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Abstract

In this paper we consider the Fisher information matrices of the generalized exponen-
tial (GE) and Weibull distributions for complete and Type-I censored observations.
Fisher information matrix can be used to compute asymptotic variances of the dif-
ferent estimators. Although both distributions may provide similar data fit but the
corresponding Fisher information matrices can be quite different. Moreover, the per-
centage loss of information due to truncation of the Weibull distribution is much more
than the GE distribution. We compute the total information of the Weibull and GE
distributions for different parameter ranges. We compare the asymptotic variances of
the median estimators and the average asymptotic variances of all the percentile es-
timators for complete and Type-I censored observations. One data analysis has been
preformed for illustrative purposes. When two fitted distributions are very close to
each other and very difficult to discriminate otherwise, the Fisher information or the
above mentioned asymptotic variances may be used for discrimination purposes.

Keywords and Phrases: Fisher information matrix; Generalized exponential distribution; Hazard func-

tion; Median estimators; Model discrimination; Type-I censoring; Weibull distribution.

Corresponding author: ∗Department of Mathematics and Statistics, Indian Institute of Technology

Kanpur, Pin 208016, INDIA; Phone: 91-512-597141, Fax: 91-512-597500; e-mail: kundu@iitk.ac.in.

Postal address: † Department of Computer Science and Statistics, The University of New Brunswick at Saint

John, New Brunswick, Canada E2L 4L5. Part of the work has been supported by a discovery grant from

NSERC, CANADA.

1



1 Introduction

Recently the two-parameter generalized exponential (GE) distribution has been proposed

by the authors. It has been studied extensively by Gupta and Kundu [6], [7], [8], [9], [10],

Raqab [17] [18], Raqab and Ahsanullah [19] and Zheng [21]. For x > 0, the two-parameter

generalized exponential distribution has the density function

fGE(x;α, λ) = αλe−λx
(

1− e−λx
)α−1

, α, λ > 0.

Here α and λ are the shape and scale parameters respectively. For different values of the

shape parameters, the density function can take different shapes. For 0 < α ≤ 1, the density

function is a decreasing function and for α > 1, it becomes an uni-modal function. The

different shapes of the density function can be seen in Gupta and Kundu [7]. The hazard

function of the GE distribution can be increasing or decreasing depending on the shape

parameter α. It has been observed that the GE distribution can be used quite effectively to

analyze skewed data set and it is a good alternative to the well known Weibull distribution.

In many situations the GE distribution might provide a better data fit than the Weibull

distribution. Since the distribution function of the GE distribution is in a closed form,

therefore GE distribution also can be used very conveniently if the data are censored like

Weibull distribution. Interestingly, even though the distribution function and the hazard

function have convenient expressions for both Weibull and GE distributions, but the Fisher

information matrices are not very convenient in both cases.

Computation of the Fisher information for any particular distribution is quite important

and recently it has received some special attention, see for example Efron and Johnstone

[3], Gertsbakh [4], Zheng and Gastwirth [20], Zheng [21] and the references therein. Fisher

information can be used to compute the asymptotic variances of the different functions of

the estimators. The problem is quite important when the data are censored. Sometimes
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it is observed that two particular distributions may provide very similar data fit to a given

data set. The distance between the two fitted distributions can be very small, and it may

be very difficult to discriminate between them. The asymptotic variances of some function

of the estimators which represent the common features of both distributions may be used to

discriminate between them.

We compute the Fisher information matrices of both distributions under different con-

ditions, namely for (i) complete observation and for (ii) Type-I censored observation. It is

well known (Lehmann [14]) that the Fisher information matrix can be computed using the

first and second derivative of the log-likelihood function. Efron and Johnstone [3] showed

that the Fisher information matrix can be computed using hazard function also.

Recently it is observed by the authors (Gupta and Kundu [10]) that the GE and Weibull

distributions provide a very similar data fit and one needs a large sample size to discriminate

between the two distribution functions at least for certain ranges of the shape parameters.

Interestingly, it is observed that although both GE and Weibull distributions can provide

similar data fit but their Fisher information matrices can be quite different. We compute

the Fisher information matrices of both distributions and study some interesting properties

for complete and Type-I censored observations. Using the Fisher information, we compute

the asymptotic variances of the median estimators for both distributions and they are used

for model discrimination.

We denote the Weibull density function (for x > 0) as

fWE(x; β, θ) = βθ(θx)β−1e−(θx)
β

; β > 0, θ > 0.

The generalized exponential distribution with the shape and scale parameters α and λ re-

spectively will be denoted by GE(α, λ). Similarly the Weibull distribution with the shape

and scale parameters β and θ respectively will be denoted by WE(β, θ). The rest of the
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paper is organized as follows. In section 2, we give the preliminaries. In sections 3 and 4 we

provide results for complete sample and Type-I censored sample respectively. We analyze

one data set in section 5 and finally conclude the paper in section 6.

2 Preliminaries

2.1 Fisher Information Matrix for Complete Sample

Let X be a continuous random variable with the cumulative distribution function (CDF)

F (x; θ1, θ2) and the probability density function (PDF) f(x; θ1, θ2). For brevity, we consider

only two parameters θ1 and θ2, although the results are true for any finite dimensional vector.

Under the standard regularity conditions (Lehmann [14]), the Fisher information matrix for

the parameter vector θ = (θ1, θ2) based on an observation in terms of the expected values of

the first and second derivatives of the log-likelihood function is provided in Lehmann [14].

Efron and Johnstone [3] observed that the Fisher information matrix can be obtained

using the hazard function h(x,θ) = f(x,θ)

F̄ (x,θ)
= − d

dx
ln F̄ (x;θ) as follows

I(θ) = E(

[

∂
∂θ1

lnh(X,θ)
∂
∂θ2

lnh(X,θ)

]

[ ∂
∂θ1

lnh(X,θ) ∂
∂θ2

lnh(X,θ) ]). (1)

The derivation of (1) is simple, and it mainly follows using the definition of the hazard func-

tion in terms of the density function (see Efron and Johnstone [3]). It has some interesting

statistical and probabilistic implications also, noted by Efron and Johnstone [3].

2.2 Fisher Information Matrix Under Fixed Time Censoring

If the observation of X is right censored at a fixed time point T , i.e. one observes min(X,T ),

the Fisher information for the parameter vector θ based on a censored observation (see
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Gertsbakh [4] or Lawless [13]) is

I
(c)
R (T,θ) =

[

a11 a12
a21 a22

]

+
1

F̄ (T,θ)

[

∂
∂θ1
F̄ (T,θ)

∂
∂θ2
F̄ (T,θ)

]

[ ∂
∂θ1
F̄ (T,θ) ∂

∂θ2
F̄ (T,θ) ] ,

where for i, j = 1, 2,

aij =
∫ T

0

(

∂

∂θi
ln f(x,θ)

)(

∂

∂θj
ln f(x,θ)

)

f(x,θ)dx,

and F̄ (T,θ) = 1 − F (T,θ). It can be easily seen using the similar arguments of Gupta,

Gupta and Sankaran [5] that

I
(c)
R (T,θ) =

[

b11 b12
b21 b22

]

, (2)

where for i, j = 1, 2,

bij =
∫ T

0

(

∂

∂θi
lnh(x,θ)

)(

∂

∂θj
lnh(x,θ)

)

f(x,θ)dx.

3 Fisher Information Matrices : Complete Sample

Let us denote the Fisher information matrix of the GE parameters α and λ for complete

sample by

IG(λ, α) =
[

a11G a12G
a21G a22G

]

.

The elements are

a11G =
1

α2
,

a12G = a21G = −
α

λ

∫ ∞

0
xe−2x

(

1− e−x
)α−2

dx,

a22G =
1

λ2
+
α(α− 1)

λ2

∫ ∞

0
x2e−2x

(

1− e−x
)α−3

dx.

For α 6= 1,

a12G = a21G =
1

λ

[

α

α− 1
(ψ(α)− ψ(1))− (ψ(α+ 1)− ψ(1))

]
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and for α = 1,

a12G = a21G = −
1

λ

∞
∑

j=0

1

(2 + j)2
.

Similarly for α 6= 2,

a22G =
1

λ2

[

1 +
α(α− 1)

α− 2

(

ψ′(1)− ψ′(α− 1) + (ψ(α− 1)− ψ(1))2
)

]

−

α

λ2

[

ψ′(1)− ψ(α) + (ψ(α)− ψ(1))2
]

and for α = 2

a22G =
1

λ2
+

4

λ2

∞
∑

j=0

1

(2 + j)3
.

Now we compute the Fisher information matrix of the Weibull distribution. Let us denote

IW (β, θ) =
[

a11W a12W
a21W a22W

]

,

as the Fisher information matrix of the Weibull distribution where the elements are as follows

a11W =
1

β2

(

ψ′(1) + ψ2(2)
)

; a12W = a21W =
1

θ
(1 + ψ(1)); a22W =

β2

θ2
.

Some of the interesting points are observed comparing the Fisher information matrices

for the two distributions. First of all if we assume that the scale parameters are known in

both cases then the Fisher information of the shape parameters are inversely proportional

to the corresponding shape parameters. Similarly, if the shape parameters are assumed to

be known then the Fisher information of the scale parameters are inversely proportional to

the corresponding scale parameters. In this respect they are quite similar in nature.

Now let us consider the total information measure of a given Fisher information matrix.

We consider the trace of the Fisher information matrix as its measure of the total information.

It is similar to the E-optimality of the design of experiment problems. Note that the trace of

the Fisher information matrix of the GE (Weibull) distribution is the sum of the information

measure of α (β), when λ (θ) is known, and λ (θ), when α (β) is known.
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It should be mentioned that although α, β and λ, θ are the shapes and scales parameters

of the corresponding GE and Weibull distributions respectively but the parameters do not

characterize the same features of the corresponding lifetime distributions. To compare the

same features of both distributions, we compute the asymptotic variance (inversely propor-

tional to the information measure) of the median estimators for both distributions. Note

that the p-th (0 < p < 1) percentile points of the GE and Weibull distributions are

PGE(α, λ) = −
1

λ
ln
(

1− p
1

α

)

and PWE(β, θ) =
1

θ
[− ln(1− p)]

1

β , (3)

respectively. Therefore, the asymptotic variance of the p-th percentile estimator of the GE

distribution, see Lewless [13], is

VGE(p) = [ ∂PGE
∂α

∂PGE
∂λ

]
[

a11G a12G
a21G a22G

]−1
[

∂PGE
∂α

∂PGE
∂λ

]

,

and the asymptotic variance of the p-th percentile estimator of the Weibull distribution is

VWE(p) = [ ∂PWE

∂β
∂PWE

∂θ ]
[

a11W a12W
a21W a22W

]−1
[

∂PWE

∂β
∂PWE

∂θ

]

.

Now to compare the information measures of the two distributions, we feel it is reasonable to

compare VGE(0.5) with VWE(0.5) or the comparison between
∫ 1
0 VGE(p)dp and

∫ 1
0 VWE(p)dp

is meaningful. Note that
∫ 1
0 VGE(p)dp and

∫ 1
0 VWE(p)dp represent the average asymptotic

variances of the percentile estimators over all percentile points.

We compute the different information measures of the two distribution functions at their

closest values. The distance between two distribution functions can be defined in several

ways. We consider the Kullback-Leibler distance, see Gupta and Kundu [10] for details, as

the distance between two distribution functions. In the same paper, [10], we reported α̃, λ̃

for a given β such that GE(α̃, λ̃) is closest to WE(β, 1) with respect to Kullback-Leibler

distance. Similarly, we also reported β̃, θ̃ for a given α such that WE(β̃, θ̃) is closest to

GE(α, 1) with respect to the same distance function. To compute the total information of the
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β α̃ λ̃ Trace Trace Total-Var Total-Var
Weibull GE Weibull GE

0.6 0.474 0.410 5.42 7.46 3.28 0.77
0.8 0.722 0.721 3.49 3.35 2.11 1.86
1.2 1.390 1.307 2.71 1.30 1.64 6.19
1.4 1.823 1.565 2.89 0.98 1.75 9.80
1.6 2.334 1.802 3.27 0.81 1.98 16.2
1.8 2.885 2.006 3.80 0.72 2.30 24.0
2.0 3.639 2.239 4.46 0.66 2.70 33.0

Table 1: The trace of the Fisher information matrices of WE(β,1) and GE(α̃, λ̃) are reported
in columns 4 and 5. The total asymptotic variances of the shape and scale parameters for
both distributions are also presented in columns 6 and 7. The values of α̃ and λ̃ are obtained
from Gupta and Kundu [10].

α β̃ θ̃ Trace Trace Total-Var Total-Var
Weibull GE Weibull GE

0.5 0.649 2.243 4.41 4.53 14.2 2.96
1.5 1.257 0.735 4.07 1.86 1.35 6.00
2.0 1.440 0.609 6.47 2.06 1.45 10.3
2.5 1.585 0.537 9.44 2.33 1.65 16.6
3.0 1.706 0.488 12.85 2.61 1.85 26.1

Table 2: The trace of the Fisher information matrices of WE(β̃,θ̃) and GE(α, 1) are reported
in columns 4 and 5. The total asymptotic variances of the shape and scale parameters for
both distributions are also presented in columns 6 and 7. The values of β̃ and θ̃ are obtained
from Gupta and Kundu [10].

Fisher information matrices we compute the traces of the corresponding Fisher information

matrices for both distributions. The results are reported in Tables 1 and 2. We also compute

VGE(0.5), VWE(0.5),
∫ 1
0 VGE(p)dp and

∫ 1
0 VWE(p)dp. The results are reported in Tables 3 and

4.

From Tables 1 and 2, it is observed that for both distributions when the scale parameter

is fixed, the total information increases as the shape parameter moves away from one. The

total asymptotic variances also show the expected trend. Comparing the Tables 3 and 4 it

is observed that for the shape parameter less than one, the average asymptotic variance of

8



β → 0.6 0.8 1.2 1.4 1.6 1.8 2.0
VWE(0.5) 1.1287 0.8617 0.5197 0.4167 0.3406 0.2832 0.2389
VGE(0.5) 1.3190 0.8082 0.4332 0.3487 0.2908 0.2514 0.2145

∫ 1
0 VWE(p)dp 45.8192 7.8307 1.4199 0.8705 0.5993 0 4451 0.3482
∫ 1
0 VGE(p)dp 13.5675 4.4938 1.4248 1.0101 0.7721 0.6294 0.5104

Table 3: The asymptotic variances of the median estimators of WE(β,1), GE(α̃, λ̃) are
reported and the average asymptotic variances over all the percentile points are also reported.

α → 0.5 1.5 2.0 2.5 3.0
VWE(0.5) 0.2103 0.9015 1.0776 1.1985 1.2944
VGE(0.5) 0.2447 0.7736 0.8895 0.9673 1.0230

∫ 1
0 VWE(p)dp 5.2905 2.2516 2.2134 2.1309 2.1331
∫ 1
0 VGE(p)dp 2.2871 2.4457 2.4829 2.5172 2.5379

Table 4: The asymptotic variances of the median estimators of WE(β̃,θ̃), GE(α, 1) and the
average asymptotic variances over all the percentile points are also reported.

the percentile estimators is smaller for the GE model than the Weibull model, and for the

shape parameter greater than one it is the other way. Asymptotic variances of the median

estimators for the GE model are usually smaller than the Weibull model unless the shape

parameter is small.

4 Fisher Information Matrices: Right Censoring

In this case let us denote the Fisher information matrix of the GE parameters α and λ by

I
(c)
G,R(T, α, λ) =

[

b11G b12G
b21G b22G

]

.

Using (2), it can be easily seen that for p = (1− e−λT )α

b11G =
1

α2

∫ p

0

[

1 +
ln y

1− y

]2

dy =
1

α2

[

p+
p

1− p
(ln p)2

]

,

b12G = b21G =
α

λ

∫ p
1
α

0

[

1

α
+

ln y

1− yα

] [

1 +
ln(1− y)

y
−
α(1− y) ln(1− y)

y(1− yα)

]

yα−1dy,
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b22G =
α

λ2

∫ p
1
α

0

[

1 +
ln(1− y)

y
−
α(1− y) ln(1− y)

y(1− yα)

]2

yα−1dy.

Now let us define the Fisher information matrix for the Weibull parameters β and θ by

I
(c)
W,R(T, β, θ) =

[

b11W b12W
b21W b22W

]

.

In this case also using (2) and for p̃ = 1− e−(θT )
β

, we obtain

b11W =
1

β2

∫ − ln(1−p̃)

0
[1 + ln y]2e−ydy,

b12W = b21W =
1

θ

∫ − ln(1−p̃)

0
[1 + ln y]e−ydy,

b22W =
β2

θ2
p̃.

Now we compute the total information measures of the two information matrices for dif-

ferent parameter values and for different T . Similarly as before we compute the different

information measures at their closest values. We consider different T ’s namely T ≈ mean

and T ≈ mean + standard deviation.

There are mainly two reasons to choose these two T values. First of all once we consider

these two T values then the corresponding p or p̃ values become independent of the scale

parameters. Secondly, once we truncate at the mean (mean + sd) then we observe at least

57%(86%) and 43%(87%) observations for GE and Weibull cases respectively. If we choose

T lower than mean then the censoring becomes quite heavy.

We compute the loss of information (in percentage) in each case and the results are

reported in Tables 5 and 6. Interestingly it is observed at T ≈mean the loss of information for

Weibull distribution is approximately between 44% to 49% and for the GE distribution it is

approximately 6% to 25%. When T ≈mean + standard deviation then the loss of information

for Weibull is approximately 22% to 25% and for GE distribution it is approximately 2%

to 8%. Therefore, for a given truncated data set the percentage loss of information for the

Weibull parameters will be much more compared to the GE parameters.
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β α̃ λ̃ Trace Trace Total-Var Total-Var
Weibull GE Weibull GE

0.6 0.474 0.410 2.85, 47% 6.08, 19% 4.26 1.48
(4.12, 24%) (6.98, 6%) (3.46) (0.91)

0.8 0.722 0.721 1.77, 49% 2.76, 18% 3.16 3.53
(2.58, 26%) (3.14, 6%) (2.33) (2.55)

1.2 1.390 1.307 1.42, 48% 1.04, 20% 3.20 10.55
(2.07, 24%) (1.21, 7%) (2.03) (7.29)

1.4 1.823 1.565 1.54, 47% 0.78, 20% 3.75 16.87
(2.27, 22%) (0.92, 6%) (2.27) (11.99)

1.6 2.334 1.802 1.75, 47% 0.64, 21% 4.54 26.88
(2.62, 20%) (0.76, 6%) (2.66) (19.43)

1.8 2.885 2.006 2.03, 47% 0.57, 21% 5.54 41.24
(3.08, 19%) (0.67, 7%) (3.16) (30.24)

2.0 3.639 2.239 2.36, 47% 0.52, 21% 6.74 67.65
(3.65, 18%) (0.61, 7%) (3.76) (50.88)

Table 5: The trace of the Fisher information matrices of WE(β,1) and GE(α̃, λ̃) are reported
in columns 4 and 5, when the data are right truncated at T ≈mean and the loss of information
from the complete sample are also presented in the same column. The corresponding total
asymptotic variances of the shape and scale parameters for both distributions are presented
in columns 6 and 7. The results corresponding to T ≈ mean + standard deviation are
reported within bracket in each case.

Comparing Tables 7 and 8 it is observed that because of truncation the asymptotic vari-

ances of the median estimators may not change much but the average asymptotic variances

are changing quite significantly. It is observed that the average asymptotic variances for GE

distribution are smaller than the Weibull distribution for all ranges of the shape parameters,

although that is not true for the complete data. It shows that due to truncation the loss of

information of the Weibull model is much more than the GE model.

Now we would like to compute the loss of information due to right truncation, in one

parameter when the other parameter is known. First we consider the GE distribution. If

the scale parameter is known then the loss of information of the shape parameter is

1−
b11G

a11G
= 1−

[

p+
p

1− p
(ln p)2

]

, (4)
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α β̃ θ̃ Trace Trace Total-Var Total-Var
Weibull GE Weibull GE

0.5 0.649 2.243 2.23, 49% 4.27, 6% 17.51 6.84
(3.16, 28%) (4.42, 2%) (14.23) (3.98)

1.5 1.257 0.735 2.27, 44% 1.41, 24% 2.76 9.38
(1.70, 17%) (1.72, 8%) (1.70) (6.73)

2.0 1.440 0.609 3.64, 44% 1.54, 25% 3.28 15.61
(5.39, 17%) (1.90, 8%) (1.93) (11.50)

2.5 1.585 0.537 5.29, 44% 1.76, 24% 3.88 25.00
(7.94, 16%) (2.16, 7%) (2.23) (18.54)

3.0 1.706 0.488 7.14, 44% 2.01, 23% 4.49 37.83
(10.83, 16%) (2.44, 7%) (2.54) (28.08)

Table 6: The trace of the Fisher information matrices of WE(β̃,θ̃) and GE(α, 1) are reported
in columns 4 and 5 when the data are right truncated at T ≈ mean. The corresponding total
asymptotic variances of the shape and scale parameters for both distributions are presented
in columns 6 and 7. The results corresponding to T ≈ mean + standard deviation are
reported within bracket in each case.

here p is same as before, i.e. p = (1 − e−λT )α. Therefore, the ratio (4) depends on λ and α

through p only. We plot the ratio (4) in Figure 1, as a function of α when T = the mean

of GE. From Figure 1, it is clear that the loss of information is an increasing function of α.

However, more than 99% of the information on shape parameter is retained by considering

right censoring at the mean, when the α ≤ 5.

Similarly, we look at the loss of information on the scale parameter, when the shape

parameter is known. Clearly, the ratio 1− b22G
a22G

is a function of p and α. However, when T =

mean or mean + sd, it is a function of α only. We plot this ratio in Figure 2, as a function of

α, at T = mean of GE. It is clear that there is a big impact of α on this loss of information

of λ. Contrary to the shape parameter case, the loss of information is a decreasing function

of the shape parameter.

Now, we consider the Weibull distribution. The loss of information of the shape parameter
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β → 0.6 0.8 1.2 1.4 1.6 1.8 2.0
VWE(0.5) 1.2027 0.9582 0.6244 0.5172 0.4350 0.3710 0.3202

(1.1324) (0.8670) (0.5252) (0.4216) (0.3450) (0.2870) (0.2423)
VGE(0.5) 1.6343 1.0395 0.5700 0.4602 0.3840 0.3317 0.2825

(1.3696) (0.8533) (0.4574) (0.3676) (0.3061) (0.2643) (0.2251)

∫ 1
0 VWE(p)dp 106.2347 20.5022 4.0914 2.5386 1.7492 1.2919 1.0019

(61.2300) (10.8776) (1.9771) (1.1965) (0.8113) (0.5934) (0.4576)
∫ 1
0 VGE(p)dp 31.9521 9.6217 2.7345 1.8656 1.3809 1.0984 0.8695

(18.4462) (5.7080) (1.7031) (1.1848) (0.8927) (0.7199) (0.5785)

Table 7: The variances of the median estimators of WE(β,1) and GE(α̃, λ̃) when the data
are right truncated at T ≈ mean are reported. The results corresponding to T ≈ mean +
standard deviation are reported within bracket below in each case.

if the scale parameter is known, is

1−
b11W

a11W
= 1−

1

ψ2(2) + ψ′(1)

∫ (θT )β

0
(1 + ln y)2e−ydy. (5)

When T = mean (mean + sd), the ratio (5) is a function of θ, β and T , moreover it is an

increasing function of β. We plot this ratio at T = mean of Weibull for different values of β

in Figure 3.

When the shape parameter is known, the loss of information on the scale parameter due

to truncation is

1−
b22W

a22W
= 1− p̃ = e−(θT )

β

. (6)

The ratio (6) is plotted in Figure 4. The loss of information is an increasing function of the

β. However, the impact is relatively less than that for the shape parameter case.

5 Data Analysis and Discussions

For illustration purposes, we analyze one data set (Linhart and Zucchini [15], pp: 69), using

both GE andWeibull models. The data set represents the failure times of the air conditioning
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α → 0.5 1.5 2.0 2.5 3.0
VWE(0.5) 0.2264 1.0934 1.3454 1.5278 1.6765

(0.2111) (0.9113) (1.0905) (1.2137) (1.3115)
VGE(0.5) 0.3051 1.0189 1.1740 1.2770 1.3498

(0.2551) (0.8163) (0.9372) (1.0179) (1.0753)

∫ 1
0 VWE(p)dp 12.7261 6.5220 6.3097 6.2225 6.2120

(7.1655) (3.1252) (2.9625) (2.8880) (2.8641)
∫ 1
0 VGE(p)dp 5.3113 4.6409 4.5320 4.4640 4.4123

(3.0746) (2.9068) (2.9011) (2.8986) (2.8984)

Table 8: The variances of the median estimators of WE(β̃,θ̃) and GE(α, 1) when the data
are right truncated at T ≈ mean are reported. The results corresponding to T ≈ mean +
standard deviation are reported within bracket below in each case.

system of an airplane.

When we use the Weibull model the MLEs are, β̂ = 0.8554 and θ̂ = 0.0183. Similarly,

when we use the GE model, the MLEs are α̂ = 0.8130 and λ̂ = 0.0145. The estimated Fisher

information matrices for the Weibull and GE models are

IW (β̂, θ̂) =
[

2.6125 23.1033
23.1033 2184.9238

]

IG(α̂, λ̂) =
[

1.5129 −47.3124
−47.3124 3952.2546

]

respectively. It may be mentioned that, here the estimated and the observed information

matrices are very close to each other. Therefore, the estimated information matrix can be

replaced by the observed information matrix, which is easier to calculate. The traces are

2187.5363 and 3953.7675. Moreover, VWE(0.05) = 2394.3945,
∫ 1
0 VWE(p)dp = 16736.4023,

VGE(0.50) = 2283.6055 and
∫ 1
0 VGE(p)dp = 11197.1875. Therefore, asymptotic variance of

the median estimator and also the average asymptotic variance of the percentile estimators

for the GE model are smaller than the Weibull model.

One point should be mentioned here that if we multiply the data by a constant c, then

the information matrix changes for both distributions and therefore the trace also changes.

Therefore, it is possible to choose c in such a manner that the trace of the new Weibull infor-
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Figure 1: Percentage loss of information of the shape parameter of the GE distribution when
the scale parameter is fixed and when the right truncation takes place at the mean value.

mation matrix becomes larger than the trace of the new GE information matrix. Although,

the asymptotic variance of the percentile estimator also changes for the transformed data

but the trend remains the same.

Note that the asymptotic variance of α̂ is smaller than the asymptotic variance of β̂ and

the asymptotic variance of λ̂ is larger than the asymptotic variance of θ̂. It is reflected in

their profile likelihood surfaces also. We plot the profile likelihood surface of β (α) for θ = θ̂

(λ = λ̂) in Figure 5. It clearly shows that the profile likelihood surface of α is flatter than

β. Similarly, we plot the profile likelihood surface of θ(λ) for β = β̂ (α = α̂) in Figure 6. In

this case the profile likelihood of θ is flatter than λ.

Now let us look at the two fitted distributions. The maximum log-likelihood values are

-152.007 and -152.264 for Weibull and GE models respectively. Similarly the Kolmogorv-

Smirnov (K-S) distances between the empirical distribution function and the fitted distri-

bution functions are as follows. For the Weibull case the K-S distance is 0.1539 and the
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Figure 2: Percentage loss of information of the scale parameter of the GE distribution when
the shape parameter is fixed and when the right truncation takes place at the mean value.

corresponding p value is 0.4755 and for the GE case the K-S distance is 0.1900 and the

corresponding p values is 0.2286. We also plot the empirical survival function and the fitted

survival functions in Figure 7. Both provide good fit. It is clear from the likelihood values,

from the K-S distance and from Figure 7 that Weibull provides a marginally better fit than

GE to the given data set. But since the two fitted distribution functions are very close to

each other it is observed that the probability of correct selection (see Gupta and Kundu

[10]) is also close to 0.5. In fact in this particular case, assuming that the data are coming

from Weibull distribution the probability of correct selection is only 0.5224. Similarly, if we

frame this model discrimination problem as a testing of hypothesis problem (see Kundu and

Manglick [12]), then also we can not reject any of the null hypotheses. But comparing the

asymptotic variances of the median estimators and also the average asymptotic variances,

we prefer to use GE distribution rather than Weibull distribution for this particular data

set.
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Figure 3: Percentage loss of information of the shape parameter of the Weibull distribution
when the scale parameter is fixed and when the right truncation takes place at the mean
value.

6 Conclusions

In this paper we compute the Fisher information matrices of the Weibull and GE distributions

for both complete and Type-I censored data. We computed the Fisher information matrices

using the likelihood function and hazard function approach. Recently, reversed hazard rate

has been introduced and studied quite extensively by several authors, see for example Block,

Savits and Singh [1], Chandra and Roy [2] and Gupta, Gupta and Sankaran [5]. It is observed

by Gupta, Gupta and Sankaran [5] that the reversed hazard function also can be used to

compute the Fisher information matrix. It is not pursued here, because it is observed that

for complete or Type-I right censored data it may not be of much use. We have observed

that the reversed hazard function can be used quite effectively if the data are left censored.

Although, we have discussed only the complete and Type-I censored data, but similar results

can be obtained even for Type-II data also. The work is in progress and it will be reported

later.
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Figure 4: Percentage loss of information of the scale parameter of the Weibull distribution
when the shape parameter is fixed and when the right truncation takes place at the mean
value.
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