## Answers to the Problems

## 1. a)

i) $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

Co is in +3 oxidation state, there are 6 electron in the $d$ orbital and coordination number is 6 .
ii) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CoF}_{4}\right]$

Co is in +2 oxidation state, there are 7 electrons in the $d$ orbital and coordination number is 4 iii) diamagnetic $\left[\mathrm{NiCl}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$

Ni is in +2 oxidation state, there are 8 electrons in the d orbital and coordination number is 4 iv) cis- $\left[\mathrm{CrCl}_{2}\right.$ (bipy) $\left.{ }_{2}\right] \mathrm{Cl}$

Cr is in +3 oxidation state, there are 3 electrons in the d orbital and coordination number is 6
v) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$

Mn is in +2 oxidation state, there are 5 electrons in the d orbital and coordination number is 6
b)
i) Can exhibit optical isomerism
ii) Does NOT show isomerism
iii) The known square planar complexes with this formula are trans- and cis- forms are theoretically possible.
iv) The cis- form can exhibit optical isomerism and there is a possibility of a trans- form as well
v) Does NOT show isomerism.
2.
i) $\mathrm{K}\left[\mathrm{Cr}(\mathrm{oxal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ - Both geometric (cis-, trans-) and optical isomers can exist.
ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$ - Two optical isomers can exist.
iii) $\left[\mathrm{CoCl}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br}-\mathrm{A}$ total of 10 isomers are possible. There are geometric, ionisation and linkage isomers possible.
iv) $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ - Geometric (cis-, trans-) isomers can exist.
3. $\left[\mathrm{CoF}_{6}\right]^{3-}$ uses the $4 s, 4 p$ and two $4 d$ orbitals to give $s p^{3} d^{2}$ hybridization, whereas $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ uses two $3 \mathrm{~d}, 4 \mathrm{~s}$ and 4 p orbitals to give $d^{2} s p^{3}$ hybridization. Valence bond theory does not provide the rationale for using higher energy orbitals in case of $\left[\mathrm{CoF}_{6}\right]^{3-}$.
4. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is a low-spin complex, whereas $\left[\mathrm{Fe}(\mathrm{NCS})_{6}\right]^{3-}$ is a high-spin complex. Iron is in +3 oxidation state in both the complexes.
5.
i) $\left[\mathrm{VCl}_{6}\right]^{3-}$ has a $d^{2}$ metal ion. $\mathrm{CFSE}=0.8 \Delta_{\text {o }}$
ii) $\left[\mathrm{Ru}(\text { bipy })_{3}\right]^{3+}$ has a $d^{5}$ metal ion. Being from the second row of transition metals it forms a low-spin complex with a reasonably strong ligand such as bipy. CFSE $=2.0 \Delta_{\mathrm{o}}$
iii) $\left[\mathrm{PtBr}_{6}\right]^{2-}$ has a $d^{6}$ metal ion. It should be a low-spin octahedral complex. $\mathrm{CFSE}=2.4 \Delta_{\mathrm{o}}$
iv) $\left[\mathrm{Ti}(\mathrm{en})_{3}\right]^{2+}$ has a $d^{2}$ metal ion. $\mathrm{CFSE}=0.8 \Delta_{\mathrm{o}}$

