Distortions in Octahedral Geometry
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Regular Octahedron: Complexes with regular octahedral geometry are expected to
form, when all of the ligands are of the same kind
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Distorted Octahedron: Complexes with distorted octahedral geometry are expected to
form, when the ligands are of different kinds



Distortions in Octahedral Geometry

If the ground electronic configuration of a non-linear complex is orbitally
degenerate, the complex will distort so as to remove the degeneracy and
achieve a lower energy. This 1s called the Jahn-Teller Effect
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Jahn-Teller Distortion in Cu(Il) Complexes
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Jahn-Teller Distortion in d° Complexes
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Jahn-Teller Distortion in d! Complexes
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Distortions are more pronounced if the degeneracy occurs in an e, orbital



Distortions in Low-Spin Complexes
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Distortions in High-Spin Complexes
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Lattice Energy: Estimated using Borne-Lande equation
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Thermodynamic Aspects of CFSE
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Site Preference in Spinels

Spinel — Mg!'AIMLO,
AUBILO,

The oxide ions form a close packed arrangement with octahedral and tetrahedral voids
and the metal ions occupy the voids.

Normal Spinels: (A")et(B!1)octQ,

The divalent A ions occupy the tetrahedral voids, whereas the trivalent B ions
occupy the octahedral voids in a close packed arrangement of oxide ions.

MgAl,O,, Mn;0,, ZnFe,0,, FeCr,0,

Inverse Spinels: (B!)et(AlBHT)octQ,

The AU ions occupy the octahedral voids, whereas half of B! ions occupy the
tetrahedral voids.

Fe,0,, CoFe,0,, NiFe,O,



Site Preference in Spinels

NiFe,0,

Ni is in +2 oxidation state and has 8 electrons in the d orbitals

In a tetrahedral void,
Configuration — e*t,*; CFSE — 0.8 A, (0.4 A,)

In an octahedral void,
Configuration — t, %% CFSE — 1.2 A,
Fe is in +3 oxidation state and has 5 electrons in the d orbitals

In a tetrahedral void,

Configuration — e’t,3; CFSE — 0
In an octahedral void,

Configuration — t,°e,* CFSE — 0

Hence, it is advantageous to have Ni** ion in the octahedral voids. This results in an
inverse spinel structure for the compound.
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Site Preference in Spinels

Mn,0,

When Mn is in +2 oxidation state, it has 5 electrons in the d orbitals

In a tetrahedral void,
Configuration — e’t,3; CFSE — 0

In an octahedral void,
Configuration — t, °e,* CFSE — 0

When Mn is in +3 oxidation state, it has 4 electrons in the d orbitals

In a tetrahedral void,
Configuration — e’t,2; CFSE — 0.4 A, (0.2 A,)

In an octahedral void,
Configuration - t, °e,'; CFSE - 0.6 A,

Hence, it is advantageous to have Mn>* ions in the octahedral voids. This results in a

normal spinel structure for the compound.
Mn"[Mn'"],0,



Origin of Color

400 nm 750 nm Absorbed Observed
Color A (nm) Color A (nm)
Violet 400 Green-yellow 560
Blue 450 Yellow 600
Blue-green 490 Red 620
Yellow-green 570 Violet 410
Yellow 580 Dark blue 430
Orange 600 Blue 450
Red 650 Green 520
560 nm
The Beer-Lambert Law

A =log,,(Io/I) = &cl

where ¢ is the molar extinction coefficient ( in L cm™! mole™! ), ¢ is concentration in mole L-!
and | is the path length in cm. A 1s known as ‘Absorbance’ and it is dimensionless.



Absorption

Color of [Ti(H,0),]*"
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Absorption at 520 nm
gives the complex its
purple color
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Color and CFT

[V(H,0)¢]™* [V(H,0)¢]**
V() = d* ion V(Il) = d’ ion
violet light absorbed yellow light absorbed
complex appears yellow complex appears violet




Color and CFT

[Cl'(I\IH3)6]3Jr

[Cr(NH,)sCIP*

NH,

HN.. . oo NH,

HN ™ N
NH,

Strong ligands, leading to
high A,. Absorbs violet
and appears yellow.

Cl
HN-.. oo NH;
HN ™ NHy
NH,4

Relatively weak set of ligands,
leading to reduced A,. Absorbs
yellow and appears magenta.



Laporte Rule

In a molecule or ion possessing center of symmetry, transitions are not allowed
between orbitals of same parity. Transitions are only possible between orbitals that
differ by Al = £1; ‘I’ is the orbital quantum number.

Examples of forbidden transitions are: Sto s, d to d, p to f etc.

Tetrahedral geometry is not affected by this rule as it does not have a center of
symmetry.

As a consequence, ¢ for tetrahedral complexes are 100 times more than the ¢ for
octahedral complexes.

Even octahedral complexes lose their center of symmetry transiently due to
unsymmetrical vibrations. This leads to color in octahedral and square planar
complexes



Spin-forbidden and Spin-allowed Transitions

Any transition for which AS'£0 is strongly forbidden; that is, in order to be allowed, a
transition must involve no change in spin state.
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Allowed — — Forbidden

[Mn(H,0),]?>* has a d® metal ion and is a high-spin complex. Electronic transitions are
not only Laporte-forbidden, but also spin-forbidden. The dilute solutions of Mn?*
complexes are therefore colorless.

However, certain complexes such as MnO4-, CrO4% etc are intensely colored even
though they have metal ions without electrons in the d orbitals. The color of these
complexes are not from d-d transitions, but from charge-transfer from ligand to metal
orbitals.



dY and d!° ions have no d-d transitions

Zn**  d¥%jon  white
TiF, d%jon  White

TiCl, d%ion white

TiBr, d%jon  Orange
Til,  d%ion dark brown
[MnO,]" Mn(VIl) d°%ion extremely purple

[Cr,O,]" Cr(VI)  d%ion

[Cu(MeCN),]* Cu(l) d*¥ion colourless
[Cu(phen),]* Cu(l) d¥ion dark orange



