 11 8 8 7 7
7 33 20 15 12 10 9 8 8
8 36 22 16 14 11 10 9 9
9 40 24 18 15 12 11 10 10
10 44 27 20 16 13 12 11 11

0 7 3 2 2 2 1 1 1
1 12 7 5 4 3 2 2 2
2 17 10 7 6 4 4 3 3
3 22 13 9 7 5 5 4 4
4 26 15 11 9 7 6 5 5

0.90 5 30 18 13 11 8 7 6 6
6 35 20 15 12 9 8 8 7
7 39 23 17 14 10 9 9 8
8 43 25 19 15 12 10 10 9
9 47 28 20 17 13 11 11 10
10 51 30 22 18 14 12 12 11

0 9 5 4 3 2 1 1 1
1 15 9 6 5 4 3 3 2
2 20 12 8 6 5 4 3 3
3 25 14 10 8 6 5 5 4
4 29 17 12 10 7 6 6 5

0.95 5 34 20 14 11 8 7 7 6
6 38 22 16 13 10 8 8 7
7 43 25 18 15 11 10 9 8
8 47 28 20 16 12 11 10 10
9 51 30 22 18 13 12 11 11
10 55 33 24 19 15 13 12 12

0 14 8 5 4 3 2 2 1
1 21 12 8 6 4 3 3 3
2 26 15 10 8 6 4 4 4
3 32 18 13 10 7 6 5 5
4 37 21 15 12 8 7 6 6

0.99 5 42 24 17 13 10 8 7 7
6 46 27 19 15 11 9 8 8
7 51 30 21 17 12 10 9 9
8 56 32 23 18 13 11 11 10
9 60 35 25 20 15 13 12 11
10 65 38 27 22 16 14 13 12



Table 2: OC values for the time truncated acceptance sampling plan (n, c, T/λ0
m) for a given

P ∗, when c = 2 and α0 = 2.

α/α0

P ∗ n T/λm 2 4 6 8 10 12

13 0.628 0.8590 0.9934 0.9992 0.9998 1 1
8 0.942 0.8124 0.9890 0.9986 0.9997 0.9999 1
6 1.257 0.7640 0.9830 0.9976 0.9995 0.9998 0.9999

0.75 5 1.571 0.7115 0.9751 0.9962 0.9991 0.9997 0.9999
4 2.356 0.5512 0.9403 0.9888 0.9971 0.9990 0.9996
3 3.141 0.6103 0.9439 0.9886 0.9969 0.9989 0.9996
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

17 0.628 0.7507 0.9857 0.9982 0.9996 0.9999 1
10 0.942 0.6992 0.9785 0.9970 0.9994 0.9998 0.9999

0.90 7 1.257 0.6714 0.9726 0.9959 0.9991 0.9997 0.9999
6 1.571 0.5796 0.9556 0.9927 0.9983 0.9995 0.9998
4 2.356 0.5512 0.9403 0.9888 0.9971 0.9990 0.9996
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

20 0.628 0.6634 0.9776 0.9971 0.9994 0.9998 0.9999
12 0.942 0.5837 0.9641 0.9948 0.9988 0.9997 0.9999
8 1.257 0.5792 0.9594 0.9937 0.9985 0.9996 0.9998

0.95 6 1.571 0.5697 0.9556 0.9927 0.9983 0.9995 0.9998
5 2.356 0.3443 0.8800 0.9751 0.9932 0.9977 0.9991
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

26 0.628 0.4943 0.9554 0.9938 0.9986 0.9996 0.9999
15 0.942 0.4252 0.9355 0.9900 0.9977 0.9993 0.9997
10 1.257 0.4120 0.9254 0.9876 0.9970 0.9991 0.9997

0.99 8 1.571 0.3520 0.9007 0.9819 0.9954 0.9985 0.9994
6 2.356 0.2011 0.8061 0.9556 0.9874 0.9957 0.9983
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
4 3.972 0.1386 0.7014 0.9124 0.9709 0.9888 0.9952
4 4.712 0.0601 0.5512 0.8400 0.9403 0.9754 0.9888



Table 3: Minimum ratio of true median life to specified median life for the acceptance of a
lot with producer’s risk of 0.05, when α0 = 2.

T/λ0
m

P ∗ c ↓ 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0 7.30 8.30 9.00 11.20 11.50 15.30 19.10 23.00
1 3.41 3.59 4.12 4.21 4.52 6.03 7.55 9.04
2 2.60 2.86 3.11 3.40 4.20 4.14 5.20 6.20
3 2.25 2.37 2.67 2.63 3.30 3.32 4.15 5.00
4 2.05 2.22 2.22 2.50 2.79 2.86 3.57 4.30

0.75 5 1.92 2.02 2.10 2.20 2.46 2.56 3.20 3.84
6 1.82 1.88 2.02 2.16 2.23 2.97 2.93 3.52
7 1.75 1.85 1.95 1.97 2.40 2.74 2.73 3.28
8 1.67 1.76 1.80 1.97 2.23 2.56 2.58 3.10
9 1.63 1.69 1.77 1.84 2.09 2.42 2.45 2.94
10 1.60 1.68 1.74 1.731 1.98 2.30 2.34 2.81

0 8.70 8.30 9.00 11.20 16.70 15.03 19.10 23.00
1 4.02 4.41 4.80 5.15 6.31 6.03 7.53 9.04
2 3.05 3.31 3.50 3.90 4.20 5.60 5.17 6.20
3 2.63 2.83 2.92 3.00 3.30 4.40 4.16 5.00
4 2.34 2.45 2.61 2.78 3.30 3.71 3.57 4.30

0.90 5 2.15 2.30 2.41 2.63 2.90 3.28 3.20 3.84
6 2.06 2.12 2.27 2.34 2.61 2.97 3.71 3.52
7 1.96 2.05 2.17 2.29 2.39 2.74 3.43 3.30
8 1.88 1.94 2.09 2.11 2.49 2.56 3.21 3.10
9 1.82 1.90 1.94 2.09 2.34 2.42 3.03 2.94
10 1.76 1.83 1.90 1.97 2.21 2.30 2.88 2.81

0 9.84 10.90 13.00 14.00 16.80 15.30 19.01 23.01
1 4.56 5.11 5.35 6.03 7.73 8.41 10.16 9.04
2 3.36 3.71 3.81 3.89 5.10 5.59 5.20 6.20
3 2.84 2.97 3.15 3.34 3.94 4.40 5.50 4.98
4 2.50 2.67 2.79 3.03 3.30 3.71 4.64 4.30

0.95 5 2.33 2.48 2.56 2.63 2.90 3.28 4.10 3.84
6 2.17 2.27 2.39 2.52 2.94 2.97 3.71 3.52
7 2.08 2.18 2.27 2.44 2.69 3.19 3.43 3.28
8 1.99 2.11 2.18 2.24 2.49 2.97 3.21 3.85
9 1.91 2.00 2.10 2.21 2.34 2.79 3.03 3.63
10 1.85 1.96 2.04 2.07 2.41 2.64 2.88 3.45

0 12.40 14.40 14.16 16.10 21.05 22.31 28.44 23.50
1 5.49 6.03 6.40 6.70 7.73 8.41 10.61 12.71
2 3.90 4.25 4.41 4.77 5.83 5.60 7.14 8.40
3 3.30 3.50 3.78 3.94 4.50 5.25 5.50 6.60
4 2.90 3.07 3.27 3.50 3.75 4.40 4.64 5.57

0.99 5 2.65 2.80 2.89 3.01 3.62 3.86 4.10 4.91
6 2.44 2.61 2.72 2.84 3.24 3.47 3.71 4.45
7 2.32 2.47 2.56 2.71 2.95 3.19 3.43 4.11
8 2.22 2.31 2.43 2.49 2.73 2.97 3.71 3.84
9 2.12 2.23 2.33 2.42 2.76 3.11 3.49 3.63
10 2.06 2.17 2.24 2.37 2.60 2.94 3.30 3.45


