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ABSTRACT
In this paper, we characterise the scaling of energy spectra, and
the interscale transfer of energy and enstrophy, for strongly, moder-
ately and weakly stably stratified two-dimensional (2D) turbulence,
restricted in a vertical plane, under large-scale random forcing. In
the strongly stratified case, a large-scale vertically sheared horizontal
flow (VSHF) coexists with small scale turbulence. The VSHF consists of
internal gravitywaves and the turbulentflowhas a kinetic energy (KE)
spectrum that follows an approximate k−3 scaling with zero KE flux
and a robust positive enstrophy flux. The spectrum of the turbulent
potential energy (PE) also approximately follows a k−3 power-law and
its flux is directed to small scales. For moderate stratification, there is
no VSHF and the KE of the turbulent flowexhibits Bolgiano–Obukhov
scaling that transitions from a shallow k−11/5 form at large scales, to
a steeper approximate k−3 scaling at small scales. The entire range
of scales shows a strong forward enstrophy flux, and interestingly,
large (small) scales show an inverse (forward) KE flux. The PE flux in
this regime is directed to small scales, and the PE spectrum is charac-
terisedby anapproximate k−1.64 scaling. Finally, forweak stratification,
KE is transferred upscale and its spectrum closely follows a k−2.5 scal-
ing, while PE exhibits a forward transfer and its spectrum shows an
approximate k−1.6 power-law. For all stratification strengths, the total
energy alwaysflows from large to small scales and almost all the spec-
tral indicies arewell explainedby accounting for the scale-dependent
nature of the corresponding flux.

1. Introduction

Stable stratification with rotation is an important feature of geophysical flows [1]. The
strength of stratification is usually measured by the non-dimensional parameter called
Froude number (Fr), which is defined as the ratio of the time scale of gravity waves and the
nonlinear time scale. Strong stratification has Fr ≪ 1, while weak stratification has Fr !
1 [2]. In this paper, we restrict ourselves to two-dimensional (2D) stable stratification in a
vertical plane [3,4], this allows us to explore a wide range of Fr and characterise the inter-
scale transfer of energy and enstrophy, and the energy spectra in strongly, moderately, and
weakly stratified scenarios.
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Apart from a reduction in dimensionality, the 2D stratified system differs from themore
traditional three-dimensional (3D) equations in that it lacks a vortical mode. Indeed, the
decomposition of the 3D system into vortical and wave modes [2,5,6] has proved useful
in studying stratified [7–11] and rotating-stratified [12–17] turbulence. The absence of a
vortical mode implies that the 2D stratified system only supports nonlinear wave–wave
mode interactions [18,19] (interestingly, 3D analogs that only support wave interactions
have also been considered previously [20,21]). In a decaying setting, the initial value prob-
lem concerning the fate of a standing wave in 2D has been studied experimentally [22] and
numerically [23,24]. The regime was that of strong stratification, and not only where the
waves observed to break, this process was accompanied by a forward energy transfer due to
nonlocal parametric subharmonic instability [23]. Further, at long times after breaking, the
turbulence generated was characterised by a k−3

∥ scaling [24] (i.e. parallel to the direction
of ambient stratification). Other decaying simulations, that focussed on the formation and
distortion of fronts from an initially smooth profile, noted a self-similarity in the probabil-
ity density function of the vorticity field as well as more of an isotropic k−5/3 kinetic energy
(KE) spectrum, though at early stages in the evolution of the system [25].

With respect to the forced problem, the case of random small-scale forcing has been well
studied. Specifically, at moderate stratification, the 2D system developed a robust vertically
sheared horizontal flow (VSHF; [13]) accompanied by an inverse transfer of KE and a k−5/3

scaling [26]. For weak stratification, a novel flux loop mechanism involving the upscale
transfer of KE (with k−5/3 scaling) and the downscale transfer of potential energy (PE),
also with k−5/3 scaling, was seen to result in a stationary state [27]. In fact, moisture-driven
strongly-stratified flows in 2D have also been seen to exhibit an upscale KE transfer with
a k−5/3 scaling [28]. Interestingly, large-scale forcing in the form of a temperature gradi-
ent has been examined experimentally. Specifically, using a soap film, Zhang et al. [29]
reported scaling of density fluctuations at low frequencies with exponents −7/5 (Bolgiano
scaling [30,31]) and −1 (Batchelor scaling [32]) for moderate and strong temperature gra-
dients, respectively. Seychelles et al. [33] noted a similar scaling and the development of
isolated coherent vortices on a curved 2D soap bubble.

For quasi-two-dimensional (quasi-2D) stably stratified turbulence (i.e. flows contained
in a skewed aspect ratio box), Lindborg [34] performed simulations at the horizontal
Froude numbers ranging approximately from 10−2 to 10−3, i.e. in a very strongly stratified
regime. It was observed that the horizontal kinetic and PE spectra followed k−5/3

⊥ scaling
(i.e. perpendicular to the ambient stratification), while the vertical kinetic and PE spectra
followed k−3

∥ scaling [see also, 35,36]. Further, in this quasi-2D setting, Vallgren et al. [16]
added rotation to strong stratification in an attempt to explain the observed atmospheric
kinetic and PE spectra.

In the present work, we look at the relatively unexamined case of random forcing at large
scales for 2D stably stratified turbulence. The flows are simulated using a pseudo-spectral
code Tarang [37] for strongly, moderately and weakly stratified scenarios. For strong strat-
ification, a VSHF (identified as internal gravity waves) emerges at large scales and coexists
with small scale turbulence. The turbulent flow is characterised by a forward enstrophy
cascade, zero KE flux, and a KE spectrum that scales approximately as k−3. The PE spec-
trum also follows an approximate k−3 power-law with a scale-dependent flux of the form
k−2. At moderate stratification, there is no VSHF, and the KE spectrum shows a modi-
fied form of Bolgiano–Obukhov [30,31] scaling for 2D flows – approximately k−11/5 at
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large scales and k−3 at small scales in a similar manner as in 3D [38]. The KE flux also
changes character with scale, and exhibits an inverse (forward) transfer at large (small)
scales. The PE spectrum follows an approximate k−1.64 scaling and its flux is weakly scale-
dependent. Finally, for weak stratification, the KE flux is upscale for most scales and its
spectrum is characterised by a −2.5 exponent. The PE flux continues to be downscale
and its spectrum obeys an approximate k−1.6 scaling. All exponents observed are well
explained by taking into account the variable nature of the corresponding flux. Exceptions
are the PE spectra for moderate and weak stratification whose scaling is little steeper than
expected.

The outline of the paper is as follows. In Section 2, we describe the equations governing
stably stratified flows and the associated parameters. In Section 3, we discuss the numerical
details of our simulations. In the subsequent three subsections, we detail various kinds of
flows observed for strongly stably stratified flows in Section 4.1, moderately stably stratified
flows in Section 4.2, and weakly stably stratified flows in Section 4.3. Finally, we conclude
in Section 5 with a summary and discussion of our results.

2. Governing equations

We employ the following set of equations to describe 2D stably stratified flows [39]:

∂u
∂t

+ (u·∇)u = − 1
ρ0

∇p− ρ

ρ0
gẑ + ν∇2u + fu, (1)

∂ρ

∂t
+ (u·∇)ρ = −dρ̄

dz
uz + κ∇2ρ, (2)

∇ · u = 0, (3)

where u is the 2D velocity field, p is the pressure, ρ and ρ0 are the the fluctuating and
background densities, respectively, ẑ is the buoyancy direction while x̂ is the horizontal
direction, fu is the external force field, g is the acceleration due to gravity, and ν and κ

are the kinematic viscosity and thermal diffusivity, respectively. In the above description,
we make the Boussinesq approximation under which the density variation of the fluid is
neglected except for the buoyancy term. Also, dρ̄/dz < 0 due to stable stratification.

The linearised version of Equations (1)–(3) yields internal gravity waves for which the
velocity and density fluctuate with the Brunt Väisälä frequency N defined using,

N2 = − g
ρ0

dρ̄

dz
. (4)

The linearised equations also yield a dispersion relation for the internal gravity waves as

% = N
kx
k

, (5)

where k =
√
k2x + k2z .
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For simplification, we convert density to units of velocity by a transformation [40]:

b = g
N

ρ

ρ0
. (6)

Thus, in terms of b, Equations (1) and (2) become

∂u
∂t

+ (u·∇)u = − 1
ρ0

∇p− bNẑ + ν∇2u + fu, (7)

∂b
∂t

+ (u·∇)b = Nuz + κ∇2b. (8)

In the limiting case of ν = κ = 0 and fu = 0, only the total energy

E = 1
2

∫
(u2 + b2)dr (9)

is conserved. This is in contrast to the 2D inviscid Navier–Stokes equation that has two
conserved quantities – the KE "dr(u2/2) and the enstrophy

∫
dr(∇×u)2/2) [41]. Based

on these two conservation laws, Kraichnan [41] deduced a dual energy spectrum for 2D
hydrodynamic turbulence –C1&

2/3
u k−5/3 for k < kf, andC2&

2/3
ω k−3 for k > kf. Here &u and

&ω are the energy flux and enstrophy flux, respectively, kf is the forcing wavenumber, and
C1 and C2 are constants that have been estimated as 5.5–7.0 [42,43] and 1.3–1.7 [44,45],
respectively.

The important nondimensional variables used for describing stably stratified flows are

Prandtl number Pr = ν

κ
, (10)

Rayleigh number Ra = N2d4

νκ
, (11)

Reynolds number Re = urmsd
ν

, (12)

Froude number Fr = urms

Nd
, (13)

Richardson number Ri = 1
Fr2

, (14)

Buoyancy Reynolds number Reb = ReFr2, (15)

where urms is the rms velocity of flow, which is computed as a volume average. Note that the
Rayleigh number is the ratio of the buoyancy and the viscous force, while the Richardson
number is the ratio of the buoyancy and the nonlinearity (u·∇)u.

It is convenient to work with nondimensional equations using box height d as a length
scale, Nd as a velocity scale, and −(dρ̄/dz)d as the density scale, which leads to u = u′Nd,
ρ = −ρ ′(dρ̄/dz)d, x = x′d, and t = t′/N. Hence the nondimensionalised version of Equa-
tions (1)–(3) is

∂u′

∂t ′
+ (u′ ·∇′)u′ = −∇′p′ − ρ ′ẑ +

√
Pr
Ra

∇′2u′ + f ′
u, (16)
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∂ρ ′

∂t ′
+ (u′ ·∇′)ρ ′ = u′

z + 1√
RaPr

∇′2ρ ′, (17)

∇′ ·u′ = 0. (18)

In the above set of equations, the control parameters of the system are Ra, Pr, and ε,
the energy supply rate by the external forcing f ′

u (see Equation (37) for details of forcing
scheme). The Reynolds number Re and the Froude number Fr are the response parame-
ters. We compute Re and Fr using following formula:

Re = urmsd
ν

= u′
rms

Nd2

ν
= u′

rms

√
Ra
Pr

, (19)

Fr = urms

Nd
= u′

rms. (20)

Note that, in the dimensionless form the Froude number is the rms velocity of the fluid.
From this point onward we drop the primes on the variables for convenience.

In this paper we solve the above equations numerically, and study the energy spectra
and fluxes in the regimes of strong stratification, moderate stratification, and weak stratifi-
cation. Note that the KE spectrum EK(k), the horizontal KE spectrum EKh (k), the vertical
KE spectrum EKv (k), and the PE spectrum EP(k) are defined as

EK (k) =
∑

k−1<k′≤k

1
2
|u(k′)|2, (21)

EKh (k) =
∑

k−1<k′≤k

1
2
|ux(k′)|2, (22)

EKv (k) =
∑

k−1<k′≤k

1
2
|uz(k′)|2, (23)

EP(k) =
∑

k−1<k′≤k

1
2
|ρ(k′)|2. (24)

In Fourier space, the equation for the KE EK(k) of the wavenumber shell of radius k is
derived from Equation (16) as [46,47]

∂EK (k)
∂t

= TK (k) + FB(k) + Fext(k) − D(k), (25)

where TK(k) is the energy transfer rate to the shell k due to nonlinear interaction, and FB(k)
and Fext(k) are the energy supply rates to the shell from the buoyancy and external forcing
fu, respectively, i.e.

FB(k) =
∑

|k|=k

ℜ(⟨uz(k)ρ∗(k)⟩), (26)

Fext(k) =
∑

|k|=k

ℜ(⟨u(k) · fu∗(k)⟩). (27)
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In Equation (25), D(k) is the viscous dissipation rate defined by

D(k) =
∑

|k|=k

2νk2EK (k). (28)

The KE flux &K(k0), which is defined as the KE leaving a wavenumber sphere of radius
k0 due to nonlinear interaction, is related to the nonlinear interaction term TK(k) as

&K (k) = −
∫ k

0
TK (k)dk. (29)

Under a steady state [#EK(k)/#t = 0], using Equations (25) and (29), we deduce that

d
dk

&K (k) = FB(k) + Fext(k) − D(k) (30)

or

&K (k + )k) = &K (k) + (FB(k) + Fext (k) − D(k)))k. (31)

In computer simulations, the KE flux, &K(k0), is computed by the following formula,
usingmode-to-mode energy transfer procedure [48,49],

&K (k0) =
∑

k>k0

∑

p≤k0

δk,p+qℑ([k · u(q)][u∗(k) · u(p)]). (32)

Dar et al. [48] presented a very efficient technique to compute the abovefluxusing a pseudo-
spectralmethod. Specifically, Equation (32) is written in terms of truncated variablesu> and
u<, and reads

&K (k0) = ℑ

⎡

⎣
∑

k>k0

k j
{
u>
i (k)

}∗ ∑

p≤k0

uj(k − p)u<
i (p)

⎤

⎦ . (33)

Here,

u>(k) =
{
0 if k ≤ k0,
u(k) if k > k0,

and

u<(p) =
{
u(p) if p ≤ k0,
0 if p > k0.

The second summation of Equation (33) (over p) is the convolution sum, which is com-
puted using the fast Fourier transform [48,49]. For clarity, Figure 1 illustrates the triad
interaction involved in an energy flux computations.
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Figure . Schematic diagram of the energy flux from a wavenumber sphere of radius k. The blue (light)
region denotes the modes inside the sphere, and the red (dark) region the modes outside the sphere.

Similarly, the enstrophy flux &ω(k0) and PE flux &P(k0) are the enstrophy and the PE
leaving a wavenumber sphere of radius k0, respectively. The formulae to compute these
quantities are

&ω(k0) =
∑

k>k0

∑

p≤k0

δk,p+qℑ([k · u(q)][ω∗(k)ω(p)]), (34)

&P(k0) =
∑

k>k0

∑

p≤k0

δk,p+qℑ([k · u(q)][ρ∗(k)ρ(p)]). (35)

Note that the total energy flux &Total(k) is defined as

&Total(k) = &K (k) + &P(k). (36)

In the above expression, the prefactors are unity due to nondimensionalisation. In the fol-
lowing sections, we compute the aforementioned spectra and fluxes using the steady-state
numerical data.

3. Simulationmethod

We solve Equations (16)–(18) numerically using a pseudo-spectral code Tarang [37].
In brief, the code employs a fourth-order Runge–Kutta method for time stepping, the
Courant–Friedrichs–Lewy condition to determine the time step )t, and 2/3 rule for
dealiasing. Finally, we use periodic boundary conditions on both sides of a square box of
dimension 2π × 2π .
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Table . Parameters of our direct numerical simulations (DNS): Froude
number Fr; grid resolution; Rayleigh number Ra; energy supply rate ε;
Richardson number Ri; Reynolds number Re; buoyancy Reynolds num-
ber Reb; anisotropy ratio A = ⟨u2⊥⟩/⟨u2∥⟩; and kmaxη, where kmax is the
maximum wavenumber and η is the Kolmogorov length. We kept the
Prandtl number Pr=  for all our runs.
Fr Grid Ra ε Ri Re Reb A kmaxη

.   −  .×  .×   .
.   −  .×  .×   .
.   . . .×  .×  . .
.   . . .×  .×  . .
.   . . .×  .×  . .
.   . . .×  .×  . .

Table . Values of the kinetic energy EK, the potential energy EP, EP/EK,
the kinetic energy dissipation rate ϵK, the potential energy dissipation
rate ϵP, and ϵP/ϵK at different Froude number for all runs.
Fr EK EP EP/EK ϵK ϵP ϵP/ϵK
. .× − .× − . .× − .× − .
. .× − .× − . .× − .× − .
. .× − .× − . .× − .× − .
. .× − .× − . .× − .× − .
. .× − .× − . .× − .× − .
. .× − .× − . .× − .× − .

Since the system is stable, we apply random large-scale forcing in the band 2 $ k $ 4 to
obtain a statistically steady turbulent flow using the following scheme:

fu(k) = Aei-
(

cosϑ
− sinϑ

)
, (37)

where ϑ is the angle between ẑ and k, - is the random phase in [0, 2π] with zero mean,
and

A =
√

2ε
n f)t

. (38)

Here, ε is the total energy supply rate and nf is the total number of modes inside the forcing
wavenumber band.

In Tables 1 and 2 we list the set of parameters for which we performed our simulations.
We employ grid resolutions of 5122 to 81922, the higher ones for higher Reynolds number.
The Rayleigh number of our simulations ranges from 108 to 1010, while the Reynolds num-
ber ranges from 5000 to 3.7 × 104. All our simulations are fully resolved since kmaxη > 1,
where η is the Kolmogorov length scale, and kmax is the maximum wavenumber attained
in direct numerical simulation (DNS) for a particular grid resolution. Note that the energy
supply rate, ε, is greater than the viscous dissipation rate, ϵu, with the balance getting trans-
ferred to the PE via buoyancy (ρguz/ρ0).

The Froude numbers of our simulations are Fr = 0.16, 0.31, 0.37, 0.45, 0.73, and 1.1;
the lowest Fr corresponds to the strongest stratification, while the largest Fr to the weakest



JOURNAL OF TURBULENCE 227

Figure . For Fr = ., ., ., ., ., and ., the density plots of the magnitude of velocity field
with the velocity vectoru superposed on it in the x–z plane. For low Fr, fluctuations are suppressed along
buoyancy direction. However, they grow gradually on the increase of Fr. We classify Fr = ., . as
strong stratification, . and . as moderate stratification, . as weak stratification, and . as transi-
tion between moderate and weak stratification.

stratification. We show in subsequent discussion that the flow behaviours in these regimes
are very different. One of the major differences is the anisotropy that is quantified using
an anisotropy parameter A = ⟨u2⊥⟩/⟨u2∥⟩. For the strongest stratification with Fr = 0.16,
A % 38 indicating a strong anisotropy. However, for the weakest stratification with
Fr = 1.1, A % 1.4 indicating a near isotropy.

4. Results

We begin with a qualitative description of the flow profiles for the strongly, moderately,
and weakly stratified regimes. In Figure 2, we show the velocity vectors superposed on the
magnitude of the velocity field. For strong stratification (Fr = 0.16), we observe two robust
flow structures moving in the opposite directions, i.e. a VSHF [13]. On further increas-
ing Fr to 0.31, the streams widen and start to diffuse. In the moderately stratified regime
(Fr= 0.37, 0.45), the streams break into filaments, and the flow becomes progressively dis-
ordered. Finally, for weak stratification (Fr= 1.1), the flow appears turbulent during which
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Figure . Time series of the real and imaginary parts of Fourier modes ûz(1, 1) and ûz(1, 0) for strong
stratification (Fr= .).

the aforementioned filaments tend to be wrapped into compact isolated vortices [50]. The
transition from moderate to weak stratification occurs near Fr = 0.73.

4.1. Strong stratification

Here, we focus on the simulation with Fr = 0.16, Re = 5000, Pr = 1, Ra = 109, and forcing
amplitude ε = 10−6. The flow exhibits strong anisotropy as is evident from the ratio A =
⟨u2⊥⟩/⟨u2∥⟩ = 38. In fact, the flow exhibits wave-like behaviour that can be confirmed by
studying the dominant Fourier modes.

We compute the most energetic Fourier modes in the flow and find the modes (1, 0) and
(1, 1) to be themost dominant. Figure 3 shows the time series of the real and imaginary parts
of ûz(1, 1) and ûz(1, 0) from which we extract the oscillation time period of these modes
as approximately 8.4 and 6.5, and their frequencies as 0.75 and 0.97. These numbers match
very well with the dispersion relation (Equation (5)), thus we interpret these structures
to be internal gravity waves. Note that these robust flow structures moving in horizontal
directions constitute the VSHF. We also observe that û(0, n) ≈ 0 where n is an integer, so
almost no energy is transferred to purely zonal flows. A natural vertical length scale that
emerges in strongly stratified flows is U/f, where U is the magnitude of the horizontal flow
and f=N/2π [51].With the present parameters, we see that this leads to VSHFs of size∼1,
which is in reasonable agreement with the bands seen in the first panel of Figure 2.

To explore the flow properties further, we compute the KE spectrum EK(k), and the KE
and enstrophy fluxes. As shown in Figure 4(a), the KE at small scales (large k) is several
orders of magnitude lower than that for low-k modes. Thus, even though small-scale tur-
bulence is present in the system, the energy content of the large scale internal gravity waves
is much larger than the sea of small-scale turbulence. The flux computations show that the
KE flux &K(k) % 0 for k > kf, but the enstrophy flux &ω(k) is positive and fairly constant
(see Figure 4(b)). For these band of wavenumbers we observe that

EK (k) ≈ 1.0&2/3
ω k−3, (39)
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Figure. Strong stratification (Fr=.): (a) KE andPE spectra; (b) KE flux&K(k) and enstrophyflux&ω(k).
The grey-shaded region shows the forcing band. The KE flux is zero for wavenumber k ! ; (c) PE flux
&P(k); (d) FB(k), D(k), and FB(k)− D(k).

which is similar to the forward enstrophy cascade regime of 2D turbulence (including
the prefactor) [44,45]. The aforementioned flux computations are also consistent with the
fluxes reported for 2D turbulence [52–54].

In addition, we observe that the PE spectrum, EP(k), scales approximately as k−3 and the
PE flux follows&P(k)∼ k−2(see Figure 4(a,c)). The k−3 scaling of the PE is in sharp contrast
to the k−1 Batchelor spectrum for a passive scalar in 2D hydrodynamic turbulence in the
wavenumber regimes with a forward enstrophy cascade [32,55]. Further, &P(k) decreases
rapidly with wavenumber, rather than being a constant as for a passive scalar. We demon-
strate the consistency among these scalings of KE and PE as follows: the KE spectrum EK(k)
∼ k−3 implies uk ∼ k−1, substitution of which in the PE flux equation yields

&P ≈ kukρ2
k ∼ k−2. (40)

Consequently, ρk ∼ k−1, and hence

EP(k) ≈
ρ2
k

k
∼ k−3. (41)

Also, Figure 4(d) shows the energy supply rate due to buoyancy FB(k) and the dissipation
rate D(k). The buoyancy is active at large scales only, and it is quite small for k ! 10.

Given the anisotropic nature of the flow, we also compute the KE spectrum of the hori-
zontal flowEKh (k) and of the vertical flowEKv (k), which are shown in Figure 5. As expected,
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Figure . Plots for horizontal and vertical kinetic energy spectra for strong stratification (Fr= .).

Figure . For Fr = ., (a) density plot of the magnitude of vorticity field ω; (b) The density plot of the
vorticity field ω; for this we truncate the modes in the wavenumber band $ k$ .

EKh (k) > EKv (k). Further, EKh (k) ∼ k−3 and EKv (k) ∼ k−5. Indeed, the different spectral
exponents of horizontal and vertical KE spectra show that the flow is anisotropic at all
length scales.

So, for strong stratification, the picture that emerges is of large-scale internal gravity
waves, physically manifested as a VSHF, that coexist with small-scale turbulence which is
characterised by an approximate k−3 scaling for both the KE and PE. Moreover, the KE flux
is close to zero while the PE flux is positive and closely follows a k−2 power-law. Thus, the
total energy of the system is systematically transferred to small scales. Note that stably strat-
ified turbulence in a channel also shows the coexistence of active turbulence and internal
gravity waves [56]. The energetic dominance of the VSHF suggests strong anisotropy in the
system and this is confirmed by the different scaling exponents of the horizontal and ver-
tical KE spectra. To visualise the coexistence of the large-scale internal gravity waves and
small-scale turbulence we plot the vorticity field in Figure 6(a), and the small-scale vorticity
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field after removing the large-scale wavenumbers from the band 0 $ k $ 10 in Figure 6(b).
Clearly, we observe large-scale internal gravity waves or VSHF riding on a sea of small-scale
turbulence.

4.2. Moderate stratification

Among our simulations, the density stratification is moderate for Fr = 0.37 and 0.45 (see
Figure 2). In this subsection we will focus on Fr= 0.37 which is obtained for Ra= 1010 and
an energy supply rate of ε = 0.01. For this case, Re = 3.7 × 104. As shown in Figure 2, the
flow pattern for the above set of parameters differs significantly from that corresponding to
strong stratification. In fact, there is no evidence of a VSHF in Figure 2 for Fr = 0.37.

With regard to turbulence phenomenology, Bolgiano [30] and Obukhov [31] (denoted
by BO) were among the first to consider stably stratified flows in 3D. According to this
phenomenology, for large scales, i.e. k < kB,

EK (k) = c1
(

g
ρ0

)4/5

ϵ
2/5
P k−11/5, (42)

EP(k) = c2
(

g
ρ0

)−2/5

ϵ
4/5
P k−7/5, (43)

&K (k) = c3
(

g
ρ0

)6/5

ϵ
3/5
P k−4/5, (44)

&P(k) = ϵP = constant, (45)

kB = c4
(

g
ρ0

)3/2

ϵ
−5/4
K ϵ

3/4
P , (46)

where ci’s are constants, ϵK is the KE supply rate, ϵP is the PE supply rate, and kB is the
Bolgiano wavenumber. At smaller scales (k > kB), BO argued that the buoyancy effects are
weak, and hence Kolmogorov’s spectrum is valid in this regime, i.e.

EK (k) = Cuϵ
2/3
K k−5/3, (47)

EP(k) = Cρϵ
−1/3
K ϵPk−5/3, (48)

&K (k) = ϵK = constant, (49)
&P(k) = ϵP = constant, (50)

where Cu and Cρ are Kolmogorov’s and Batchelor’s constants, respectively. Note that the
Bolgiano–Obukhov [30,31] scaling is valid for nearly isotropic stably stratified turbulence.
The recent developments [38,57–60] in 3D stably stratified turbulence, at moderate strat-
ification, have confirmed the existence of BO scaling. For strongly stratified turbulence,
Lindborg [34] shown that the horizontal KE and PE spectra exhibit −5/3 spectral expo-
nent, while the vertical KE and PE spectra exhibit −3 spectral exponent. Later, the direct
numerical simulations of Brethouwer et al. [35] and Bartello andTobias [36] also confirmed
the Lindborg [34] scaling laws for strongly stratified turbulence.

For 2D stably stratified turbulence, Equations (47)–(50) need to be modified for the k>

kB regime since 2D hydrodynamic turbulence yields k−3 energy spectrum at small scales
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Figure . Moderate stratification (Fr = .): (a) the KE and PE spectra. KE spectrum shows dual scaling
with k−/ and k−. The best fit for PE spectrum is k−. (thin black line); (b) KE flux&K(k), enstrophy flux
&ω(k), and total energy flux&Total(k); (c) PE flux; (d) FB(k), D(k), and FB(k)− D(k).

due to constant enstrophy cascade. Thus, modifications of Equations (47)–(50) take the
form

EK (k) = c5&2/3
ω k−3, (51)

EP(k) = c6k−1, (52)
&ω(k) = ϵω = constant, (53)
&P(k) = ϵP = constant. (54)

Here, &P(k) ∼ kukρ2
k = const. As uk ∼ k−1, this yields ρk ∼ const. Hence, we argue that

EP(k) ∼ ρ2
k/k ∼ k−1. At these smaller scales, it is important to note that the degree of non-

linearity is expected to be higher for moderate stratification, which leads to EP(k) ∼ k−1

and&P(k)∼ const, in contrast to EP(k)∼ k−3 and&P(k)∼ k−2 for strongly stratified flows.
The KE and PE spectra as well as their fluxes are shown in Figure 7. The KE spectrum

EK(k) exhibits BO scaling, in particular, EK(k) ∼ k−11/5 for 5 $ k $ 90, and EK(k) ∼ k−3

for 90 $ k $ 400. The KE flux, seen in Figure 7(b), also varies with scale; at large scales
we see an inverse transfer (that scales approximately as k−0.98) for 8 $ k $ 200, while at
small scales we obtain a forward transfer of KE for 200 $ k $ 1000. The enstrophy flux
is positive except for a narrow band near k % 10. Note that the PE spectrum (Figure 7(a))
does not show dual scaling and scales approximately as k−1.64; its flux is also not a constant
but follows &P(k) ∼ k−0.3. We note that the behaviour of KE flux does not change at the
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Figure . Plots for horizontal and vertical kinetic energy spectra for moderate stratification (Fr = .).
Both the spectra show dual scaling similar to EK(k).

same wavenumber as that of KE spectrum. At present, we believe that a higher resolution
simulation is required to resolve the dual scaling issues.

At large scales, these scaling laws can be explained by replacing ϵP of Equations (42)–(44)
with &P(k) ∼ k−0.3. This is similar to the variable flux arguments presented by Verma [46]
and Verma and Reddy [61]. Specifically,

EK (k) ∼ k−0.3×2/5k−11/5 ∼ k−2.32, (55)
EP(k) ∼ k−0.3×4/5k−7/5 ∼ k−1.64, (56)

&K (k) ∼ k−0.3×3/5k−4/5 ∼ k−0.98. (57)

Indeed, the spectral indices obtained above match those in Figure 7 very closely.
At small scales, the KE spectrum EK (k) ≈ 2.0&2/3

ω k−3 is associated with weaker buoy-
ancy and constant enstrophy flux (see Figure 7(a,b)), and it is in accordance with Equa-
tion (51). Note that the spectra of the horizontal and vertical components of the flow also
show dual scaling (see Figure 8), thus suggesting the presence of an approximately isotropic
flow at moderate stratification. As mentioned, the PE spectrum does not exhibit dual scal-
ing, and we do not see the k−1 scaling expected from Equation (52) at small scales. Though
it should be noted that the PE flux is not constant but scales approximately as k−0.3, and
this implies a slightly steeper (k−4/3) small scale PE spectrum. Indeed, a small change in
scaling of this kind, i.e. −1.64 and −1.33 at large and small scales, respectively, may only
be observable at a higher resolution.

The KE flux in the present 2D setting exhibits an inverse cascade, in contrast to the
forward cascade in 3D [34]. Still the k−11/5 spectrum of BO scaling is valid in 2D stably
stratified turbulence due to the following reason. The energy supply due to buoyancy FB(k)
and the dissipation rateD(k), shown in Figure 7(d), exhibits FB(k)> 0 for k> 20, in contrast
to 3D stably stratified flows for which FB(k) < 0 [38]. From Equation (31) we deduce that
|&K(k+ )k)|< |&K(k)| when&K(k)< 0 and FB(k)> 0. Thus |&K(k)| decreases with k and
this yields Bolgiano scaling for the 2D moderately stratified flows. Physically, in Figure 9
we observe ascending lighter fluid for which uz and ρ are positively correlated. This is in
contrast to 3D stably stratified flows for which FB(k) < 0 due to a conversion of KE to
PE [38]; i.e. there uz and ρ are anti-correlated. Finally, it should be noted that even though
KE flows upscale in this 2D setting, the total energy is transferred from large to small scales
as seen by the total energy flux &Total(k) in Figure 7(b).



234 A. KUMAR ET AL.

Figure . For Fr= . (a) the density plot of the density field ρ with the velocity field superimposed on
it. In the boxed zone, lighter (higher) fluid ascends thus FB(k)&uzρ > ; (b) a zoomed view of the boxed
zone.

4.3. Weak stratification

Finally, we discuss the flow behaviour for weak stratification. In our simulations this is
achieved for Ra = 108, ε = 0.3 that yields Fr = 1.1 and Re = 1.1 × 104. The flow pattern in
Figure 2 for Fr = 1.1 shows a complete lack of a VSHF, instead, there is a tendency to form
isotropic coherent structures similar to 2D hydrodynamic turbulence [50].

The energy spectra and fluxes for this case are shown in Figure 10. Qualitatively sim-
ilar to the moderate stratification case, we observe a negative KE flux at large scales. The
enstrophy flux is strong and always positive, in fact it increases with wavenumber and scales
approximately as k3/4 up to the dissipation scale. This feature of the enstrophy flux alters the
energy spectrum as follows:

EK (k) ≈ &ω
2/3k3 ∼ k3/4×2/3−3 ∼ k−2.5, (58)

which is in good agreement with our numerical finding, as shown in Figure 10(a). Figure 11
presents the spectra of the horizontal and vertical components of the flow, both are almost
identical and scale as EKh (k), EKv (k) ∼ k−2.5, thus confirming isotropy at all scales for weak
stratification.

The PE spectrum EP(k)∼ k−1.6 and its flux&P are approximately constant with&P(k)∼
k−0.13. Using EK(k)∼ k−2.5 and&P(k) ≈ kukρ2

k ∼ k−0.13 , we obtain EP(k)% ρk
2/k∼ k−1.38,

which is a little shallower than the k−1.6 spectrum obtained in our numerical simulation.
Once again, the total energy in the systemflows from large to small scales (see Figure 10(b)).
Taken together, the behaviour of KE and PE suggests that BO scalingmay still be applicable
for Fr= 1.1, thoughwith a very restricted shallow (−11/5) large-scaleKE spectrum. Indeed,
it would require much higher resolution to probe this issue. Finally, we remark that for
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Figure . Weak stratification (Fr= .); (a) plots of KE and PE spectra. KE spectrum EK(k) shows k
−. scal-

ing, while PE spectrum EP(k) shows k
−. scaling; (b) plots of KE flux&K(k), enstrophy flux&ω(k), and total

energy flux&Total(k); (c) PE flux&P(k); (d) FB(k), D(k), and FB(k)− D(k).

Figure . Plots for horizontal and vertical kinetic energy spectra for weak stratification (Fr= .). Both the
spectra, EKh (k) and EKv

(k), overlap on each other similar to that of moderate stratification.

weakly stratified flows, the forward (inverse) transfer of PE (KE) is reminiscent of the flux
loop scenario proposed by Boffetta et al. [27].

5. Summary and conclusions

We performed direct numerical simulations of 2D stably stratified flows under large-scale
random forcing and studied the spectra and fluxes of KE, enstrophy, and PE. This is possi-
bly the simplest non-trivial setting to explore the effects of stratification on fluid turbulence,
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Table . Scaling of KE spectrum EK(k), PE spectrum EP(k), KE flux &K(k),
PE flux &P(k), and enstrophy flux &ω(k) for different strength of
stratification.
Strength of stratification Spectrum Flux

Strong Large scale VSHF
Small scale turbulence:

EK(k)∼ k− &K(k)∼ 
EP(k)∼ k− &ω(k)∼ const.

&P(k)∼ k−

Moderate For $ k$ :
EK(k)∼ k−. &K(k)∼ k−. (negative)
EP(k)∼ k−. &ω(k)∼ const.

&P(k)∼ k−.

For $ k$ :
EK(k)∼ k− &K(k): weak (positive)
EP(k)∼ k−. &ω(k)∼ const.

&P(k)∼ k−.

Weak
EK(k)∼ k−. &K(k)∼ const. (negative)
EP(k)∼ k−. &ω(k)∼ k/

&P(k)∼ k−.

much like surface turbulence in 3D flows which allow for an examination of compressibil-
ity on energy fluxes and spectra [62]. We find that the flows exhibit remarkably different
behaviour as the strength of stratification is varied, and this is summarised in Table 3.

For strong stratification, as with numerous previous studies, we observe the emergence
of a large-scale VSHF. This VSHF is explicitly identified as being composed of internal grav-
ity waves, and further is seen to coexist with smaller scale turbulence. The turbulent portion
of the flow follows some aspects of the traditional enstrophy cascading regime of pure 2D
turbulence. In particular, we find a strong, nearly constant, positive enstrophy flux, zero
KE flux and KE spectrum that scales approximately as k−3. But the PE does not act as a
passive scalar. Indeed, it exhibits an approximate k−3 spectrum and a scale-dependent k−2

forward flux. In addition, the flow in the strongly stratified regime is highly anisotropic
and the horizontal and vertical flow spectra follow EKh (k) ∼ k−3 and EKv (k) ∼ k−5 scaling,
respectively.

Moderate stratification proves to be very interesting, specifically, there is no VSHF and
we observe amodified BO scaling for the KE—EK(k)∼ k−11/5 at large scales and an approx-
imate k−3 power-law at small scales. Further, the nature of the KE flux also changes, with
the upscale or inverse transfer at large scales and a weak forward transfer at smaller scales.
The PE, on the other hand, always flows downscale and its flux is weakly scale-dependent
(approximately k−0.3). The PE spectrum scales as k−1.64, with no signs of a dual scaling like
the KE. But, as the expected change in scaling of the PE spectrum is small, it is possible that
higher resolution simulations may prove to be useful in this regard.

Weak stratification also differs significantly from pure 2D turbulence. In particular, we
actually see a positive scale-dependent enstrophy flux (∼k3/4) up to the dissipation scale.
In agreement with this form of the enstrophy flux, the KE spectrum scales approximately
as k−2.5. The KE flux is robustly negative, and the inverse transfer begins at a comparatively
smaller scale than with moderate stratification. The PE flux, once again, is positive and
almost scale-independent, and the PE spectrum follows an approximate k−1.6 scaling law.
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Thus, the nature of 2D stably stratified turbulence under large-scale random forcing is
dependent on the strength of the ambient stratification.Despite this diversity, we do observe
some universal features. Specifically, the total and PE always flow downscale, which is in
agreement with 3D stratified turbulence. The KE almost never shows a forward transfer
(apart from the weak downscale transfer at small scales inmoderate stratification). In addi-
tion, the zero flux of KE and its upscale transfer at large scale for strong stratification differs
from the nonzero flux formoderate andweak stratification. Finally, apart from the PE spec-
trum for weak stratification (and its small-scale behaviour for moderate stratification), the
scaling exponents observed very closelymatch dimensional expectations whenwe take into
account the scale-dependent form of the corresponding flux.
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