
Lecture 7: Angular Momentum, Hydrogen
Atom

1 Vector Quantization of Angular Momen-

tum and Normalization of 3D Rigid Rotor

wavefunctions

Consider l = 1, so L2 = 2~2. Thus, we have |L| = ~
√

2. There are three
possibilities for Lz depending on the value of ml. We have Lz = 0,or Lz = ~
or Lz = −~. For all of these, the length of angular momentum vector is
~
√

2. Thus, we have a vector whose length is
√

2~ and whose projection on
the Z-axis can take only 3 possible values. Thus, the angular momentum
vector can either be in the X-Y plane or, anywhere on cones at angles of ±45
degrees to the Z-axis. This is referred to as vector quantization of angular
momentum. Similarly, we can work out for the l = 2 states.

In order to normalize the eigenfunctions of the rigid rotor Hamiltonian,
we need to do an integral over the angles θ and φ. The conversion of the
volume integral in 3D from Cartesian to spherical polar coordinates involves
a Jacobian of transformation so that we have

dxdydz = r2 sin(θ)drdθdφ

Thus the normalization condition for ψ(θ, φ) is given as

2π∫
0

π∫
0

ψ∗(θ, φ)ψ(θ, φ) sin(θ)dθdφ = 1
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2 The Hydrogen Atom

Explaining the stability of the Hydrogen atom is one of the triumphs of the
quantum theory. Treating the H-atom as a proton of mass mp at ~R and an
electron of mass me at ~r, we can write the Hamiltonian as

Ĥ(~R,~r) = − ~2

2mp

∇2
R −

~2

2me

∇2
r −

1

4πε

e2

|~R− ~r|

Using a change of coordinates to center of mass and relative coordinates, we
can write for the relative motion

Ĥ(~r) = − ~2

2µ
∇2 +

1

4πε

e2

r

where the Laplacian is with respect to the relative coordinate and r is the
distance between the electron and the nucleus. The reduced mass µ is given
by

1

µ
=

1

mp

+
1

me

≈ 1

me

. In other words, we can approximate this system as a fixed nucleus and an
electron orbiting about it.

The Laplacian can be written in spherical polar coordinates and now the
potential depends only on r and not the angles. Thus we can write the
Hamiltonian operator as

Ĥ(r, θ, φ) = − ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

))
− 1

4πε

e2

r

The Schrödinger equation

Ĥ(r, θ, φ)ψ(r, θ, φ) = Eψ(r, θ, φ)

is solved by separation of variables

ψ(r, θ, φ) = R(r)Y (θ, φ)

. The angular part is exactly the spherical harmonics discussed in the rigid
rotor problem. The radial part is denoted by R(r) and is dependent on
two quantumnumbers, the principal quantum number n and the azimuthal
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quantum number l, which also appears in the spherical harmonics. Thus we
have

ψn,l,ml
(r, θ, φ) = Rn,l(r)Yl,ml

(θ, φ)

We mention here the form of Rn,l(r). You are not expected to remember this
but it helps to understand the key parts of the wavefunction. For convenience
we define ρ = 2r/na0 where

a0 =
h2ε0
πmee2

is referred to as the Bohr radius and is equal to 0.529 Å. The radial part of
the wavefunction can now be written as

Rn,l(r) = Nn,lρ
lLn,l(ρ)e

−ρ/2

where Ln,l(ρ) is referred to as the associated Laguerre polynomial, a polyno-
mial whose degree is n− 1 and Nn,l is the normalization constant. The first
few wavefunctions are given below:

n = 1, l = 0, 1s orbital ψ1,0,0 = R1,0(r)Y0,0(θ, φ)

= 2

(
1

a0

)3/2

e−r/a0

(
1

4π

)1/2

n = 2, l = 0, 2s orbital ψ2,0,0 = R2,0(r)Y0,0(θ, φ)

=
1

81/2

(
1

a0

)3/2 (
2− r

a0

)
e−r/2a0

(
1

4π

)1/2

n = 2, l = 1,ml = 0, 2pz orbital ψ2,1,0 = R2,1(r)Y1,0(θ, φ)

=
1

241/2

(
1

a0

)3/2
r

a0

e−r/2a0

(
3

4π

)1/2

cos θ

n = 2, l = 1,ml = 1, 2p1 orbital ψ2,1,0 = R2,1(r)Y1,0(θ, φ)

=
1

241/2

(
1

a0

)3/2
r

a0

e−r/2a0

(
3

4π

)1/2

sin θeiφ
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n = 2, l = 1,ml = −1, 2p−1 orbital ψ2,1,0 = R2,1(r)Y1,0(θ, φ)

=
1

241/2

(
1

a0

)3/2
r

a0

e−r/2a0

(
3

4π

)1/2

sin θe−iφ

The last two are combined to give the real 2px and 2py orbitals.
The energy of a state, however, depends only on the principal quantum

number n and is given by

En = − mee
4

8h2ε20n
2

The restrictions on the quantum numbers are as follows:

n = 1, 2, 3, ... l = 0, 1, 2...n− 1 ml = 0,±1...± l

and they are referred to as principal, azimuthal and magnetic quantum num-
bers. The wavefunction ψn,l,m is the wavefunction of a single electron and is
referred to as an orbital or a spatial orbital.

Plotting of wavefunctions is a very powerful tool. Since the wavefunction
depends on a 3D position of the electron, we prefer to plot the angular and
radial parts separately. Since the angular parts have already been plotted
before when we looked at rotational states, we plot the first few radial parts
below.

Notice that for 1s and 2s, the wavefunction is maximum at the nucleus,
but for 2p the wavefunction is zero at the nucleus. The corresponding plots
of the square of the radial part can easily be plotted.
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