
Lecture 8: Radial Distribution Function,
Electron Spin, Helium Atom

1 Radial Distribution Function

The interpretation of the square of the wavefunction is the probability density
at r, θ, φ. This function is normalized as

∞∫
0

π∫
0

2π∫
0

ψ∗n,l,ml
(r, θ, φ)ψn,l,ml

(r, θ, φ)r2 sin θdrdθdφ = 1

Substituting for the radial and angular parts we get

∞∫
0

r2R2
n,l(r)dr

π∫
0

2π∫
0

Y ∗l,ml
(θ, φ)Y ∗l,ml

(θ, φ) sin θdθdφ = 1

If we want to find the probability of finding at a given r independent of
angular distribution, it is convenient to define a quantity called the radial
distribution function P (r) which is defined as

P (r) = r2R(r)2

where R(r) is the radial part of the probability distribution function. The
radial distribution gives the probability density at a distance r from the
nucleus.

For example, we can use the 1s orbital and find out the distance rmax

from the nucleus where the electron is most likely to be found by

P (r) ∝ r2e−2r/a0
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Using the condition for maximum as

dP

dr
= 0 and

d2P

dr2
< 0

, we get rmax = a0.
A simple extension of the Hydrogen atom is to Hydrogen-like atoms,

which have a nuclear charge of Ze and one electron. For example, He+, Li2+

etc can be thought of as hydrogen-like atoms.The solutions look exactly the
same with the nuclear charge replaced by Ze. The energy expression is

En = −mee
4Z2

8h2ε20n
2

The wavefunctions are given by the same form as before with ρ = 2Zr/na0

and
ψn,l,ml

(r, θ, φ) = Nn,lρ
lLn,l(ρ)e

−ρ/2Yl,ml
(θ, φ)

Thus only the radial part is affected since that is the only term that depends
on the interaction.

We had briefly talked about Spin quantum number earlier. For electrons,
since s = 1/2, we can have two states ms = 1/2 and ms = −1/2. The
wavefunctions corresponding to these two eigenvalues are functions of a spin
variable si and are denoted by α(si) and β(si) so that Ŝzα(si) = 1/2~α(si)
and Ŝzβ(si) = −1/2~β(si). The total wavefunction is said to be a function
of both spatial and spin coordinates and is referred to as a spin orbital

1sα ≡ ψ1,0,0,1/2 ≡ ψ1,0,0(r, θ, φ)α(si)

Spin will become especially important for many-electron atoms. We will
describe this when we come to the Helium atom.

2 Helium Atom

The Helium Atom is represented in the picture below. The Hamiltonian
operator for this system can be written as

Ĥ(~R,~r1, ~r2) = − ~2

2M
∇2

R−
~2

2me

∇2
1−

~2

2me

∇2
2+

e2

4πε0

(
− 2

|~R− ~r1|
− 2

|~R− ~r2|
+

1

|~r2 − ~r1|

)
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+ 2

− 1

r
r

1
2

− 1

Assuming that the nucleus is much heavier and fixing it at the origin, we can
write a simpler Hamiltonian as

Ĥ(~r1, ~r2) = − ~2

2me

∇2
1 −

~2

2me

∇2
2 +

e2

4πε0

(
− 2

r1
− 2

r2
+

1

r12

)
where r12 = |~r1 − ~r2|. The corresponding Schrödinger equation cannot be
solved exactly since the Hamiltonian involves two coordinates of two particles
which cannot be separated out due to the r12 term due to the electron-electron
interactions. In fact, this interaction is the reason why all multi-electron sys-
tems cannot be solved analytically. This has resulted in development of very
powerful and accurate numerical methods to treat systems which we shall
not describe here. However, we will consider one very simple approximation
that is related to the concept of shielding.

Suppose we assume that we can neglect the electron-electron repulsion.
Then the Hamiltonian can be separated into two terms, one involving electron
1 and the other involving electron 2 and each can be solved exactly using
Hydrogen-like functions with nuclear charge +2. The Schrödinger equation
is now given by

− ~2

2me

∇2
1 −

~2

2me

∇2
2ψ(~r1, ~r2) +

e2

4πε0

(
− 2

r1
− 2

r2

)
ψ(~r1, ~r2) = Eψ(~r1, ~r2)
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which can be separated using ψ(~r1, ~r2) = ψ1(~r1)ψ2(~r2). This leads to two
separate equations(

− ~2

2me

∇2
1 −

2e2

4πε0r1

)
ψ1(~r1) = E1ψ1(~r1)

(
− ~2

2me

∇2
2 −

2e2

4πε0r2

)
ψ2(~r2) = E2ψ2(~r2)

which are basically hydrogenic wavefunctions whose energies are given by

E1 = − 4mee
4

8h2ε20n
2
1

and similarly for E2.
We can do a little better than this using the following argument. Let

us assume that the effect of interelectron repulsion is to shield part of the
nuclear charge from the other electron. Thus, the effective nuclear charge
felt by the electrons is 2 − σ where σ is a positive number less than 2, that
estimates how much of the nuclear charge is shielded. Now we have the
energy expression given by

E1 = −(2− σ)2mee
4

8h2ε20n
2
1

and similarly for E2.
The value of σ can be derived from variational techniques that we do

not describe here. However, we can calculate the best value of σ that fits
exerimental observations.

The wavefunction is given by

ψn1,l1,ml1,n2,l2,ml2(r1, θ1, φ1, r2, θ2, φ2)

= Nn1,l1Rn1,l1(r1)Yl1,ml1(θ1, φ1)Nn2,l2Rn2,l2(r2)Yl2,ml2(θ2, φ2)

where n1, n2 = 1, 2, 3..., and so on. We should use a nuclear charge of 2− σ.
The ground state wavefunction corresponds to both electrons in their n = 1
states and is given by

ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)
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= 2

(
2− σ

a0

)3/2

e−(2−σ)r1/a0

(
1

4π

)1/2

∗ 2

(
2− σ

a0

)3/2

e−(2−σ)r2/a0

(
1

4π

)1/2

We use this expression to explain the importance of spin and Pauli’s exclusion
principle. We notice that for the ground state we have

ψ(~r1, ~r2) = ψ(~r2, ~r1)

Thus we can say that the spatial part of the wavefunction is sysmmetric
to exchange of electrons. The total wavefunction has to be antisymmetric
to exchange of electrons. The total wavefunction is for each electron (spin
orbital) is written as a product of the spatial part times the spin part. The
spin part can be either α or β. If the spin variables are denoted by s1 and
s2, then there are four possibilities for the total wavefunction.

ψ(~r1, s1, ~r2, s2) = ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)α(s1)α(s2)

ψ(~r1, s1, ~r2, s2) = ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)β(s1)β(s2)

ψ(~r1, s1, ~r2, s2) = ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)
1√
2
(α(s1)β(s2) + β(s1)α(s2))

ψ(~r1, s1, ~r2, s2) = ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)
1√
2
(α(s1)β(s2)− β(s1)α(s2))

Notice that the first 3 functions are symmetric to exchange of spin vari-
ables. The fourth one is antisymmetric. Since the spatial parts are symmet-
ric, the spin part HAS to be antisymmetric so that the total wavefunction is
antisymmteric. Thus the ground state wavefunction is given by

ψ(~r1, s1, ~r2, s2) = ψ1,0,0,1,0,0(r1, θ1, φ1, r2, θ2, φ2)
1√
2
(α(s1)β(s2)− β(s1)α(s2))

This is a statement of Pauli’s exclusion principle. If the first 3 quantum
numbers (n, l,ml) for two electrons are identical, then the fourth one (ms)
must necessarily be different for the two electrons.

Notice that α(s1)β(s2) is not an allowed spin function since it is neither
symmetric nor antisymmetric. If we have an excited states where the spa-
tial parts are different, say ψ1(~r1) and ψ2(~r2), then the only allowed spatial
wavefunctions are

1√
2

(ψ1(~r1)ψ2(~r2) + ψ1(~r2)ψ2(~r1))
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and
1√
2

(ψ1(~r1)ψ2(~r2)− ψ1(~r2)ψ2(~r1))

The first one is symmetric to exchange of electrons and the second one is an-
tisymmetric to exchange of electrons. They combine with antisymmetric and
symmetric spin states respectively so that the total wavefunction is always
antisymmetric to exchange of electrons.
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