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Abstract

In this note we consider the estimation of the fundamental frequency of a periodic function.
It is observed that the simple least squares estimators can be used quite effectively to estimate
the unknown parameters. The asymptotic distribution of the least squares estimators is provided.
Some simulation results are presented and finally we analyze two real life data sets using different
methods.
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1 Introduction

In this note we consider estimating the parameters of the following fundamental frequency model
(FFM):

y(n) = µ+
p

∑

j=1

ρj cos(njλ− φj) +X(n); for n = 1, . . . , N. (1.1)

Here µ is the unknown mean, ρj (> 0), j = 1, . . . , p are unknown amplitudes, 0 < λ < π
p
is the

fundamental frequency and −π < φj < π, j = 1, . . . , p are unknown phase components. {X(n)} is
a sequence of error random variables with mean zero and which satisfies the following assumption
1.

Assumption 1: X(n) has the following representation;

X(n) =
∞
∑

k=−∞

a(k)e(n− k),
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where e(k) is independent and identically distributed random variable with zero mean and finite
variance σ2. The constant a(k) satisfies

∞
∑

k=−∞

|a(k)| <∞.

The problem is to estimate the unknown parameters, assuming ‘p’, the number of components, is
known.

This is an important problem and it was originally introduced by [1]. It is a particular case of
the multiple frequency model (MFM), namely

y(n) = µ+
p

∑

j=1

ρj cos(nλj − φj) +X(n). (1.2)

Assuming p is known the model (1.1) has less number of parameters than (1.2). Quinn and Thomson
[4] proposed the following estimation procedure (from now on we call the corresponding estimators
as QTEs) of different parameters of the model (1.1). The QTE of λ, say λ̃, can be obtained by
maximizing

Q(λ) =
p

∑

j=1

1

f(jλ)

∣

∣

∣

∣

∣

1

N

N
∑

n=1

y(n)einjλ
∣

∣

∣

∣

∣

2

, (1.3)

where f(.) is the spectral density function of X(n) and it is assumed that f(.) is known and strictly
positive on [0, π]. If it is unknown, which is usually the case, then f(jλ) in (1.3) is replaced by its
estimate. The QTEs of the other parameters are as follows;

µ̃ =
N

∑

n=1

y(n), ρ̃j =
2

N

∣

∣

∣

∣

∣

N
∑

n=1

y(n)einjλ̃
∣

∣

∣

∣

∣

, φ̃j = arg

{

1

N

N
∑

n=1

y(n)einjλ̃
}

. (1.4)

Quinn and Thomson [4] also obtained the asymptotic properties of the QTEs. There are mainly
two problems involved in using the QTEs. First of all the QTEs can only be obtained if the spectral
density function f(.) is strictly positive. For example if X(t) = e(t)+e(t−3) then QTEs can not be
obtained for λ = π/3. The second problem is regarding the asymptotic properties of the estimators.
The asymptotic properties of the estimators are obtained assuming the spectral density function is
known, therefore they do not work well for small sample sizes when the spectral density function of
the error distribution is not known. When the spectral density function is not known, it needs to
be estimated at each iteration step for maximizing (1.3), which is quite expensive computationally.
Our simulation results indicate that the coverage percentages of the unknown parameters obtained
by using the asymptotic properties of the QTEs are far below the nominal level in many situations.

In this note we suggest to use the least square estimators ( LSEs) and it is observed that
the performances of the LSEs are quite satisfactory in most cases. We provide the asymptotic
distribution of the LSEs. Some simulation results are provided to compare the performances of
the two estimators. We also compare the performances of both estimators with the LSEs of the
corresponding MFM (1.2). Two real sound data, ‘uuu’ and ’ahh’, are analyzed using different
methods.
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2 Least Squares Estimators

The LSEs of the unknown parameters of the FFM (1.1), can be obtained by minimizing

R(µ,ρ,φ, λ) =
1

N

N
∑

n=1



y(n)− µ−
p

∑

j=1

ρj cos(njλ− φj)





2

, (2.1)

with respect to the unknown parameters. Note that there are 2p + 2 unknown parameters, but
λ is the only non-linear parameter. µ and ρj are linear parameters and φj are function of linear
parameters. Therefore, using the separable regression technique, first we estimate λ (minimizing a
one dimensional function) and then assuming λ is known we can estimate easily the other parameters
µ, ρj and φj , j = 1, . . . , p by linear regression technique. Now we provide the asymptotic properties
of the LSEs. The results can be obtained exactly along the same line as [2]. It involves routine
calculations. For details one is referred to [3]. The details are not provided here and they can be
obtained on requests from the authors. Let us denote the LSEs of µ, ρj , φj and λ as µ̂, ρ̂j , φ̂j and

λ̂ respectively. It can be shown that the LSEs are consistent and the vector

√
N

[

(µ̂− µ), (ρ̂1 − ρ1), . . . , (ρ̂p − ρp), (φ̂1 − φ1), . . . , (φ̂p − φp), N(λ̂− λ)
]

→ N2p+2(0, 2σ
2V)

as N tends to infinity. The matrix V is as follows:

V =

























1
2

(
∑∞

k=−∞ a(k)
)2

0 0 0

0 C 0 0

0 0 CD−1
ρ + 3δGLL

T

(
∑p

j=1
j2ρ2

j
)2

6δGL

(
∑p

j=1
j2ρ2

j
)2

0 0 6δGL
T

(
∑p

j=1
j2ρ2

j
)2

12δG
(
∑p

j=1
j2ρ2

j
)2

























(2.2)

where

δG = LTDρCL =
p

∑

j=1

j2ρ2
jc(j), C = diag{c(1), . . . , c(p)},

Dρ = diag{ρ2
1, . . . , ρ

2
p}, L = (1, 2, . . . , p)T ,

c(j) =







∞
∑

k=−∞

a(k) cos(jkλ)







2

+







∞
∑

k=−∞

a(k) sin(jkλ)







2

=

∣

∣

∣

∣

∣

∣

∞
∑

k=−∞

a(k)e−ijkλ

∣

∣

∣

∣

∣

∣

2

.

Now we compare the asymptotic variances of the QTEs and the LSEs. Note that the asymptotic
distribution of µ and ρj are the same for QTEs and LSEs. But the asymptotic distribution of φj
and λ are different for p ≥ 2. It can be shown by straight forward but lengthy calculations that
for any p ≥ 2, the asymptotic variances of QTEs of φj and λ are smaller than the corresponding
asymptotic variances of LSEs if ρj > 0 and c(j) are distinct.
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Table 1: The average estimates, mean squared errors, average confidence lengths and cover-
age probability of LSEs and QTEs of Model 1, considering fundamental frequency model.

Para- LSEs QTEs
meters AEST MSE ACL CP AEST MSE ACL CP
ρ1 2.00813 5.540e-2 .91080 .94 2.01330 6.021e-2 0.92307 .93
ρ2 2.31337 5.192e-2 .84438 .93 2.31892 5.312e-2 0.85852 .93
ρ3 1.53351 3.876e-2 .74354 .93 1.55502 4.506e-2 0.75811 .92
φ1 0.70682 1.729e-2 .50520 .94 0.77612 2.346e-2 0.50926 .89
φ2 0.61282 2.064e-2 .55326 .94 0.75684 4.616e-2 0.55262 .77
φ3 1.21512 4.177e-2 .79149 .94 1.41991 8.634e-2 0.78627 .79
λ 0.43992 1.147e-6 4.115e-3 .94 0.44138 3.618e-6 4.054e-3 .66

3 Numerical Examples

In this section we present results of numerical experiments based on simulations. We compare
the performances of the LSEs and QTEs of unknown parameters of the FFM as defined in (1.1),
with the LSEs of the unknown parameters of the corresponding MFM as defined in (1.2), i.e when
λ1 = λ, λ2 = 2λ, . . . λp = pλ. We consider the following two models for simulation experiments:

Model 1:

p = 3, µ = 0, ρ1 = 2.0, ρ2 = 2.3, ρ3 = 1.5, φ1 = 0.7, φ2 = 0.6, φ3 = 1.0, λ =
14π

100
= 0.4398229,

σ2 = 0.2, X(n) = e(n) + .5e(n− 1) and N = 100.

Model 2:

p = 4, µ = 0, ρ1 = 4.5, ρ2 = 3.1, ρ3 = 2.45, ρ4 = 4.0, φ1 = 0.8, φ2 = 2.7, φ3 = 1.0, φ4 = −2.9,

λ =
12π

100
= 0.3769911, σ2 = 2.0, X(n) = 0.48e(n)− .7e(n− 1) + e(n− 2) and N = 100.

In each case we generate a data set using the true parameter values. From the data sequence
we estimate the unknown parameters by different methods. To evaluate the QTEs, we need to
estimate f(kλ), the spectral density function at kλ, for k = 1, . . . , p. In our notation, it is equal
to σ2c(k). It can be shown that f(kλ) or σ2c(k) is the expected value of the periodogram function
of the noise random variable X(t) at the respective true frequency kλ. We use the periodogram
averaging method, over a window (−L,L) across the point estimate, kλ̂. We try for different values
of L and observe that for L = 6 and L = 4 provide the best results in case of QTEs for Models 1
and 2 respectively. We also compute the asymptotic 95% confidence bounds for all the parameters
by using both methods. For the least squares method we do not need to estimate the spectral
density function to estimate the parameters but we need it for constructing the confidence bands.
We use the same technique of averaging the periodogram function method in this case also. We
report the results for L = 6 (Model 1) and L = 4 (Model 2). We replicate the process 5000 times
and report average estimates (AESTs), mean squared errors (MSEs), average confidence lengths
(ACLs) and coverage percentages (CPs). The results are reported in Tables 1 and 2 for Models 1
and 2 respectively.

4



Table 2: The average estimates, mean squared errors, average confidence lengths and cover-
age probability of LSEs and QTEs of Model 2, considering fundamental frequency model.

Para- LSEs QTEs
meters AEST MSE ACL CP AEST MSE ACL CP
ρ1 4.4978 1.451e-2 .5123 .95 4.4989 2.035e-2 .5078 .91
ρ2 3.1007 1.025e-2 .4043 .94 3.1050 1.142e-2 .4009 .93
ρ3 2.4516 8.152e-3 .3619 .94 2.4519 1.019e-2 .3538 .90
ρ4 4.0067 1.753e-2 .6077 .96 4.0013 2.702e-2 .6134 .92
φ1 0.7996 9.752e-4 .1250 .94 0.7947 1.258e-3 .1217 .90
φ2 2.7000 1.654e-3 .1657 .95 2.6891 2.295e-3 .1573 .89
φ3 1.0003 2.423e-3 .2122 .95 0.9848 4.089e-3 .1970 .87
φ4 -2.8978 3.314e-3 .2517 .96 -2.8996 0.1221 .2349 .85
λ 0.3770 6.025e-8 1.003e-3 .95 0.3769 1.259e-7 8.856e-4 .78

Table 3: The average estimates, mean squared errors, average confidence lengths and cover-
age probability of the LSEs of Model 1, considering multiple frequency model.

Para- LSE’s
meters AEST MSE ACL CP
ρ1 2.02663 4.132e-2 0.89806 .96
ρ2 2.31988 4.237e-2 0.82822 .94
ρ3 1.52848 3.604e-2 0.73596 .94
φ1 0.69567 4.281e-2 0.89539 .96
φ2 0.59939 2.906e-2 0.71971 .95
φ3 1.19901 5.274e-2 0.97794 .95
λ1 0.43978 1.451e-5 1.551e-2 .95
λ2 0.87962 9.654e-6 1.247e-2 .94
λ3 1.31949 1.749e-5 1.694e-2 .94

We also compare the LSEs of the parameters of the Models 1 and 2 assuming they are MFM
as defined in (1.2). The main aim of this experiment is to compare the advantages/ disadvantages
of using FFM over MFM in terms of biases and MSEs of the unknown parameters. The results for
L = 6 and L = 3 are provided in Tables 3 and 4 for Models 1 and 2 respectively.

From the simulation study, we observe that LSEs perform better than QTEs in all respect. For
all the cases considered here, LSEs have lower MSEs and lower biases than the corresponding QTEs.
Most of the LSEs are unbiased, whereas some of the QTEs, mainly the phase estimators are highly
biased. The average confidence lengths based on the QTEs are smaller than the corresponding
average confidence lengths based on the LSEs for λ and φj . From the asymptotic variances, it
is expected that way also. Interestingly, the coverage percentages based on the LSEs are much
higher than the corresponding coverage percentages based on the QTEs in most of the cases. The
coverage percentages obtained by the LSEs attain the nominal level but the coverage percentages
obtained by the QTEs are quite poor for the phase components and mainly for the fundamental
frequency. Most of the times they are lower than 90% and for the fundamental frequency λ, it
is only 66% and 78% for Models 1 and 2 respectively when the nominal level is 95%. Therefore,
the confidence intervals obtained by using QT method may not be of much use. QTEs may have
certain theoretical advantages over LSEs but computational complexity of the QT method makes
it difficult to compute the QTEs efficiently and also the asymptotic results may not be useful for
finite length data sets.

Now let us compare models (1.1) and (1.2) based on our numerical experiments. We observe
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Table 4: The average estimates, mean squared errors, average confidence lengths and cover-
age probability of LSEs of Model 2 considering multiple frequency model.

Para- LSEs
meters AEST MSE ACL CP
ρ1 4.50006 6.163e-3 0.49669 .99
ρ2 3.10094 7.753e-3 0.38728 .95
ρ3 2.45371 5.794e-3 0.37850 .96
ρ4 4.00012 9.751e-3 0.58815 .98
φ1 0.80159 2.870e-3 0.22081 .94
φ2 2.70063 4.093e-3 0.25002 .93
φ3 1.00035 3.556e-3 0.30883 .97
φ4 -2.90004 3.688e-3 0.29428 .97
λ1 0.37703 9.243e-7 3.824e-3 .93
λ2 0.75400 1.328e-6 4.330e-3 .92
λ3 1.13098 1.294e-6 5.349e-3 .96
λ4 1.50796 1.382e-6 5.097e-3 .95

that the linear parameters can be estimated more accurately in the case of MFM than FFM in
terms of MSEs. The LSEs of φj and λ1 of the MFM have higher MSEs than the corresponding
LSEs of the FFM. The average confidence lengths for linear parameters are slightly higher for the
FFM. On the other hand, for phase parameters and fundamental frequency estimators, the average
confidence lengths are much lower in the case of FFM as compared to MFM.

Thus in the case of fundamental frequency model (1.1) we use the additional information that
the frequencies of the observed periodic function are in the form of harmonics and this enables us
to estimate the phase components and fundamental frequency more accurately as compared to the
general multiple frequency model (1.2).

4 Data Analysis

In this section we analyze two sound data sets “uuu” and “ahh” using FFM and MFM. We apply
both Least Squares (LS) and QT methods to estimate the unknown parameters in the case of FFM
and LS method in the case of MFM.

“uuu” data set: The data set contains 512 signal values sampled at 10kHz frequency. The
observed data and its periodogram function are plotted in Figures 1 and 2 respectively. The peri-
odogram plot indicates that p = 4 and an initial estimate of λ can obtained from the periodogram
plot. We fit the model (1.1) with p = 4 and obtain LSEs and QTEs and their 95% confidence
intervals of all the parameters. The results are presented in Table 5.

Using the run test (see Table 6) we observe that errors are not independent in both cases.
The autocorrelation and partial auto-correlation functions suggest that in the case of LSEs the
estimated errors are of the following form: X(t) = 1.08X(t− 1)− 0.40X(t− 2) + e(t), and for the
QTEs, the estimated errors are of the form; X(t) = 1.08X(t− 1)− 0.39X(t− 2)+ e(t). If the MFM
is used then the estimated error is X(t) = 1.09X(t− 1)− 0.50X(t− 2) + 0.10X(t− 3) + e(t).

Performing the run test (see Table 6) on ê(t), we observe that the independence assumption on
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Table 5: LSEs, QTEs and corresponding confidence intervals for “uuu” data with the fun-
damental frequency model.

Para- LSEs QTEs
meters LSE Lower Limit Upper Limit QTE Lower Limit Upper Limit
µ 0.06814 0.02870 0.10759 0.06814 0.02810 0.10819
ρ1 0.63516 0.57906 0.69126 0.59103 0.53922 0.64284
ρ2 1.71760 1.66072 1.77448 1.69948 1.65698 1.74198
ρ3 0.43157 0.37413 0.48901 0.45359 0.41935 0.48783
ρ4 0.34866 0.29202 0.40529 0.38883 0.36073 0.41693
φ1 -2.38314 -2.47487 -2.29140 -2.34016 -2.42934 -2.25098
φ2 1.54111 1.48152 1.60069 1.61571 1.57448 1.65693
φ3 -2.73531 -2.88774 -2.58288 -2.71112 -2.80121 -2.62104
φ4 -2.56195 -2.75222 -2.37169 -2.40214 -2.49971 -2.30457
λ 0.11404 0.11394 0.11414 0.11418 0.11412 0.11425

Table 6: Test statistic values for run test and square root of average residual sum of squares
(AVRSS) for “uuu” data.

FFM FFM MFM
(LSE) (QTE)

Z for X(t) -11.5389566 -13.2993221 -12.1590595
Z for e(t) -1.08383095 -1.48203266 -1.48203266
AVRSS 0.25882411 0.259211272 0.249162257

e(t) is satisfied in all cases. The roots of the characteristic equation in each case are less than one
in absolute value, so estimated errors can be modeled as stationary processes in all cases considered
above. Note that the confidence length of λ in the case of QTE is smaller than that of LSE but it
is much higher in the case of LSE with MFM, which is expected from the theory also. The fitted
y(t) values are provided in Figure 3. For comparison, we have plotted the predicted values using
LSEs and QTEs with FFM , LSEs with MFM and the original signal in the same figure. The fitted
values match quite well in each case.

“ahh” data set The data set contains 340 signal values. The observed data set and its periodogram
function are plotted in Figures 4 and 5 respectively. For this data set we use p = 6. Using the
initial estimate of λ (obtained from periodogram function) we estimate LSEs and QTEs using FFM
and LSEs using MFM and obtain the 95% confidence intervals of all the parameters in each case.
The results are reported in Tables 7 and 8 respectively. Similarly as for the “uuu” data we analyze
the errors and for LSEs with FFM, the time series can be modelled as

X(t) = 0.67X(t− 1) + e(t), and for QTEs as: X(t) = 0.92X(t− 1)− 0.47X(t− 2) + e(t). The
estimated error in the case LSEs with MFM can be modeled as X(t) = 1.02X(t− 1)− 0.64X(t−
2) + 0.18X(t− 3) + e(t).

In each case it has been observed that errors are stationary. The summary statistics are provided
in Table 10. As observed in “uuu” data, in the case of “ahh” data also the confidence interval of λ
in the case of QTE is smaller than that of LSE but it is much higher in the case of LSE with MFM.
The predicted y(t) values using LSEs and QTEs with FFM and using LSEs with MFM along with
the observed y(t) values are plotted in Figure 6.
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Table 7: LSEs, QTEs and corresponding confidence intervals for “ahh” data with the fun-
damental frequency model.

Para- LSE’s QTE
meters LSE Lower Limit Upper Limit QTE Lower Limit Upper Limit
µ 0.03711 -0.09135 0.16557 0.03711 -0.02731 0.10153
ρ1 0.15635 -0.02066 0.33335 0.15554 0.06617 0.24491
ρ2 0.11424 -0.05070 0.27917 0.11486 0.03014 0.19958
ρ3 0.20047 0.05104 0.34990 0.19604 0.11764 0.27443
ρ4 0.24276 0.10904 0.37648 0.25639 0.18481 0.32798
ρ5 1.03037 0.91092 1.14983 1.05295 0.98790 1.11799
ρ6 1.47253 1.36540 1.57966 1.48329 1.42416 1.54242
φ1 1.69557 0.56328 2.82785 1.75676 1.18211 2.33141
φ2 2.08789 0.64359 3.53220 2.16462 1.42674 2.90251
φ3 2.76189 2.01441 3.50937 2.94120 2.54013 3.34227
φ4 -2.70619 -3.26205 -2.15032 -2.50757 -2.78968 -2.22547
φ5 -1.93713 -2.08590 -1.78836 -1.69181 -1.77156 -1.61206
φ6 1.12935 0.99590 1.26280 1.44840 1.37593 1.52088
λ 0.09262 0.09251 0.09273 0.09294 0.09288 0.09300

Table 8: LSE’s and confidence intervals for “ahh” data with multiple frequency model.

Para- LSEs
meters LSE Lower Limit Upper Limit
µ 0.03711 -0.04130 0.11552
ρ1 0.15321 0.04255 0.26386
ρ2 0.12292 0.01293 0.23291
ρ3 0.19762 0.08844 0.30680
ρ4 0.26646 0.15817 0.37476
ρ5 1.05137 0.94365 1.15908
ρ6 1.47706 1.36958 1.58455
φ1 1.57744 0.13292 3.02196
φ2 2.56365 0.77409 4.35321
φ3 2.45601 1.35103 3.56099
φ4 -1.93182 -2.74466 -1.11898
φ5 -1.58160 -1.78651 -1.37670
φ6 1.38753 1.24199 1.53307
λ1 0.09222 0.08486 0.09958
λ2 0.18906 0.17995 0.19818
λ3 0.27671 0.27108 0.28234
λ4 0.37503 0.37089 0.37917
λ5 0.46543 0.46439 0.46647
λ6 0.55728 0.55654 0.55802

Table 9: LSEs and confidence intervals for “uuu” data with the multiple frequency model.

Para- LSEs
meters LSE Lower Limit Upper Limit
µ 0.06814 0.02750 0.10879
ρ1 0.63175 0.57488 0.68861
ρ2 1.71710 1.66195 1.77225
ρ3 0.43196 0.37941 0.48452
ρ4 0.35917 0.30972 0.40861
φ1 -2.41835 -2.59838 -2.23832
φ2 1.52894 1.46471 1.59318
φ3 -2.30741 -2.55075 -2.06407
φ4 -2.08317 -2.35851 -1.80782
λ1 0.11390 0.11329 0.11451
λ2 0.22804 0.22782 0.22825
λ3 0.34376 0.34294 0.34458
λ4 0.45793 0.45700 0.45886
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Table 10: Test statistic values for run test and square root of average residual sum of squares
(AVRSS) for “ahh” data.

FFM FFM MFM
(LSE) (QTE)

Z for X(t) -8.10970116 -8.01139259 -7.69534779
Z for e(t) -1.45976138 1.15754771 -0.594967306
AVRSS 0.53678745 0.482003003 0.48966378

Remark 1: For numerical experiments based on simulations we used the method of averaging the
periodogram function over a window (−L,L) across the point estimate of the frequency to estimate
σ2c(k), k = 1, . . . , p. In these calculation the choice of L is a difficult problem. It can be interpreted
as the problem of bandwidth selection in non-parametric setup. We have reported the best results
among different choices of L. We observe for LSE that, if we increase L, after a certain value the
results do not change much. But in the case of QTEs, as L is needed in estimation also, the choice
of L affects the performance of QTEs.

Remark 2: To analyze the data sets, we do not use the averaging method to obtain the confidence
intervals. First we estimate the errors with its parameters. Next we use the estimated errors to
estimate the spectral density or equivalently σ2c(k). For real data how L can be chosen may be a
topic of further research.
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