Crystal Field Splitting in an Octahedral Field

e_g - The higher energy set of orbitals (d_{z^2} and $d_{x^2-y^2}$)

t_{2g} - The lower energy set of orbitals (d_{xy}, d_{yz} and d_{xz})

Δ_o or 10 Dq - The energy separation between the two levels

The e_g orbitals are repelled by an amount of $0.6 \Delta_o$.
The t_{2g} orbitals to be stabilized to the extent of $0.4 \Delta_o$.
The higher energy set of orbitals (d_{xz}, d_{yz}, d_{xy}) is labeled as t_2 and the lower energy set (d_{z^2} and $d_{x^2-y^2}$) is labeled as e.

The crystal field splitting in the tetrahedral field is intrinsically smaller than in the octahedral field. For most purposes the relationship may be represented as $\Delta_t = \frac{4}{9} \Delta_o$.
Octahedral Vs Tetrahedral

- d_{xy}, d_{yz}, d_{xz}
- e
- $d_{x^2-y^2}$, d_{z^2}
- t_2
- t_{2g}
- e_g
- $0.4 \Delta_t$
- $0.6 \Delta_t$
- $0.6 \Delta_o$
- $0.4 \Delta_o$
- $0.4 \Delta_t$
- $0.6 \Delta_o$
- Tetrahedral Field
- Spherical Field
- Octahedral Field
The single electron in the \(t_{2g} \) orbitals absorbs energy in the form of light and gets excited to the \(e_g \) orbitals. In case of \([\text{Ti(H}_2\text{O)}_6]^{3+}\), this corresponds to 520 nm (20,300 cm\(^{-1}\)).
Factors Affecting the Magnitude of Δ

1. Higher oxidation states of the metal atom correspond to larger Δ.
 $\Delta = 10,200 \text{ cm}^{-1}$ for $[\text{Co}^{II}(\text{NH}_3)_6]^{2+}$ and $22,870 \text{ cm}^{-1}$ for $[\text{Co}^{III}(\text{NH}_3)_6]^{3+}$
 $\Delta = 32,200 \text{ cm}^{-1}$ for $[\text{Fe}^{II}(\text{CN})_6]^{4-}$ and $35,000 \text{ cm}^{-1}$ for $[\text{Fe}^{III}(\text{CN})_6]^{3-}$

2. In groups, heavier analogues have larger Δ.
 For hexaammine complexes $[\text{M}^{III}(\text{NH}_3)_6]^{3+}$:
 $\Delta = 22,870 \text{ cm}^{-1}$ (Co)
 $34,100 \text{ cm}^{-1}$ (Rh)
 $41,200 \text{ cm}^{-1}$ (Ir)

3. Geometry of the metal coordination unit affects Δ greatly.
 Tetrahedral complexes ML_4 have smaller Δ than octahedral ones ML_6:
 $\Delta = 10,200 \text{ cm}^{-1}$ for $[\text{Co}^{II}(\text{NH}_3)_6]^{2+}$
 $5,900 \text{ cm}^{-1}$ for $[\text{Co}^{II}(\text{NH}_3)_4]^{2+}$

 For $[\text{Co}^{III}\text{L}_6]$, Δ in cm$^{-1}$: 13,100 (F$^-$); 20,760 (H$_2$O); 22,870 (NH$_3$)
 For $[\text{Cr}^{III}\text{L}_6]$, Δ in cm$^{-1}$: 15,060 (F$^-$); 17,400 (H$_2$O); 26,600 (CN$^-$)
Spectrochemical Series

An arrangement of ligands according to their ability to increase Δ for a given metal center

Weak – I-, Br-, SCN-, Cl-, N\textsubscript{3}-, F-, H\textsubscript{2}NC(O)NH\textsubscript{2}, OH-, ox2-, O2-, H\textsubscript{2}O, NCS-, py, NH\textsubscript{3}, en, bpy, phen, NO\textsubscript{2}-, CH\textsubscript{3}-, C\textsubscript{6}H\textsubscript{5}-, CN-, CO – Strong
Distribution of Electrons in an Octahedral Complex

Net energy decrease is called crystal field stabilization energy (CFSE)

For d^1, $\text{CFSE} = 1 \times 0.4 = 0.4 \Delta_o$

For d^2, $\text{CFSE} = 2 \times 0.4 = 0.8 \Delta_o$

For d^3, $\text{CFSE} = 3 \times 0.4 = 1.2 \Delta_o$
Distribution of Electrons in an Octahedral Complex

There are two possibilities for metal ions having d^4-d^7 electronic configuration. Depending on the nature of the ligands and the metal they could be **high-spin** or **low-spin** complexes.

For the d^4 system, $\text{CFSE} =$

For high-spin, $(3 \times 0.4) - (1 \times 0.6) = 0.6 \Delta_o$ and

for low-spin, $4 \times 0.4 = 1.6 \Delta_o$
Distribution of Electrons in an Octahedral Complex

For d^8, CFSE = $(6 \times 0.4) - (2 \times 0.6) = 1.2 \Delta_o$

For d^9, CFSE = $(6 \times 0.4) - (3 \times 0.6) = 0.6 \Delta_o$

For d^{10}, CFSE = $(6 \times 0.4) - (4 \times 0.6) = 0.0 \Delta_o$

In all electronic configurations involving two electrons in the same orbital, the actual CFSE is reduced by the energy spent on pairing the electrons.

Metal ions with 4 – 7 electrons in the d orbital can exist as high-spin or low-spin complexes. Weaker ligands tend to give high-spin complexes, whereas stronger ligands tend to give low-spin complexes.
Distribution of Electrons in an Octahedral Complex

<table>
<thead>
<tr>
<th></th>
<th>High-spin</th>
<th>Low-spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>d^1</td>
<td>$t_{2g}^1e_g^0$</td>
<td>$0.4 \Delta_o$</td>
</tr>
<tr>
<td>d^2</td>
<td>$t_{2g}^2e_g^0$</td>
<td>$0.8 \Delta_o$</td>
</tr>
<tr>
<td>d^3</td>
<td>$t_{2g}^3e_g^0$</td>
<td>$1.2 \Delta_o$</td>
</tr>
<tr>
<td>d^4</td>
<td>$t_{2g}^3e_g^1$</td>
<td>$0.6 \Delta_o$</td>
</tr>
<tr>
<td>d^5</td>
<td>$t_{2g}^3e_g^2$</td>
<td>$0.0 \Delta_o$</td>
</tr>
<tr>
<td>d^6</td>
<td>$t_{2g}^4e_g^2$</td>
<td>$0.4 \Delta_o$</td>
</tr>
<tr>
<td>d^7</td>
<td>$t_{2g}^5e_g^2$</td>
<td>$0.8 \Delta_o$</td>
</tr>
<tr>
<td>d^8</td>
<td>$t_{2g}^6e_g^2$</td>
<td>$1.2 \Delta_o$</td>
</tr>
<tr>
<td>d^9</td>
<td>$t_{2g}^6e_g^3$</td>
<td>$0.6 \Delta_o$</td>
</tr>
<tr>
<td>d^{10}</td>
<td>$t_{2g}^6e_g^4$</td>
<td>$0.0 \Delta_o$</td>
</tr>
</tbody>
</table>
Distribution of Electrons in a Tetrahedral Complex

Tetrahedral splitting is seldom large enough to result in pairing of the electrons. As a result, low-spin tetrahedral complexes are not common.

A rare example is \(\text{Cr}[\text{N(SiMe}_3\text{)}_2]_3[\text{NO}] \)

\[
\begin{align*}
 d^1 & \quad e^1 t^0_2 & 0.6 \Delta_t \\
 d^2 & \quad e^2 t^0_2 & 1.2 \Delta_t \\
 d^3 & \quad e^2 t^1_2 & 0.8 \Delta_t \\
 d^4 & \quad e^2 t^2_2 & 0.4 \Delta_t \\
 d^5 & \quad e^2 t^3_2 & 0.0 \Delta_t \\
 d^6 & \quad e^3 t^3_2 & 0.6 \Delta_t \\
 d^7 & \quad e^4 t^3_2 & 1.2 \Delta_t \\
 d^8 & \quad e^4 t^4_2 & 0.8 \Delta_t \\
 d^9 & \quad e^4 t^5_2 & 0.4 \Delta_t \\
 d^{10} & \quad e^4 t^6_2 & 0.0 \Delta_t
\end{align*}
\]
When to Expect Tetrahedral Geometry

If ligands are large; so as to avoid ligand-ligand repulsion

In case of metal ions with zero CFSE (d^0, d^5 and d^{10}) or
MnO_4^- (d^0), FeCl_4^- (d^5, h.s.), ZnCl_4^{2-} (d^{10})

In case of metal ions with small CFSE (d^2 and d^7)
CoCl_4^{2-} (d^7, h.s.) – $0.8 \Delta_0$ vs $1.2 \Delta_t$
Ligands along the Z axis are removed from an octahedral complex to get a square planar complex.
When to Expect Square Planar Geometry

In the case of d^8 metals and strong ligands: Ni$^{2+}$, in the presence of strong field ligands such as CN$^-$ forms a square planar complex.

2^{nd} and 3^{rd} row d^8 metals form square planar geometry irrespective of the nature of the ligand:
With Pd$^{2+}$ (which already generates a strong field) even a weak field ligand such as Cl$^-$ leads to the formation of a square planar complex, for example, [PdCl$_4$]$^{2-}$.