Harbola

Prof. Manoj Kumar Harbola

FB-476, Department of Physics

Indian Institute of Technology Kanpur

Kanpur, Uttar Pradesh, INDIA-208016

mkh@iitk.ac.in

Phone : +91-512-259-7823

About us

Our group is involved in exploring fundamental aspects of density-functional theory, which is the most widely used theory of electronic structure of materials.

I am also interested in exploring new and different ways of teaching physics at all levels and look for ways of making learning of physics exciting without sacrificing its rigour.

Relevant Books

Recent Works

  • Electrochemical Fencing of Cr(VI) from Industrial Wastes to Mitigate Ground Water Contamination
    N. Shukla, M.K. Harbola, K. Sanjay, R. Shekhar, Trans. Indian Inst. Met. 70, 511 (2017).
  • Study of adiabatic connection in density functional theory with an accurate wavefunction for two-electron spherical systems
    Rabeet Singh and Manoj K. Harbola, Int. J. Quantum Chem. 117, e25344(2017).
  • Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errros
    Prasant Singh, Manoj K. Harbola and Duane D. Johnson, J. Phys. : Condens. Matter, 29, 424001 (2017).
  • A study of acccurate exchange-correlation functionals through adiabatic connection
    Rabeet Singh and Manoj K. Harbola, J. Chem. Phys. 147, 144105 (2017).
  • Solving the Schrodinger equation directly for a particle in one-dimensional pericdic potentials
    Manoj K. Harbola, arXiv. (2013).

  • Teaching
  • Quantum Mechanics
  • Assignments Solutions Quizzes and exams
  • Quantum Physics
  • Review of Quantum Physics I
  • Review of Quantum Physics II
  • Introduction To Atomic, Molecular And Nuclear Physics
  • Density Functional Theory
  • Phy101 (laboratory core course for undergraduates)
  • Communication (core course for undergraduates)
  • Computational Physics
  • Thermal Physics
  • Assignments with solutions
  • Classical Electrodynamics
  • Classical Mechanics
  • Review of Classical Physics
  • Review of Classical Physics II
  • Condensed Matter Physics
  • Physics I (Core Course for Undergraduates)
  • Physics II (Core Course for Undergraduates)
  • Assignments with solutions

Members

Ashish

Ashish Kumar

PhD Student, IIT Kanpur, India
Thesis title: "To be decided"
Supervisor: Prof. Manoj K. Harbola
ashishkr@iitk.ac.in

Rabeet

Rabeet Singh

PhD, Jul, 2012 - April, 2018
Thesis title: " Adiabatic connection in density functional theory: fundamental aspects and applications"
Now Post-doctoral fellow,
School of Physical Sciences, National Institute of Science Education and Research, India
rabeet@niser.ac.in

Hemanadhan

M. Hemanadhan

PhD, Dec. 2008-Sept. 2014,
Thesis title: Study of excited-state energy density functionals constructed by splitting k-space for homogeneous electron gas
Now Research Assistant Professor,
Department of Physics, Temple University,
Philadelphia, USA
hemanadhiitk@gmail.com

Shamim

Md. Shamim

PhD, Dec. 2006-Dec. 2013,
Thesis title: Construction of Exchange and Correlation Energy Functionals for Excited States in Time-independent Density Functional Theory
Now Assistant Professor, Dayal Singh College Delhi University, New Delhi, India
shamim.iitknp@gmail.com

Prasanjit

Dr. Prasanjit Samal

PhD, Jul.2001-Sep.2006,
Thesis title: Studies in Excited-State
Density-Functional Theory

Now Assistant Professor, National Institute of Science Education and Research, Bhubaneswar, India
psamal@niser.ac.in

Rajan

Rajan K. Pandey

Thesis title: "Many-Body Effects in Electronic Structure of Semiconductor Quantum Dots"

PhD, 2006,
Now IBM Semiconductor Research and Development Center (SRDC), Bangalore, India

Arup

Dr. Arup Banerjee

PhD,
Thesis title: "Density Functional Theory of Linear and Nonlinear Optical Properties of Atoms, Molecules and Clusters"
Now Scientific Officer 'H', RRCAT, Indore
banerjee@rrcat.gov.in


  1. Publications
  2. A study of acccurate exchange-correlation functionals through adiabatic connection
    Rabeet Singh and Manoj K. Harbola, J. Chem. Phys. 147, 144105 (2017).

  3. Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errros
    Prasant Singh, Manoj K. Harbola and Duane D. Johnson, J. Phys. : Condens. Matter, 29, 424001 (2017).

  4. Study of adiabatic connection in density functional theory with an accurate wavefunction for two-electron spherical systems
    Rabeet Singh and Manoj K. Harbola, Int. J. Quantum Chem. 117, e25344(2017).

  5. Electrochemical Fencing of Cr(VI) from Industrial Wastes to Mitigate Ground Water Contamination
    N. Shukla, M.K. Harbola, K. Sanjay, R. Shekhar, Trans. Indian Inst. Met. 70, 511 (2017).

  6. Better band gaps with asymptotically corrected local exchange potentials
    Prasant Singh, Manoj K. Harbola, M. Hemanadhan, Abhijit Mookerjee, and D. D. Johnson, Phys. Rev. B, 93, 85204 (2016).

  7. Improved Le Sech wavefunctions for two-electron atomic systems
    Rabeet Singh and Manoj K. Harbola, Chem. Phys. Lett. 639, 248 (2015).

  8. Calculation of band-gaps for bulk and nano-materials using Harbola-Sahni and van Leeuwen-Barends potentials
    M. P. Singh, M.K. Harbola and A. Mookerjee in Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications, Edited by V. Tewary and Y. Zhang (Woodhead Publishing, 2015)..

  9. Excitation energies of molecules within time-independent density functional theory
    M. Hemanadhan and Manoj K. Harbola, AIP Conf. Proc. 1591, 1170 (2014).

  10. Testing an excited-state energy density functional and the associated potential with the ionization potential theorem
    M Hemanadhan, Md Shamim, MK Harbola, J. Phys. B: At. Mol. Opt. Phys. 47(11), 115005 (2014).

  11. Solving the Schrodinger equation directly for a particle in one-dimensional periodic potentials
    M. K. Harbola, arXiv preprint arXiv:1311.4018 (2014)

  12. Accurate determination of band gaps within density functional formalism
    P Singh, MK Harbola, B Sanyal, A Mookerjee, Phys. Rev. B 87(23), 235110 (2013).

  13. Excited-state density functional theory
    MK Harbola, M Hemanadhan, M Shamim, P Samal, J. Phys.: Conf. Ser. 388(1), 012011 (2012).

  14. Coexistence of tunneling and displacement currents in a nanogap driven with ac fields
    S Bhattacharjee, Manoj K. Harbola, A Pradhan, A Modak, Appl. Phys. Lett. 100(15), 153104 (2012).

  15. Response function analysis of excited-state kinetic energy functional constructed by splitting k-space
    M. Hemanadhan and Manoj K. Harbola, Eur. Phys. J. D 66, 57(1)-57(4) (2012).

  16. Energy functionals for excited states
    Manoj K. Harbola, M. Hemanadhan, Md. Shamim and P. Samal in Concepts and Methods in Modern Theoretical Chemistry, Vol. 1 : Electronic Structure and Reactivity, Eds. S. K. Ghosh and P. K. Chattaraj, CRC Press, pp.99-119 (2013).

  17. Application of excited-state LDA exchange-energy functional for calculation of transition energy of atoms within time-independent density-functional theory.
    Md. Shamim and M.K. Harbola, J. Phys. B 43, 215002 (2010).

  18. Energy flow from a battery to other circuit elements; role of surface charges
    M.K. Harbola, Am. J. Phys. 78, 1203 (2010).

  19. Is it possible to construct excited-state energy functionals by splitting k-space?
    M. Hemanadhan and M.K. Harbola, J. Mol. Struct.: (Theochem) 943, 152 (2010).

  20. A local-density approximation for the exchange energy functional for excited states in bulk semiconductors: the band gap problem
    M. Rahman, S. Ganguli, P. Samal, M.K. Harbola, T. Saha-Dasgupta and A. Mookerjee, Physica B 404, 1137 (2009).

  21. Time-Dependent Density Functional Theory Calculation of van der Waals Coefficient of Metal Clusters
    A. Banerjee, M.K. Harbola, A. Chakrabarti and T.K. Ghanty, AIP Conference Proceedings 1108, 114 (2009).

  22. Time-independent excited-state density-functional theory
    M.K. Harbola, Md. Shamim, P. Samal, M. Rahman, S. Ganguly and A. Mookerjee, AIP Conference Proceedings 1108, 54 (2009).

  23. Study of 2s22p3(4S) and 1s22p3(2D) excited-states of B-isoelectronic series in time-independent excited-state density-functional theory
    M.K. Harbola and P. Samal, J. Phys. B 42, 015003 (2009).

  24. Study of asymptotic decay of electronic density for excited-states including autoionizing states of many-electron systems
    Md. Shamim and M.K. Harbola, Chem. Phys. Lett. 464, 135 (2008).

  25. Exchange-correlation potential in Kohn-Sham theory; a physical perspective
    M. K. Harbola, Chemical Reactivity Theory: A Density Functional View, Ed. P. Chattaraj (Taylor and Francis, London, 2008).

  26. Defects in semiconductor nanostructures
    V.A. Singh, M.K. Harbola and P. Pathak, Pramana-Journal of Physics 70, 255 (2008).

  27. Hydrodynamical approach to collective oscillations in metal clusters
    A. Banerjee and M.K. Harbola, Phys. Lett. A 372, 2881 (2008).

  28. The genesis of quanta: 1890-1910
    M. K. Harbola, Resonance Journal of Science Education 13, 134 (2008).

  29. Comparison of van der Waals coefficient C6 of sodium clusters obtained via spherical jellium background model and via all-electron ab-initio method
    A. Banerjee and M.K. Harbola, J. Comp. Methods Sc. Eng. 7, 373 (2007).

  30. Demonstration of Lenz's law: Analysis of a magnet falling through a conducting tube
    M.K. Roy, M.K. Harbola, and H.C. Verma, Am. J. Phys. 75, 728 (2007).

  31. Analysis of Floquet formulation of time-dependent density-functional theory
    P. Samal and M.K. Harbola, Chem. Phys. Lett. 433, 204 (2006).

  32. Exploring foundations of time-independent excited-state density-functional theory
    P. Samal and M.K. Harbola, J. Phys. B: At. Mol. Opt. Phys. 39, 4065 (2006).

  33. Spin blockade effects in spherical quantum dots
    R.K. Pandey, M.K. Harbola and V.A. Singh, Phys. Rev. B 73, 165307 (2006).

  34. van der Waals coefficients for alkali metal clusters and their size dependence
    A. Banerjee and M.K. Harbola, Pramana J. Phys. 66, 423 (2006).

  35. Density-to-potential map in excited-state density-functional theory
    P. Samal, M.K. Harbola and A. Holas, Chem. Phys. Lett. 419, 217 (2006); erratum Chem. Phys. Lett. 422, 586 (2006).

  36. Theoretical study of electronic and response properties of large metal clusters
    A. Banerjee and M.K. Harbola, Proc Indian Natn Sci Acad. 71, A 357 (2005).

  37. Local-density approximation for the exchange energy functional in excited state density functional theory
    P. Samal and M.K. Harbola, J. Phy. B: At. Mol. Opt. Phys. 38, 3765 (2005).

  38. Momentum space properties from coordinate space electron densities
    M.K. Harbola, R. R. Zope, A. Kshirsagar and R.K. Pathak, J. Chem. Phys. 122, 204110 (2005).

  39. Shallow deep transitions of neutral and charged donor states in semiconductor quantum dots
    R.K. Pandey, M.K. Harbola and V.A. Singh, Phys. Rev. B 70, 193308 (2004).

  40. Exchange-correlation potentials in ground and excited-state Kohn-Sham theory
    M. K. Harbola, Phys. Rev. A 69, 042512 (2004).

  41. Symmetry breaking and structural distortions in charge XH4 (X = C, Si, Ge, Sn and Pb) molecules
    D. Balamurugan, M.K. Harbola and R. Prasad, Phys. Rev. A 69, 033201 (2004).

  42. To scale or not to scale: self-capacitance, Hubbard U and quantum dot size?
    V.A. Singh, R.K. Pandey and M.K. Harbola, Indian J. Phys. PT-A, 78A, 61 (2004).

  43. Helium-like impurities in semiconductor quantum-dots
    R.K. Pandey, M.K. Harbola and V.A. Singh, J. Phys.: Condensed Matter 16, 1679 (2004).

  44. Many-electron problem in terms of the density; from Thomas-Fermi to modern density-functional theory
    M. K. Harbola and A. Banerjee, J. Theoret. and Comp. Chem. 2, 301 (2003).

  45. Scaling of Coulomb and exchange-correlation effects with quantum dot size
    R.K. Pandey, M. K. Harbola and Vijay A. Singh, Phys. Rev. B 67, 075315 (2003).

  46. Obtaining Kohn-Sham potential without taking the functional derivative
    M. K. Harbola and K.D. Sen, Bull. Mater. Sci. 26, 69 (2003).

  47. Many-electron effects in semiconductor quantum dots
    R.K. Pandey, M.K. Harbola, V. Ranjan and V.A. Singh, Bull. Mater. Sci. 26, 63 (2003).

  48. Time-dependent density functional theoretical study of low lying excited-states of F2
    U. Lourderaj, M. K. Harbola and N. Sathyamurthy, Chem. Phys. Lett. 366, 88 (2002).

  49. Improved Becke88 and PW91 exchange potentials
    M. K. Harbola and K.D. Sen, J. Phys. B: At. Mol. Opt. Phy. 35, 4711 (2002).

  50. Calculation of van der Waals coefficients in hydrodynamic approach to time-dependent density-functional theory
    A. Banerjee and M. K. Harbola, J. Chem. Phys. 117, 7845 (2002).

  51. Causality in time-dependent density-functional theory
    M.K. Harbola, Festschrift in honour of Prof. R.G. Parr, Editor K.D. Sen (World Scientific, Singapore, 2002)

  52. Modified Slater potential and its application to the ground-states and excited-states of atomic systems
    M. K. Harbola and K.D. Sen, Int. J. Quantum Chem. 79, 491 (2002).

  53. Density-functional approach to obtaining excited states: Study of some open-shell atomic systems
    M.K. Harbola, Phys. Rev. A 65, 052504 (2002).

  54. Self-capacitance of a quantum-dot : Dependence on the shape of the confining potential
    V. Ranjan, R.K. Pandey, M.K. Harbola and V.A. Singh, Phys. Rev. B 65, 045311 (2002).

  55. Reply to Comment on Analysis of causality in time-dependent density-functional theory
    M.K. Harbola, Phys. Rev. A 63, 056502 (2001).

  56. Uniqueness of Euler's angles
    M.K. Harbola, Bull. IAPT 18, 36 (2001).

  57. Hydrodynamic approach to time-dependent density-functional theory: response properties of metal clusters
    A. Banerjee and M.K. Harbola, J. Chem. Phys. 113, 5967 (2000).

  58. Comment on: Frequency-dependent polarizabilities, hyperpolarizabilities, and excitation energies from time-dependent density-functional theory based on quasienergy derivative method
    A.Banerjee and M.K. Harbola, J. Chem. Phys. 112, 6938 (2000).

  59. Density-functional theory of optical response
    M.K. Harbola and A. Banerjee, Ind. J. Chem. (Special Issue) 39A, 9 (2000).

  60. Analysis of causality in time-dependent density-functional theory
    M.K. Harbola and A. Banerjee, Phys. Rev. A 60, 5101 (1999).

  61. Reduced potential energy curves for diatomic molecules and their respective cations
    R. Abrol, N. Sathyamurthy and M.K. Harbola, Chem. Phys. Lett. 312, 341 (1999).

  62. Density-functional theory calculations of the total energies, ionization potentials and optical response properties with the van Leeuwen-Baerends potential
    A. Banerjee and M.K. Harbola, Phys. Rev. A 60, 3599 (1999).

  63. Relationship between the highest occupied Kohn-Sham eigenvalue and ionization energy
    M.K. Harbola, Phys. Rev. B 60, 4545 (1999).

  64. Atomic Compton profiles within different exchange-only theories
    R.R. Zope, M.K. Harbola and R.K. Pathak, Eur. Phys. J. D 7, 151 (1999).

  65. Assessment of adiabatic local-density approximation for nonlinear optical properties
    A. Banerjee and M.K. Harbola, Eur. Phys. J. D 5, 201 (1999).

  66. Differential virial theorem and quantum fluid dynamics
    M.K. Harbola, Phys. Rev. A 58, 1779 (1998).

  67. Differential virial theorem for the fractional electron number: Derivative discontinuity of the Kohn-Sham exchange-correlation potential
    M.K. Harbola, Phys. Rev. A 57, 4253 (1998).

  68. Nonlinear polarizabilities of atoms from their ground-state densities
    A. Banerjee and M.K. Harbola, Eur. Phys. J. D 1, 265 (1998).

  69. Variation-perturbation method in time-dependent density-functional theory
    A. Banerjee and M.K. Harbola, Phys. Lett. A 236, 525 (1997).

  70. Application of density-functional perturbation theory to calculate nonlinear polarizabilities of helium-like systems
    A. Banerjee and M.K. Harbola, Pramana-J. Phys. 49, 455 (1997).

  71. Perturbation theory in terms of electron density
    M.K. Harbola and A. Banerjee, Phys. Lett. A 222, 315 (1996).

  72. Variational calculation of polarizability and second hyperpolarizability of two- electron systems
    M.K. Harbola and A. Banerjee, Phys. Rev. A 54, 283 (1996).; Erratum Phys. Rev. A 56, 3307 (1997).

  73. Total atomic energies using indirect path methods
    M.K. Harbola, R.R. Zope and R.K. Pathak, Phys. Rev. A 53, 3652 (1996).

  74. Theoretical investigation of the polarizability of small metal clusters
    M.K. Harbola, Solid State Commun. 98, 629 (1996).

  75. A density-functional method for calculating atomic polarizabilities: application to negative ions
    M.K. Harbola, Int. J. Quantum Chem. 51, 201 (1994).

  76. electronic structure of small metal particles within the local density approximation
    M.K. Harbola, Ind. J. Pure and Appl. Phys. 32, 624 (1994).

  77. Force field and potential due to the Fermi-Coulomb hole charge for non- spherical density atoms
    M. Slamet, V. Sahni and M.K. Harbola, Phys. Rev. A 49, 809 (1994).

  78. Electric dipole polarizabilities for helium-like ions from correlated wavefunctions. A density functional approach
    M.K. Harbola, Chem. Phys. Lett. 217, 461 (1994).

  79. Theories of electronic structure in the Pauli-correlated approximation
    M.K. Harbola and V. Sahni, J. Chem. Edu. 70, 920 (1993).

  80. Density-functional calculations of electric dipole polarizabilities for atoms
    M.K. Harbola, Phys. Rev. A 48, 2696 (1993).

  81. Asymptotic structure of the Kohn-Sham effective potential at metal surfaces
    M.K. Harbola and V. Sahni, Int. J. Quantum Chem. Symp. 27, 101 (1993).

  82. Theoretical study of the size-dependence of ionization potentials and electron affinities of metallic clusters
    M.K. Harbola, J. Chem. Phys. 97, 2578 (1992).

  83. Magic numbers for metallic clusters and the principle of maximum hardness
    M.K. Harbola, Proc. Natl. Acad. Sci. USA 89, 1036 (1992).

  84. Atomic structure in the Pauli-correlated approximation
    V. Sahni, Y. Li and M.K. Harbola, Phys. Rev. A 45, 1434 (1992).

  85. The covalent radius in density-functional theory
    M.K. Harbola and R.G. Parr, Molecules in Science and Medicine, Z.B. Maksic and M.E. Maksic, eds. (Springer-Verlag 1991).

  86. Local exchange-correlation potential from the force field of the Fermi-Coulomb charge for non-symmetric systems
    M.K. Harbola, M. Slamet and V. Sahni, Phys. Lett. A 157, 60 (1991).

  87. Aspects of softness and hardness concepts in density-functional theory
    M.K. Harbola, P.K. Chattaraj and R.G. Parr, Israel J. Chem. 31, 395 (1991).

  88. Hardness from electrostatic potentials
    M.K. Harbola, R.G. Parr and C. Lee, J. Chem. Phys. 94, 6055 (1991).

  89. Stable negative ions within a local exchange formalism
    K.D. Sen and M.K. Harbola, Chem. Phys. Lett. 178, 347 (1991).

  90. Reply to Comment on Interpretation of the exchange-correlation potential of density-functional theory
    M.K. Harbola and V. Sahni, Phys. Rev. Lett. 65, 2609 (1990).

  91. Reply to Comment on Quantum-mechanical interpretation of the exchange- correlation potential of Kohn-Sham density-functional theory
    M.K. Harbola and V. Sahni, Phys. Rev. Lett. 65, 277 (1990).

  92. Quantum-mechanical interpretation of the local many-body potential of density-functional theory
    V. Sahni and M.K. Harbola, Int. J. Quantum Chem. Symp. 24, 569 (1990).

  93. Ground-state energies and ionization potentials of atoms in exchange-only density-functional theory
    Y. Li, M.K. Harbola, J.B. Krieger and V. Sahni, Phys. Rev. A 40, 6084 (1989).

  94. Quantum-mechanical origin of the asymptotic structure of the effective potential at metallic surfaces
    M.K. Harbola and V. Sahni, Phys. Rev. B 39, 10437 (1989) (Rapid Communication).

  95. Quantum-mechanical interpretation of the exchange-correlation potential of Kohn-Sham density-functional theory
    M.K. Harbola and V. Sahni, Phys. Rev. Lett. 62, 489 (1989).

  96. Generalized gradient approximation for exchange and correlation: numerical tests and prospects
    J.P. Perdew, M.K. Harbola and V. Sahni, Condensed Matter Theories Vol. 3, J. Arponen, R.F. Bishop and M. Manninen, eds. (Plenum, New York 1988).

  97. Analysis of the local density approximation of density functional theory
    V. Sahni, K.-P. Bohnen and M.K. Harbola, Phys. Rev. A 37, 1895 (1988).

  98. Structure of the Fermi hole at surfaces
    M.K. Harbola and V. Sahni, Phys. Rev. B 37, 745 (1988).

  99. Asymptotic structure of the Slater exchange potential at metallic surfaces
    M.K. Harbola and V. Sahni, Phys. Rev. B 36, 5024 (1987).

  100. Fourth-order gradient expansion of the Fermion kinetic energy: extra terms for nonanalytic densities
    J.P. Perdew, V. Sahni, M.K. Harbola and R.K. Pathak, Phys. Rev. B 34, 686 (1986).


Contact Me

mkh@iitk.ac.in

Indian Institute of Technology Kanpur, India

+91-512-259-7823


BLOG POSTS

  • Kohn-Sham potential construction
    Universal nature of various methods for constructing Kohn-Sham potential

TAGS

DFT Density Functional Theory DFT IITK Exchange-correlation functional Exchange-correlation potential DFT INDIA DFT Group Adiabatic connection in DFT

Powered by w3.css