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Chapter 1

On the basics

1. I have kept a grain of sand in the otherwise empty(considering I have
perished with the rest of the universe!) universe. This grain of sand is
kept at rest with respect to a chosen frame of reference. After any given
amount of time, the grain does not appear to start moving with respect
to that frame of reference. Which property of the space, can you deduce
from this observation?

(a) Isotropicity of space

(b) Homogeneity of space

(c) None of the above

2. What name have we given for such a reference frame?

3. My friend Thomas argues that the time kept by his uncle at Greenwich
should be considered as the definitive values of time and should be used
to write the laws of mechanics. I am arguing the same for the time kept
by my uncle in New Delhi. Which property of time dictates that both of
us are wrong?

4. Expand the following functions of x in Taylor expansion with respect to a

(a) e−x and a = 0

(b) e−x
2

and a = 0

(c) eikx and a = 0 where i =
√
−1 and k is a constant real number.

(d) e−α(x−a)
2

where α is a constant real number.

(e) sin(x) and a = 0

(f) cos(x) and a = 0

(g) cos(x) + i sin(x) and a = 0 where i =
√
−1

(h) ln(x) and a = 1
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6 CHAPTER 1. ON THE BASICS

(i) ln(1 + x) and a = 0

(j) ln(1− x) and a = 0

(k) 1
1−x and a = 0

(l) 1
1+x and a = 0

(m) (x+ a)2 and a = 0

(n) (x+ a)4 and a = 0

(o) cos(x)e−x and a = 0

(p) (1− e|(x−a)|)2.

5. Expand the following functions of x and y with respect to x = 0 and y = 0

(a) ex
2+y2

(b) sin(x) cos(y)

(c) sin(x+ y)

6. Plot the following functions of x with respect to x. The domain of defini-
tion for all functions are −5 ≤ x ≤ 5. (A plot is not a plot unless labels
are explicitly mentioned)

(a) x

(b) 1
x

(c) 1
|x|

(d) sin(x)

(e) sin(2x)

(f) cos(x)

(g) cos(2x)

(h) ex

(i) e−x

(j) e−x
2

(k) ex
2

(l) x

(m) x2

(n) x3

(o) x4

(p) x2 − x4

(q) x2 + x4

(r) −x2 + x4

(s) sin(x)
x

(t) kx2 where k = 1, 2, 3. Plot all three functions (for three values of k)
in a single plot and compare.

(u) (1− e|(x−a)|)2 where a is a real constant.



Chapter 2

On the classical mechanics

1. Two particles are moving in the x-direction. Their masses are m1 and
m2. They are positioned at x1(t) and x2(t) at time t with respect to a
given inertial reference frame. Correspondingly,their velocities are v1 and
v2 which are constants. There is no interaction between them. See Fig.2.1
below.

Figure 2.1: Two particles moving freely along x-direction.

(a) Write down the Lagrangian for this system.

(b) Using Lagrangian EOM, find out the relation between v1(t) and v2(t).

(c) If you are sitting on m1 (i.e. you have attached a reference frame
on m1) what will be the relative velocity of m2 with respect to you?
Write your answer using only v1. (Hint: Use the answer of the pre-
vious question)

(d) If m1 >> m2, and you are sitting on m1 what will be the relative
velocity of m2 now? (Hint: Take m2 →∞ limit of the answer of the
previous question.)

(e) Write the Hamiltonian function for this system (Hint: Remember that
the basic variables for Hamiltonian function are generalized positions
and momenta, not velocities. )
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8 CHAPTER 2. ON THE CLASSICAL MECHANICS

(f) Write the Hamiltonian EOMs for this system.

(g) What kind of curve are we describing by the Lagrangian vs. velocity
space if the Hamiltonian and Lagrangian functions are same? (Hint:
Use the interpretation given in terms of the geometrical meaning of
Legendre transformation)

(h) Consider v1 = 0 in your reference frame. Draw the phase space
trajectory for the m2 for a constant value of total energy.(Remember:
A phase space is defined by position and momentum, not velocity.)

2. Consider the particles described above are moving in an arbitrary direction
in 3-dimensional space.

(a) Compute the system’s Lagrangian and Hamiltonian functions. (Hint:
These functions will be straightforward extensions for one-dimensional
motion you already described above)

(b) Find out the degrees of freedom for this system

3. Two particles are aligned along the x-direction. Their masses are m1 and
m2. The particle with mass m1 is positioned at the origin of a reference
frame and at rest with respect to this reference frame. The other particle
(with mass m2) is initially at rest at a distance xe. There is an interaction
between these two masses such that if the position of m2 is changed to a
new position x, it experiences a restoring force which is proportional to
the displacement (x− xe). See Fig.2.2 below.

Figure 2.2: The particle with mass m2 (green) moving under the force law given
above, along x-direction. Mass m1 is tethered to the origin of the reference frame
(i.e. its position is x = 0 always). When at rest, the particle with mass m2 is
at xe. When perturbed, this particle is at x.

(a) Write an expression for the restoring force experienced by the mass
m2 if the force per unit displacement is measured as k. (Hint: Re-
member Hook’s law? )

(b) Find out the potential between these two particles.(Hint: F (x) =

−dV (x)
dx and the force on m2 at xe is zero.)
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(c) What is the degrees of freedom for the system?

(d) Find out the Lagrangian function for the system.

(e) Write down the equation of motion for the system.

(f) Does m1 appears in your EOM? What does that physically mean?

(g) Find out the Hamiltonian function for the system and write down
the Hamiltonian equation of motion.

(h) If the system is conservative1 then sketch the phase space trajectory
for the system.

(i) If the total energy of the system is doubled to 2E redraw the phase
space trajectory. Compare this shape with the shape obtained for
total energy E.

(j) The shape is a well-known conic section. What is it called?

(k) Calculate the area J enclosed by the phase space trajectory for a
given energy E in terms of k and m2.

(l) If one considers only those phase space trajectories whose J are inte-
ger multiples of a constant number h, find out the difference between
the two consecutive, allowed energy value in terms of k and m2.

(m) What is the dimension of J?

‘ ‘ ‘

1It means that the total energy of the system E is constant for the system over time.
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Chapter 3

On the classical mechanics
and waves

1. If a classical mechanical property A(q, p, t) is explicitly dependent on time
t apart from generalized position q and generalized momentum p, write
down its equation of motion (Hint: There will be an extra term in the
EOM derived in the class.)

2. For any classical mechanical quantities f(q, p), g(q, p), h(q, p) and real num-
bers a, b show that

(a) {f, g} = −{g, f}
(b) {af + bg, h} = a{f, h}+ b{g, h}
(c) {h, af + bg} = a{h, f}+ b{h, g}
(d) {fg, h} = f{g, h}+ g{f, h}
(e) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

(Hint: Use the definition of Poisson bracket in terms of q and p)

3. The Hamiltonian function of a system is given by

H(p, q) =
p2

2m
+
mω2

2
q2

Obtain the time-evolution equation (EOM) for the classical mechanical
properties

(a) A = p

(b) A = p2

(c) A = p3

(d) A = q

(e) A = q2

11



12 CHAPTER 3. ON THE CLASSICAL MECHANICS AND WAVES

(f) A = q3

(g) A = pq

(h) A = q2p

(i) A = p2q

(Hint: Use dA
dt = {A,H} where H is the hamiltonian function)

4. The Hamiltonian function of a system is given by

H(p, q) =
p2

2m
+

1

q

Obtain the time-evolution equation (EOM) for the classical mechanical
properties

(a) A = p

(b) A = p2

(c) A = p3

(d) A = q

(e) A = q2

(f) A = q3

(g) A = pq

(h) A = q2p

(i) A = p2q

5. The Hamiltonian function of a system is given by

H(p, q) =
p2

2m
+ V (q)

Obtain the time-evolution equation (EOM) for the classical mechanical
properties in terms of V (q)

(a) A = p

(b) A = p2

(c) A = p3

(d) A = q

(e) A = q2

(f) A = q3

(g) A = pq

(h) A = q2p

(i) A = p2q
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6. Use the last question’s Hamiltonian and equation of motion for A(t) =
q(t)p(t).

(a) Show that
dA(t)

dt
= 2

p2

2m
− q ∂V (q)

∂q
.

(b) Show that for a periodic motion with time period T where q(t) =
q(t+ T ) and p(t) = p(t+ T )

2
1

T

∫ T

0

p2

2m
dt =

1

T

∫ T

0

q
∂V (q)

∂q
dt

(c) Show that
m

2

d2(q2)

dt2
= 2

p2

2m
− q ∂V (q)

∂q

(d) Consider f(λq) = λnf(q) where λ is a constant number and n is
another number. Show that for such functions

q
∂f(q)

∂q
= nf(q)

1. (Hint: Step 1: Take derivative of the f(λq) = λnf(q) with respect

to λ. Step 2: Convert the LHS to q′ ∂f(q
′)

∂q′ where q′ = λq. Step 3:

Write the whole equation in terms of q′.)

7. Suppose a plane wave is moving through the string in x direction (see
Fig.3.1).

Figure 3.1: Wave is moving in the x direction.

The red patch of string has mass m and length l. The red patch is un-
dergoing a simple harmonic motion in the perpendicular direction of wave

1Such functions are known as Euler homogeneous functions of degree n and q ∂
∂q

is known

as Euler operator.
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propagation. The potential experienced by this patch is = mω2

2 ψ2(x, t)
where x denotes the center position of the red patch. Note that ψ(x, t) is
the displacement from the equilibrium position of the string.

(a) Calculate the kinetic energy of the red patch in terms of ψ(x, t).

(b) Calculate the total energy of the read patch in terms of ψ(x, t).

(c) Considering
ψ(x, t) = A sin(kx− ωt)

calculate the total energy carried by of the red patch in terms of A,
ω and m.

8. Can the function
φ(x, t) = A exp

(
−α(x− vt)2

)
represent a travelling wave? Here A, v and α are positive real numbers.

9. A wave is moving at a velocity v = 10 m s−1. Its wave length is λ = 1 cm.

(a) Compute the frequency ν in Hertz.

(b) Compute the wave number ν̄ = 1/λ.

(c) Compute the angular wave number k = 2π/λ

(d) Compute its angular frequency ω = 2πν.

10. A wave is moving at a velocity c = 3 × 108 m s−1. Its wave length is
λ = 400 nm.

(a) Compute the frequency ν in Hertz.

(b) Compute the wave number ν̄ = 1/λ.

(c) Compute the angular wave number k = 2π/λ

(d) Compute its angular frequency ω = 2πν.

11. A wave is moving at a velocity c = 3 × 108 m s−1. Its wave length is
λ = 800 nm.

(a) Compute the frequency ν in Hertz.

(b) Compute the wave number ν̄ = 1/λ.

(c) Compute the angular wave number k = 2π/λ

(d) Compute its angular frequency ω = 2πν.



Chapter 4

On the old quantum theory

1. Using the Planck’s expression for spectral density

u(ν) =
8πhν3

c3
1

e
hν
KBT − 1

(a) Derive the expression for frequency (νmax) for which the u(ν) is max-
imum.

(Hint:
Step 1: Obtain a transcendental equation involving νmax and T .
Step 2: Show the transcendental equation can be written in the form

xex = c

where c is a constant
Step 3: The solution for such equation (x = W (c)) is obtained by
Lambert’s W function such that

W (c) ≈ c− c2

for |c| << 1
Step 4: Using the previous step, show νmax ∝ T and compute the
proportionality constant. )

(b) Derive total energy emitted by the black body as a function of tem-
parature.

(Hint:
Step 1: Total energy per unit volume E(T ) emitted by the blackbody
kept at temparature T is =

∫∞
0
u(ν)dν

Step 2: Convert one integral to a series (which one? - figure it out!)
ζ(4) =

∑∞
k=1

1
k4

Step 3: Use ζ(4) = π4

90 . See footnote 1

1ζ(m) is Riemann Zeta function and can be computed from Fourier series expansion very
easily.
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16 CHAPTER 4. ON THE OLD QUANTUM THEORY

Setp 4: Show E(T ) ∝ T 4

Step 5: Find out the proportionality constant. )

(c) A star is glowing yellow. Its peak intensity occurs at 550 nm. Cal-
culate its surface temperature considering the star as a black body.

(d) Calculate the total energy radiated by the yellow star if its radius is
696000 km.

(e) A planet around the star has average surface temparature 14◦ C.
Considering it as a blackbody, find out its peak emission frequency
νmax.2

2. Consider a H atom in its ground state. Using Bohr’s model,

(a) Calculate the energy required to ionize it in (a) Joules, (2) atomic
units, (3) Rhydberg, (4) wave number, (5) angular wave number, (6)
frequency (7) wave length.3

(Hint: If one provides exactly this energy, the electron will become
a free particle and the final energy stored by the atom becomes zero.

(b) Calculate radius of lowest two Bohr orbits in (1)pm, (2) Å, (3) m,
(4) au

(c) Consider the electron is jumping from its lowest energy state to 3rd

and 5th excited states. Compute the ratio of frequencies of absorbsion
lines for these two transitions.
(Remember: 1st excited state means quantum number n = 2.)

(d) Calculate the velocity of the electron in the lowest energy orbit ac-
cording to the Bohr’s model.

(e) Calculate the ratio of this velocity and the velocity of light in vacuum.

(f) Show that the change of energy En with the small change of quantum

number n is proportional to r
−3/2
n for very large n where rn is the

radius of nth orbit.

(g) Considering the relation between time period T related to the jump
from state n to n− 1 and transition energy ∆En = En − En−1 find
out the relation between T and rn. Recognize this result?!

(h) Compute the time-period of an electron moving in innermost Bohr
orbit.

(i) Compute the de Broglie wave length of the electron in the innermost
Bohr orbit.

(j) Compute the ratio of the circumference of the innermost Bohr orbit
and the de Broglie wavelength computed above.

(k) Compute this ratio for nth Bohr orbit. (Note: Both the circumference
and de Broglie wavelength are determined by n. The second one is
dependent on the velocity at that orbit.)

2T in all equations are measured in Kelvin.
3Consider the proprtionality between the energy and frequency
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3. A beam of electrons have been created in such a way that the avaerage
spead of these electrons is 65% of the speed of light in vacuum.

(a) Calculate the de Broglie wavelength for these electrons.

(b) Does this wavelength depend on the temparature of the surrounding?

(c) In double-slit experiment, the spacing between two consecutive fringes
are given by x = hλ

d where h, λ and d are distance between the slits
and the detector screen, the wavelength of the wave and the dis-
tance between two slits, respectively. We heat a bunch of Buckmin-
ister fullerene molecules (C60) to a temparature 1000 K. Assuming
its thermal energy 3

2kBT is converted to the kinetic energy of these
molecules, calculate the fringe spacing created by the beams of C60

molecules if h = 10 m and d = 5 µm.

(d) Usain Bolt weighs 94 Kg. Compute his de Broglie wavelength when
he ran 100 m in 9.58 seconds.

4. The work function Φ of a few metals are given below.

Metal W Cu Pd Au Ag

Φ/eV 4.35 4.75 5.40 5.25 4.50

(a) Calculate maximum speed of ejected electrons if one shines these
metals with a light with wavelength 600 nm.

(b) Compute these electrons’ de Broglie wavelengths for each cases.

5. Consider a neutral atom X with two electrons. Both of them are in
the lowest Bohr orbit and they do not interact amongst each other (a
hypothetical situation).

(a) Calculate the radius of inner most orbit in (1) a.u. and (2) m

(b) Calculate the largest frequency of the absorption lines in its absorp-
tion spectra.

(c) We add one neutron in the nucleus of this atom. According to Bohr’s
model, compute the energy difference between the original atom and
this isotope in their ground states.

(d) Compute the energy required for the process X → X+ in eV, au and
Joules.

(e) Compute the energy required for the process X+ → X2+ in eV, au
and Joules.

(f) The experimental ionization potentials for this atom are 24.6 eV and
54.4 e V respectively. Explain the discrepancies with your calculated
values and the experiemntal values, if any.
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Chapter 5

On the formalism and
mathematical preliminaries

1. Show that for a self-adjoint operator1 Â

〈Ψ|χ〉 = 〈Φ|α〉

where
|χ〉 = Â |α〉

|Φ〉 = Â |Ψ〉

2. Show that the previous statement can be written as∫ ∞
−∞

(
Â(x)Ψ(x)

)∗
α(x)dx =

∫ ∞
−∞

Ψ∗(x)
(
Â(x)α(x)

)
dx

in position representation.

3. Find out if the following operators are Hermitian for the functions {f(x)}
such that f(x)→ 0; d

nf(x)
dxn → 0;n = 1, 2, . . . for |x| → ∞.

• d
dx

• d2

dx2

• x d
dx

• ei
d
dx

• e−
d
dx

• ei
d2

dx2

• ln(x̂)

1Notice, we are assuming here that the domain of definition of Â is same as that of Â†
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• −i ddx
(Hint: Use integration by parts)

4. Find out if the following sets form vector spaces under the given binary
operation. If yes, find the inverse and identity elements for them.

Set Binary operation

M = {
(
a b
c d

)
; a, b, c, d ∈ C} Matrix addition

M = {
(
a b
c d

)
; a, b, c, d ∈ C} Matrix multiplication

Q Arithmetic addition
{f : R→ R; |f(x)| <∞∀x ∈ R} Function addition
f(x) = Aeikx|(A, k, x) ∈ R Function multiplication

(Note: Remember that some matrices are singular matrices)

5. 2 For a set of all continuous functions f : R → C for which |f(x)| <
∞ and dnf(x)

dxn exists for n ∈ Z+,

(a) can B = {eikx|k, x ∈ R} be considered a basis?

(b) what should be the dimensionality of that space?

(c) are the elements of B orthonormal?

(Hint: Think Fourier!)

6. Show that 〈
σ2
A

〉
=
〈
Â2
〉
−
〈
Â
〉2

3

7. Consider,
σ1 = ( 0 1

1 0 ), σ2 =
(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) Show that they are Hermitian

(b) Show that they are unitary

(c) Show that
[σk, σl] = 2iεklmσm

where Levi-Civita symbol is defined as4

εklm =

 1 if (k, l,m) is an even permutation
−1 if (k, l,m) is an odd permutation
0 if k = l or k = m or l = m

2This question is only for students who are mathematically oriented. Rests can ignore it.
3Meaning of symbols as used in the class
4If you permute 1, 2, 3 cyclically. (1, 2, 3),(2, 3, 1), (3, 1, 2) are cyclic. If this order is

broken, it is an odd permutation.
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where (k, l,m) ∈ (1, 2, 3)

8. Show that the Heisenberg operator ÂH(t) is related to Schrödinger oper-
ator Âs by

ÂH(t) = Û†(t, t0)ÂSÛ(t, t0)

9. Using Ehrenfest theorem, show that for an one-dimensional potential
V (x),

d 〈p̂〉
dt

= −
〈
dV (x)

dx

〉
10. Using Ehrenfest theorem for potential V (x) = x2, find out the expressions

for

(a)
d〈p̂2〉
dt

(b) d〈x̂〉
dt

11. Starting from

i~
∂ |ψ(t)〉
dt

= Ĥ |ψ(t)〉 = ε |ψ(t)〉

, show that the norm of wave function may not be conserved if Ĥ is not
Hermitian.
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Chapter 6

On the Toy model systems I

1. For a particle moving under a potential

V (x) = −λ(λ+ 1)

2
sech2(x)

where x ∈ (−∞,∞) and λ ∈ N. For three bound eigenstates |m〉 , |l〉 and
|n〉, find out

〈m|x |n〉 〈n|x |l〉 〈l|x |m〉

2. If the energy for the system is given by E = −m
2

2 where m ∈ [1, λ], find
out the energy eigenfunctions for the above potential.

(Hint: Substitute ξ = tanh(x))

3. A particle is moving under potential

V (x) = V0Θ
(a

2
− |x|

)
where a > 0 and Θ is Heaviside step function.

(a) For V0 > 0, plot V (x) vs x.

(b) For V0 < 0, plot V (x) vs x.

(c) For both V0 > 0 and V0 < 0, find the eigenvalues and eigenfunctions
in all regions for energy E > 0.

(d) V0 < 0, E > 0 in above problem defines a particle moving over a
potential well. Define an effective mass m̃ for the motion above the
potential well such that the wave function retains the same form as
that for x > a/2.

(e) For both V0 > 0 and V0 < 0, find the eigenvalues and eigenfunctions
in all regions for energy E < 0.

(f) Find the reflection and transmission probabilities at x = ±a2 for all
possibilities considered above.

23
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(g) Plot the wave functions as a function x in the region x ∈ (−∞,∞)
for all cases above.

4. A particle is trapped in a potential

V (x) =

{
0 if − a

2 < x < a
2

∞ otherwise

(a) Find out the wave function and energy eigenvalues for the system.

(Hint: Set up the boundary conditions properly.)

(b) A coordinate transformation of x = x′ + a
2 in the potential gives the

potential function discussed in the class. Is it possible to do the same
for wave functions?

(c) Does the energy change?

(d) Find out the total wave function Ψn(x, t) for nth energy state.

(Hint: Ψn(x, t) is a stationary state.)

(e) Find out the number and positions of nodes in wavefunction for nth

energy state.

(f) Find out the position-momentum uncertainty product for nth energy
state.

5. A polyacetylene ([C2H2]n; n > 1) molecule has N π-electrons. Each
energy states can be occupied by maximum two electrons. Consider C-C
bond-length is d. Also, consider them non-interacting (!).

(a) Modelling the π-system as independent particles in a box, find out
the minimum amount of energy required to promote one electron to
a higher excited state (promotion energy ∆E).

(b) Find the total energy for this system. (You have to add them.)

(c) Plot the total energy E with n keeping N fixed.

(d) Plot the total energy E with N keeping n fixed.

(e) Plot the ∆E versus n considering each addition of C atom brings in
a new bond.

6. Compute the minimum wavelength of absorption of Pyridine molecule
considering only π electrons and modelling it as a particle in a ring. The
bond lengths are given in https://cccbdb.nist.gov/exp2x.asp?casno=

110861

7. The actual spectrum of Pyridine is given in https://webbook.nist.gov/

cgi/cbook.cgi?ID=C110861&Mask=400. To match the prediction with
the actual result, calculate the “effective mass” of the electron under the
same model. Is it larger or smaller than the mass of the electrons found
in literature?

https://cccbdb.nist.gov/exp2x.asp?casno=110861
https://cccbdb.nist.gov/exp2x.asp?casno=110861
https://webbook.nist.gov/cgi/cbook.cgi?ID=C110861&Mask=400
https://webbook.nist.gov/cgi/cbook.cgi?ID=C110861&Mask=400
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8. Compute the energy eigenvalues and eigenfunctions of a particle trapped
in a 3-dimensional box defined by a potential which does not allow the par-
ticle to escape beyond its boundaries such that x ∈ [0, ax], y ∈ [0, ay], z ∈
[0, az].

(a) If ax 6= ay 6= az, calculate the degree of degeneracy in states with
three lowest energies.

(b) If ax = ay 6= az, calculate the degree of degeneracy in states with
three lowest energies

(c) If ax = ay = az, calculate the degree of degeneracy in states with
three lowest energies.

9. Consider a quantum harmonic oscillator with mass m, angular frequency
ω moving in x-direction. Starting from a† |n〉 =

√
n+ 1 |n+ 1〉,

(a) find out the wavefunction in position representation for three lowest
energy states.

(b) If nth energy eigenfunctions is

ψn(x) =
1√

2nn!

(mω
π~

)1/4
Hn

(√
mω

~
x

)
e
mωx2

2~

where Hn is the Hermite polynomial, compute the form of Hn(ξ) by
comparing results from the previous question.

(c) Find out the position-momentum uncertainty product for the nth

eigenstate.

(d) Compute
〈n|x4 |n〉

where |n〉 is the nth energy eigenstate of the quantum harmonic os-
cillators.

(e) Compute the tunneling probability for n = 2, 3 states. Note that the
CTP changes based on the n value.

10. A particle is moving under the potential

V (x, y) =
mω2

x

2
x2 +

mω2
y

2
y2

.

(a) Find out the eigenfunctions and eigenvalues of the system.

(b) Find out the degree of degeneracy for states with four lowest energies
if ω = ωx = ωy.

11. Consider a particle is moving freely on the surface of a sphere of radius r.
We consider

[
L2, Lz

]
= 0.
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(a) Find out the uncertainty product for φ̂ and L̂z at ground state.

( See (1)Uncertainty principle for angular position and angular mo-
mentum by Sonja Franke-Arnold et al, New Journal of Physics 6,
103 (2004) and (2) Quantum theory of rotation angles by Stephen
M. Barnett and D. T. Pegg, Phys. Rev. A 41, 3427(1990) for very
interesting outlooks.)

(b) Show

C± =
√

(j ∓m)(j ±m+ 1)~

. All symbols carry same meaning as used in class.

(c) What is the lowest energy allowed for this particle?

(d) A radiation of frequency ν shines on the particle and it is gets excited
from j = l to j = l+ 1 state. Compute the relation between l and ν.
Consider the mass of the particle is µ.



Chapter 7

On the Toy model systems
II: Hydrogenic atom

If not mentioned otherwise, we are considering Z = 1.

1. Compute the radial probability distribution function for the following
states.

• 1s orbital

• 2s orbital

• 2px orbital

• 2pz orbital

• 3d2z orbital

2. Compute the 〈r〉 and
〈
r2
〉

for

(a) 1s orbital

(b) 2s orbital

(c) 2pz orbital

3. Compute the most probable distance from a nucleus for an electron to
hang around if it is in

(a) 1s orbital

(b) 2s orbital

(c) 2pz orbital

4. Compute the average potential energy and average kinetic energies of an
electron in

(a) 1s orbital

27
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(b) 2s orbital

(c) 2pz orbital

Also find the ratios of these two quantities for each cases.

5. Find out the degree of degeneracy of the ground state of H atom. Consider
all degrees of freedom.

6. Plot the electron density of a hydrogen atom as a function of Cartessian
component z, keeping x = 0 and y = 0 for

(a) 1s orbital

(b) 3s orbital

(c) 2pz orbital

Note: (a) Electron density ρnlm(r) = |ψnlm(r)|2 and (b) z ∈ (−∞,∞)

7. Compute the ratio of ∂
∂rρnlm(r)|r=0 and ρnlm(0) for a hydrogenic atom

with nuclear charge Z in

(a) 1s orbital

(b) 3s orbital

(c) 2pz orbital

8. Compute and plot radial probability distribution function g(r) for a hy-
drogen atom for

(a) 1s orbital

(b) 2s orbital

(c) 2pz orbital

(d) 3d2z orbital

9. Find out the radius rmax of a sphere which is centred at nuclear site and
contains 4/5 fraction of total electron density.

10. Schematically sketch the polar plots for the angular part of

(a) 2s orbital

(b) 2px orbital

(c) 3dz2 orbital
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