
Chapter 15

Rotation Dynamics: 
Definitions



Rigid body and Euler angles
   A rigid body is one in which the relative distance between any 
pair of points remains constant.

Applicable for moderate force.

Any motion of a rigid body can be split into two parts: 	

(a) translation of a given point on the rigid body: During the 
translation, all the points of the rigid body move by the same 
constant distance.

(b) rotation of the rigid body about the above point.

On many occasions, the CM of the rigid body is chosen as the 
reference point.
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Rotation from the axes configuration (X, Y, Z ) to another 
configuration (x′�, y′�, z′�):

We use three Euler angles ϕ, θ, ζ:      

1. A rotation by an angle ϕ about the Z axis, which shifts the X 
and Y axes to  the x and Y′� axes respectively (from (a) to (b)).

Section 1

Euler Angles
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2. A rotation by an angle θ about the new x axis, which shifts the 
Y′� and Z axes to the y and z axes respectively (from (b) to (c)).

3. A rotation by an angle ζ about the z axis, which shifts the x and 
y axes to the x′� and y′� axes respectively  (from (c) to (d)).  
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Another way to look at these rotations is as follows:   First locate 
the new axis of rotation of the rigid body, which requires two 
angles θ and ϕ relative to the original coordinate system. After the 
alignment of  the rotation axis to (x, y, z) configuration, we rotate 
the rigid body  by an angle ζ about the new z axis. These three 
angles are the aforementioned Euler angles. Note that the rotation 
about a fixed axis can be specified by one angle. However, when 
the rotation axis itself revolves, then the angles θ and ϕ provide 

the orientation of the rotation axis, and ζ provides the angle of 
rotation of the body about the new z axis. 
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Angular Velocity

Rotation about a Single Axis

Rotation of  aline wrt a reference axis (here x axis)

Ω

 Displacement of a point P on a rigid body under rotation: 
dr = (Ω × r)dt

The linear velocity of the point P is 	

	 dr
dt

= Ω × r.	 	 	 	 	 	 	 (1)  

Theorem: The angular velocity of a rigid body is the same for all 
points on the rigid body.

Proof: Imagine that a disk is rotating  about an axis passing 
through O. Let us assume that the angular velocity of the disk 
about O is ΩO, while that about O’ is ΩO′�. We need to prove that
ΩO = ΩO′�  

The velocity of the point A is

	 VA = ΩO × r = ΩO × (a + r′�) = VO′�+ ΩO × r′�.	   (2)

Section 2

Angular Velocity
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Fig. 1: Angular velocity of point A wrt O and O’.

However the velocity of the point A is the sum of the velocity of O' 
and that of the point A wrt O’, that is,

	 VA = VO′�+ ΩO′� × r′ �.	 	 	 	 	 (3)

Comparing Eqs. (2) and (3) we can deduce that 

	 ΩO = ΩO′� 

That is, the angular velocity measured at the points O and O′� are 
the same. Physically, in a time dt, the lines OA and O′�A rotate by 
the same angle.    

Rotation About a More than One Symmetric 
Axis

A general form of the angular velocity  for rotation about multiple 
axes is

	 Ω = Ωx x̂ + Ωy ŷ + Ωz ẑ,	 	 (4)

where x̂, ŷ, and  ẑ are the directions of the rotation axes. 

 It is  convenient to choose the axes of Euler rotation for the 
description of angular velocity. For a popular instrument named  
gyroscope, shown in Fig. 2.  the angular velocity can be written as 

	 Ω = ·ϕ Ẑ + ·θ x̂ + ·ζ ẑ.	 	 	 	 	 (5) 

The angular velocity ·ϕ and ·ζ are referred to as precession and 
spin angular velocities of the rigid body.

 

z y

x

Z

Fig 2: A Gyroscope
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Figure 15.10  Gyroscope.  The disk in the centre rotates about the 
three axes(x, y, z).

Figure 3:  Angular velocity of the gyroscope in terms of the time 
derivatives of the Euler angles.

Note that in the above decomposition, the angular velocity is 
decomposed along non-orthogonal (non-perpendicular) 
directions (Ẑ, x̂, ẑ). Alternatively, Ω can be decomposed along the 
three orthogonal axes  (x̂, ŷ, ẑ) shown in the Fig. 3.   Note that the Ẑ 
axis is fixed, but  x̂, ŷ, ẑ axes rotate about Ẑ with an instantaneous 
angular velocity of ·ϕ.  The components of the angular velocity 
along the (x, y, z) axes are

	 	 Ωx = ·θ 

	 	 Ωy = ·ϕ sin θ

	 	 Ωz = ( ·ζ + ·ϕ cos θ).	 	 	 	 (6) 

Another important point to note is that the angular velocity is the 
same for both laboratory frame and the rotating frame  because 
the angle made by a line on the body wrt a reference line is the 
same in both the frames.  Contrast this with the linear velocity; 
the velocities in the two frames differ by the relative velocity 
between the two frames.

The following examples illustrate how to write angular velocity of 
a rigid body.  

Examples Illustrating Angular Velocity

1. A wheel rolling without slipping: The bottom-most point has 
zero velocity. Therefore,

	 VCM = ω R

2.  A COIN (C2) ROLLING OVER ANOTHER FIXED COIN (C1) OF  
THE SAME RADIUS

Focus on transition from α to β. 
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Figure 4: Coin C2 rolling over the coin C1 without slipping.

Orbital motion: The line joining the centres of C1 and C2 rotates 
by π /2.  If the coin C2 slides without rolling (the point A not losing 
contact), then the lines  O1-A-O2 would  move by an angle of π /2. 

Spin: The line O2A makes an additional rotation of  π /2 due to  the 
rolling of the  C2 coin.

The velocity of the contact point of the coin C2  is a sum of the 
velocities due to orbital motion and due to spin, that is

	 	 V = ΩorbitalR − ΩspinR,	 	 	 	

where R is the radius of the coin.  Since the net velocity of the 
contact point is zero, 

	 	 Ωorbital = Ωspin	 	 	 	 	  

	 or  θorbit = θspin	 	 	 	 	 	

 Hence the total angle traversed by the line O2A is 

	 θnet = θorbit + θspin = 2θorbit . 	 	 	   

When the coin C2 returns to its original spot after θorbit = 2π, the 
line O2A would have covered θnet = 4π, which corresponds to two 
complete revolutions of the coin C2.  

3. EARTH-SUN SYSTEM

	 In one year (365.24 solar days), the centre of the Earth 
returns to its original position. Hence in one year, the Earth 
completes an orbital motion of 2π radian if the line OP of Fig. 5 is 
always facing the Sun. The Earth also spins by an angle of 
2π × 365.24 radian.

Consider a point P  on the surface of the Earth, which is closest 
to the Sun in configuration α (Fig. 5).  A solar day is defined as a 
time interval after which the point P again cones closest to Sun 
(here configuration β).    During this interval, the line OP has 
rotated by 

	 θ = 2π + 2π
365.24 = 2π

366.24
365.24 rad . 	 	 (15.5.11)  
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α

β

Figure 5:  Motion of the Earth around the Sun.

 Hence the angular velocity of the Earth is 

	 	 Ω = θ
24 hours = 2π × 366.24

365.25 × 86400 = 7.29 × 10−5/s  . 	

	 	 	    	

A sidereal day is the time interval in which the Earth makes one 
revolution about the fixed stars.  In Fig. 15.13, it corresponds to 
the interval during which  the line OP rotates by an angle of 2π. 
Using the ideas discussed above, we conclude that

Tsidereal = 365.24
366.24 × 24 hours ≈ 23 hour 56min . 	 	 	 	

4. A ROLLING CYCLE WHEEL

	 A cycle wheel of mass M and radius R is connected to a 
vertical rod through a horizontal shaft of length a, as shown in Fig.

15.14(a). The wheel rolls without slipping about the Z axis with an 
angular velocity of  Ω. 
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Figure 15.14  (a) Rolling motion of a cycle wheel connected to a 
horizontal shaft.  (b) A view from the top. A line OP of the disk has 
rotated by an angle ϕ about X axis. (c) A side view of the disk 
(while facing straight to the disk).  A line OP makes an angle ζ wrt 
a reference axis.

The cycle wheel spins  about its own axis, as well as orbits 
around the vertical axis (Z).  Hence its angular velocity is

 	 	 Ω = ΩẐ + ΩS ρ̂,	 	 	 	 	 (15.5.14)

 where Ω is  the precession (about the Z axis) angular velocity, 
and ΩS is  spin angular velocities. We consider the counter 
clockwise direction as positive. Note that the linear velocity of the 
contact point of the wheel is  (Ωa + ΩSR)ϕ̂. Since the wheel rolls 
without slipping, that is, the linear velocity of the contact point is 
zero, we obtain 

	 	 ΩS = − Ωa /R.	 	 	 	 	 (15.5.15)

84



The negative sign of ΩS implies that the wheel is spinning 
clockwise. Thus, the net angular velocity of the bicycle wheel is

 	 	 Ω = ΩẐ − a
R

Ω ρ̂.	 	 	 	 	 (15.5.16)

Note that we can obtain the above equation from Eq. (15.5.5) if 
we substitute ·θ = 0 and ẑ = − ρ̂.

Physically, a line OP on the wheel rotates about Ẑ axis (angle ϕ) 
and about ρ̂ axis (angle ζ). The  spin angular velocity ΩS = ·ζ and 
the precession angular velocity Ω = ·ϕ are illustrated in Figs. 
15.14(b) and 15.14(c) respectively. Note that if the wheel slides 
without any spin, then ΩS = 0.

AN ORBITING CYLINDER MAKING AN ANGLE  θ WITH THE  
ROTATING AXIS

A cylinder orbits around A A′ � = Z axis with an angular velocity of 
Ω = ΩẐ (see Fig. 15.15(a)). The axis of the cylinder makes an 
angle θ with the Z axis. The cylinder does not spin about its axis. 
We can resolve Ω along the cylindrical axis (z),  and along its 
perpendicular direction (y) as

Ω = ΩẐ = Ωz ẑ + Ωy ŷ = Ω cos θ ẑ + Ω sin θ ŷ, (15.5.18)

 which can be interpreted as  rotation of the cylinder about z and y 
axis with  angular velocities Ωz and Ωy respectively.   Note that 

Ω = ·ϕ of Eq. (15.5.5).  

We focus on a line OP of the cylinder.  In one rotation, the line OP 
covers an angle 2π, with the point P traversing via P1, P2, P3, P4 as 
shown in Fig. 15.15(b). 
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Figure 15.15  (a) A cylinder, which is inclined from the vertical axis 
by an angle θ, is orbits about a vertical axis with angular velocity 
Ω.  (b) A line OP of the cylinder performs a circular path around O.
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Kinetic energy of a rigid body; Moment of 
inertia
The motion of a rigid body can be broken into two parts: a linear 
translation of all the point on the rigid body, and a rotation of the 
rigid body.   The velocity of any point a of the rigid body is

	 va = VP + Ω × r′�a,	 	 	 	 	 	    (1)

where VP is the velocity of the reference point P, and Ω is the 
angular velocity of the rigid body.  The total kinetic energy of the 
rigid body is a sum of the kinetic energy of all the points, i.e., 

T = ∑
a

1
2 mav2

a = 1
2 MV 2

P + ∑
a

1
2 ma(Ω × r′�a)2 + VP ⋅ (∑

a
maΩ × r′ �a)    	

	 	 	 	 	 	 	 	 	 	    (2)

 The third term of the RHS vanishes if 

(a) The point P is the CM, i.e., ∑
a

mar′�a = 0. 

(b) The reference point P is stationary, i.e., VP = 0.

For these case, the first term is the kinetic energy of the CM, 
while the second term is rotational kinetic energy wrt the CM.  

In the following discussion, we will compute the second term of 
RHS, which is the rotational kinetic energy of the rigid body wrt  
P.   For an arbitrary rotation with angular velocity
Ω = Ωx x̂ + Ωy ŷ + Ωz ẑ,  the rotational kinetic energy is 

Trot = 1
2 ∑

a
ma(Ω × ra)2	

= 1
2 ∑

a,i,α,β,γ,δ
maϵiαβΩαra,βϵiγηΩγra,η

= 1
2 ∑

α,γ [∑
a

ma(r2
a δαγ − ra,αra,γ)] ΩαΩγ

= 1
2 ∑

i
∑

j
IijΩiΩj	 	 (3)	 	 	 	  

where

	 Iil = ∑ ma(r2
a δil − ra,ira,l)

Section 3

Moment of Inertia, Kinetic Energy
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is the moment of inertia of the rigid body measured from a 
reference point P. A different choice of P will yield a new set of 
Iij's.  

Moment of inertia is a second rank tensor  with Iij = Iji 

(symmetric).  In a matrix form

 	 	 I =
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

		 	 	 (4)

Theorem: The above symmetric matrix can always be 
transformed to the following diagonal form using a  coordinate 
transformation from xyz to a new system x′�y′�z′�:

	 	 I′� =
Ix′�x′� 0 0
0 Iy′�y′� 0
0 0 Iz′�z′�

	 	 	 	 (5)

The new axes are called the symmetry axes or the principal axes 
of the rigid body.  Because of the above simplification, the 
symmetry axes of a rigid body are very important and convenient 
for calculations.

Example 1	 Compute the moment of inertia of a thin square 
plate of size a and mass M  about its centre of mass.  

Solution	   We choose the xy axis shown in Fig. 15.19 for our 
computation.   

y

x

Figure 1: 

   Using the formulas of MI

	 	 Ixx = σ∫
a/2

−a/2
d x∫

a/2

−a/2
dy(y2)

	 	 = σa
a3

12 = M
a2

12 ,

 where σ is the two-dimensional mass density of the plate, and 
M = σa2. Similarly,

	 	 Iyy = σ∫
a/2

−a/2
d x(x2)∫

a/2

−a/2
dy = Ixx;

	 	 Izz = σ∫
a/2

−a/2
d x∫

a/2

−a/2
dy(x2 + y2) = Ixx + Iyy = M

a2

6 ;
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Due to symmetry we can conclude that Ixy = Iyx = 0, hence, x and 

y are the principal axes of the plate. Also, since  z = 0 for all the 
points on the thin plate.

 	 	 Ixz = Izx = Iyz = Izy = 0;

It turns out that any rotated axes (x′�y′�) on the xy plane yields the 
same moment of inertia. You can obtain this result using 
somewhat complex integration. This  result shows that any 
orthogonal x′�y′ �z axes are principal axes for the square plate. In 
matrix form,

	 	 I =

Ma2

12 0 0

0 Ma2

12 0

0 0 Ma2

6

In the above example, the principal axes pass through the CM.  
However it is not necessary for the principal axes to pass through 
the CM of the rigid body, as we illustrate in the following example.

Example 2	 Compute the moment of inertia of a thin square 
plate of size a and mass M  about one of its corners.  Find the 
principal axes of the plate passing through the aforementioned 
corner.  

Solution	 We compute the moment of inertia of the square about 
the corner point P shown in Fig. 15.20.  

. .
(a) (b)

y

z z

y'

y x'

xP

 Figure 2:

 Using the formulas for the moment of inertia, we obtain 

	 	 Ixx = σ∫
a

0
d x∫

a

0
dy(y2)

 	 	 = σ
a3

3 a = M
a2

3 ;

	 	 Iyy = σ∫
a

0
d x(x2)∫

a

0
dy = M

a2

3 = Ixx;

	 	 Izz = σ∫
a

0
d x∫

a

0
dy(x2 + y2) = Ixx + Iyy = 2M

a2

3 ;
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	 	 Ixy = Iyx = − σ∫
a

0
d x∫

a

0
dy(xy)

 	 	 = − σ
a2

2
a2

2 = − M
a2

4 ;

 	 	 Ixz = Izx = Iyz = Izy = 0;

where σ is the constant mass density of the thin plate. The above 
values yield the following moment of inertia matrix:

 	 	 I =

Ma2

3 − Ma2

4 0

− Ma2

4
Ma2

3 0

0 0 2Ma2

3

	 	 	 	 (1)

Since the matrix is not in a diagonal form, the axes xyz are not 
principal axes.  

We diagonalize the above matrix, which is

	 I =

Ma2

12 0 0

0 7Ma2

12 0

0 0 2Ma2

3

with the eigenvectors being (1,1,0), (1,-1,0), (0,0,1). The first two 
vectors are along the x’ and y’ axes respectively shown in Fig. 
2(b).

This is an example where the principal axes do not pass through 
the CM of the rigid body.

 Example 3:	 A plank of length l and mass m is standing 
vertically on a frictionless surface. The plank starts to fall at t = 0. 
Assuming conservation of energy (to be proved in the next 
chapter), compute the angular velocity of the plank as a function 
of time.  

Solution	 We solve the above problem by applying conservation 
of energy. At t = 0, the total energy of the plank is mgl /2. Since no 
horizontal force acts on the plank, the CM of the plank will fall 
down vertically. Consider a configuration when the CM of the 
plank is at y.

y

Figure  3:	 A plank falling under gravity.
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The total kinetic energy of the plank is a sum of  the kinetic 
energy of CM and the rotational kinetic energy,  that is

	 	 KE = 1
2 m ·y2 + 1

2 I ·θ2

 	 	 = 1
2 m ·y2 + 1

2
ml2

12
·θ2

The potential energy PE = mgy

The Lagrangian of the system is

	 L = 1
2 m ·y2 + 1

2
ml2

12
·θ2 − mgy.

The conservation of energy yields

	 mg
l
2 = mgy + 1

2
ml2

12
·θ2 + 1

2 m ·y2 .   

Using Eq. (1) we obtain

	 1
24 l2 ·θ2(1 + 3 sin2 θ) = g(l /2 − y)

or

	 ·θ2 = 24g
l

sin2(θ /2)
(1 + 3 sin2 θ) .	 	 	 	 	 (2)

For small θ, the above equation yields

	 	 ·θ = 6g
l

θ,

which is analogous to the motion of an inverted pendulum with 
small θ.  The angle θ grows exponentially.  We can compute θ and 
the vertical velocity of the CM of the plank. 

Parallel Axis Theorem
The moment of inertia about an axis (z′�) that is a distance a away 
and parallel to the symmetry axis (say z-axis) is

	 	 I′�zz = Izz,CM + Ma2, 	 	 	 	 (15.6.8)

where Izz,CM is the moment of inertia about the axis passing 

through the CM, and I′�zz is the moment of inertia about the new 
axis.
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Angular momentum of a rigid body

The angular momentum of a system of particles about a 
reference point  is 

	 L = ∑
a

ra × pa, 	 	 	 	 	 	

where ra denotes the position vector of the ath particle from the 
reference point, and pa  its linear momentum.  In terms of the CM 
coordinates:

	 L = RCM × PCM + ∑ r′�a × p′�a

Equation of motion:

	 d LP

dt
= Next − M(RCM − RP) × ··RP

Angular momentum of a rigid body
The angular momentum of a rigid body about a reference point P  
is

	 	 L = ∑ ra × pa

In component form:

	 Li = [∑ ra × ma(Ω × ra)]i
	 	 	

	 = ∑
a

∑
jklm

ϵijkra, jϵklmmaΩlra,m

	 = [∑
a

ma(δilδjm − δimδjl)ra, jra,m] Ωl	

	 = [∑
a

ma(r2
a δil − ra,ira,l)] Ωl  

 	 = IilΩl

The  above formula is valid for any reference point.   

Note that if Ω = Ωz ẑ, but the rotation axis is not one of the 
principal axes, then

Section 4

Angular momentum
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	 	 L = IxzΩz x̂ + IyzΩz ŷ + IzzΩz ẑ.	 	  

When the axes of rotation are the principle axes:

	 	 L = IxxΩx x̂ + IyyΩy ŷ + IzzΩz ẑ, 	 	  

where x̂, ŷ, and ẑ are the unit vectors along the principal axes. 

NOTE: The angular momentum L is in general not parallel to Ω. 
They are parallel only when

(a) Ixx = Iyy = Izz = I, which is valid for a sphere or a cube when 

CM is chosen as a reference point. For this case L = IΩ. 

(b) Ω is along one of the principal axis. For example, if Ωx = Ωy = 0 

and Ωz ≠ 0, then L = IzzΩ.  

Contrast rotation and translation:

(a) The proportionality constant between L and  Ω is the moment 
of inertia  (a tensor), while the proportionality constant between  
P and V is the mass (a scalar). P and the V are always parallel, 
but L and  Ω are not necessarily parallel.

(b)  L depends on the reference point, but P does not.

(c) The linear velocities in the laboratory and rotating frame differ 
by the relative velocity between the two frames.  The angular 
velocity in the two frames however is the same. 

Examples of Angular Momentum

(1) A ROLLING WHEEL

The angular momentum of the wheel about its CM is

	 LCM = IΩ = 1
2 MR2Ω . 		 	 	 	    

	 LA = RCM × PCM + LCM   or

	 LA = (MR2Ω + 1
2 MR2Ω) ẑ = 3

2 MR2Ω ẑ,	    

The angular momentum of the wheel about the bottom-most 
point of the wheel is

	 LB = IBΩ ẑ = (MR2 + 1
2 MR2)Ω ẑ = 3

2 MR2Ω ẑ . 	  

Clear LA = LB.   

(2) A COIN ROLLING OVER ANOTHER COIN OF THE SAME 
RADIUS

The angular momentum of C2 is

L = RCM × PCM + LCM

= (2R × M × 2REΩorbit) ẑ + 1
2 MR2(Ωspin + Ωorbit) ẑ,	 	

= 5MR2Ωspin ẑ . 	 	 	 	 	  
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(3) THE EARTH-SUN SYSTEM 

The angular momentum of the Earth wrt the centre of the Sun is

	 L = mR2
ESΩ ẑ + 2

5 mR2
EΩS ŝ + 2

5 mR2
EΩ ẑ		   

	 	 Ω = 2π
365.25 × 86400 rad/s	 	 	  

	 	 ΩS = 2π
86400 rad/s . 	 	 	 	  

(4) A ROLLING CYCLE WHEEL 

 The angular momentum of the wheel about the hinge is

 	 L = LCM + LaboutCM

	    = MaVCM ẑ + ( 1
2 MR2ΩS ŝ + 1

4 MR2 Ω ẑ)
	    = MaVCM ẑ + (− 1

2 MR2 Ω a
R

ρ̂ + 1
4 MR2 Ω ẑ)

	    = M (a2 + 1
4 R2) Ω ẑ − 1

2 MRa ρ̂	      

5	 A CYLINDER MAKING AN ANGLE θ WITH THE ROTATING 
AXIS   

The angular momentum of the cylinder  along the principal axes is

	 Ω = Ω cos θ ẑ + Ω sin θ ŷ . 	 	 	 	   

Therefore the angular momentum of the cylinder  is

	 L = IzzΩ cos θ ẑ + IyyΩ sin θ ŷ;	 	 	   

here Izz = MR2 /2 and Iyy = MR2 /4 + MH2 /12. Clearly L and Ω are 

not in the same direction.

Example 1:	 A square plate of size a rotates about the y axis 
with an angular velocity Ω = Ω ŷ, as shown in Fig. 15.23.  
Compute the angular velocity of the plate about its corner.

.

Ωy

x

Solution:	  

L = IxyΩ ŷ + IyyΩ ŷ = − Ma2

4 Ω x̂ + Ma2

3 Ω ŷ.	 	 (1)

Note that the angular momentum and the angular velocity are not 
parallel.

When we resolve along the principal axes:
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	 Ω = Ω
2

̂x′� + Ω
2

̂y′�.

and the angular momentum is

	 L = Ma2

12
Ω

2
̂x′� + 7Ma2

12
Ω

2
̂y′�.	 	 	 	 (2)

It can be easily shown that the angular momentum of Eq. (1) and 
(2) are identical.
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Torque-free Precession of Symmetric Tops 

Symmetric top:  Ixx = Iyy ≠ Izz. 

Thin tops: Ixx = Iyy > Izz (thin cylinder)

Flat tops: Ixx < Izz (flat disks, frisbee, Earth)

 

α α

y

y

y

y

Figure 1	 (a) Torque-free precession of a thin top. (b) Torque-free 
precession of a flat top.

	 Ω = Ωz ẑ + Ωy ŷ . 	 	 	 	 	 	 (1)

 It is also useful to resolve the angular velocity along the z and Z 
(along L) axes as

	 Ω = ΩS + ΩP,	 	 	 	 	 	 (2)

where ΩS, ΩP are called the spin and precession angular 
velocities respectively, and they are not orthogonal. Note that 
spin axis is along the z direction.

The components of the angular velocity along the two coordinate 
systems are related:

	 Ωz = ΩS + ΩP cos θ,	 	 	 	 	 (3)

	 Ωy = ΩP sin θ,	 	 	 	 	 	 (4)

where θ is the angle between L and the z axis of the rigid body. 
The net angular momentum can be resolved along the principal 
axes as

	 Ly = L sin θ = IyyΩy	 	 	 	 	 (5)

Section 5

Torque-free Rotation
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	 Lz = L cos θ = IzzΩz	 	 	 	 	 (6)

The above equations yield 

	 Ωy =
Ly

Iyy
= L sin θ

Iyy
, 	 	 	 	 	 (7)

	 Ωz =
Lz

Izz
= L cos θ

Izz
	 	 	 	 	 (8)

Also from Eq. (15.8.4) and (15.8.5)

	 ΩP =
Ωy

sin θ
= L

Iyy
, 	 	 	 	 	 	 (9)

	 ΩS = Ωz − ΩP cos θ = Ωz [1 −
Izz

Iyy ], 	 	 (10)

	 ΩS = ΩP cos θ [
Iyy

Izz
− 1], 	 	 	 	 (11)

	 ΩP =
Ωz

cos θ
Izz

Iyy
.	 	 	 	 	 	 (12)

According to the  Eq. (15.8.11), ΩP and ΩS have same signs for 
the thin tops  (type (a) with Izz < Iyy), but different signs for the flat 

tops (type (b) with Izz > Iyy).    Note that ΩS ≠ Ωz.  The above 

computation also reveals that the system can be uniquely 
specified using (Ωy, Ωz) or (ΩS, ΩP).  

Another important quantity in this problem is the angle α between 
the z axis and the angular velocity vector Ω (see Fig. 15.24).  Let 
us compute a relationship between the angles θ and α. Since

 	 tan α =
Ωy

Ωz
.	 	 	 	 	 	 	 (13)

 Using Eq. (7) and (8) we can deduce that

  	
Ωy

Ωz
= tan θ

Izz

Iyy
	 	 	 	 	 	 (14)

  which implies that

	 tan α = tan θ
Izz

Iyy
	 	 	 	 	 	 (15)

 The torque-free motion has an interesting physical interpretation. 
The top is spinning, as well as precessing so as to maintain zero 
torque. Note that the net angular velocity Ω precesses about L, 
not about the spin axis.   

 It is instructive to analyse the motion of a cylinder (a thin top) and 
a thin disk (a flat top) separately. We take a cylinder with 
Ixx = Iyy = 2Izz as an example for which Eq. (15.8.11) yields 

ΩS ≈ ΩP for small θ.  That is, precession and spin angular 
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velocities have approximately same magnitudes. Hence the total 
angular velocity of the cylinder is

	 Ω ≈ (ΩP + ΩS) ẑ ≈ 2ΩP ẑ.	 	 	 	 (16)

 In Fig. 1 we illustrate the motion of the line OP of a torque-free 
cylinder.  By the time the z axis completes half rotation (from (a) to 
(c)), the line OP makes a full circle.   Thus, a line on the cylinder 
rotates twice as fast as ΩP. 

For a  thin disk  (Iyy = Izz /2), Eq. (11) yields ΩS ≈ − ΩP /2 for small θ.  

Hence,

	 Ω ≈ (ΩP + ΩS) ẑ ≈ 1
2 ΩP ẑ.	 	 	 	 (17)

Therefore, the net angular velocity of a line on the disk  is around 
half of the precession velocity.  In Fig. 15.26 we illustrate that the 
line OP completes a half  revolution by the time the z axis 
completes one revolution.

(a) (b) (c)

P

O
P

P

O O

Figure 2	 Motion of the line OP of a cylinder during its torque-
free precession. It makes a full rotation when the cylinder has 
made only half precession.

         

z z z

P
P

P

O O O

(a) (b) (c)

Figure 3	 Motion of the line OP of a thin disk during its torque-
free precession. It makes  half a rotation when the disk has made 
a full round of precession.

Torque-free Precession of the Earth
In 1891, Chandler observed that the spin axis of the Earth 
precesses around the polar region with a period of approximately 
435 days. As  shown in Fig. 4(a), the variation of the location of 
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the spin (z) axis is of the order of 10 meters,  which is negligible 
compared to the radius of the Earth, as well as it is somewhat 
irregular.  The aforementioned precession is largely attributed to 
the torque-free precession of the Earth.  We will estimate this 
effect in the following discussion.
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Fig: 4: Chandler wobble

The range of motion of the spin axis of the Earth is approximately 
10 meters. Using this data and Eq. (15.8.13), we  estimate the 
angles α of Fig. 15.24 using 

tan α ≈ 10 meters
RE

= 10
6 × 106 = 1.6 × 10−6,	  

α ≈ 1.6 × 10−6 × 3600 × 180
π

≈ 0.3 arc second.	 	 	

Since θ is of the same order as α, the spin axis and the 
precession axis of the Earth make an angle of the order of a few 
tenths of a second.   

Now let us compute a relationship between ΩS and Ωz.  For the 
Earth

Ixx = Iyy = 0.329591MR2, and Izz = 0.330675MR2, substitution of 

which in Eq. (15.8.10) yields

	 ΩS

Ωz
=

Iyy − Izz

Iyy
≈ − 1

304 .	 	 	

Since the angle between the Ω and L is quite small, we conclude 
that

	 Ω ≈ ΩP + ΩS ≈ (Ωz − ΩS) ẑ ≈ (1 − 1
304 ) Ωz ẑ,	 	 	

where |Ω | ≈ Ωz ≈ 2π /(1 solar day). Hence, the time period of the 
precession of the axis is 304 days.

A physical interoperation of the above calculations is as follows: A 
line joining the centre of the Earth to its surface, for example the 
line OP of Fig. 4(b), would cover (1 − 1/304)2π angle in one 
revolution of the spin axis.  That is, the line OP lags behind its 
starting orientation by an angle of(1/304)2π in every revolution of 
the spin axis. Therefore, the line OP would return to its original 
position only after 304 solar days, during which time OP would 
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have covered an angle of 303 × 2π.  These calculations yield time 
period of Earth's precession to be 304 days. Also note that the 
above computations predict a circular orbit for the spin axis, 
which is not what is observed (see Fig. 4(a)).  

The actual measurement  by Chandler (1891) and   others  
indicate that the aforementioned precession time period is 
approximately 435 days. Also, the observed precession of the 
spin axis is somewhat irregular.  The difference between the 
observed time period and the computed one, as well as the 
irregular motion of the spin axis, is attributed to the fact that the 
Earth is not a rigid body;  the fluid motion inside the Earth yields 
corrections to the time period. For details refer to Goldstein et al. 
(2002).  

How is the Chandler wobble measured? If the spin ΩS and the 
angular momentum L are aligned, then the fixed stars  would go 
around the pole star in a circular orbit every 24 hours, that is, the 
line OP of Fig. 4(b) would follow a circular orbit.  A precession of 
the spin axis around L however causes a  wobble in the 
trajectories of the fixed stars, as shown in Fig. 15.27(b).  We 
measure the precession of the spin axis using the observed the 
trajectories of fixed stars.   

It is important to note that the Earth's motion has another 
precession, which occurs due to the tidal effects induced by the 
moon and the Sun. Because of the oblate nature of the Earth, and 
the pull by the Sun and the moon cause a torque on the Earth 

that leads to a precession of Earth's spin axis along a cone 
whose half-angle is 23.5 degrees. 

The time period of this precession is around 26000 years. At 
present Earth's axis points towards the pole star, however it will 
point to a different direction at a later time. 

Example 1   Consider a uniform thin rod of mass M and length l 
lying on a horizontal plane. The rod can  can rotate freely about a  
hinge at the mid-point O, as shown in Fig. 15.28.  A point particle 
of mass M moving with a velocity v collides inelastically with the 
rod at its bottom. Compute the angular velocity of the rod after 
the collision.

                            

.

.M
O

Figure 5	 Example 1:  A point mass M collides inelastically with a 
rod 	 of same mass.

Solution	 Since the rod is hinged, the linear momentum of the 
system (particle + rod) is not conserved due to the  external 
forces exerted on the rod  by the hinge.  The total kinetic energy 
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is also not conserved in this example. Hence, we need to use the 
conservation of angular momentum for solving this problem. 

We use the hinge O as the reference point for computing the 
angular momentum of the system. We assume that the radius of 
the hinge is very small so that we can neglect the torque  on the 
rod due to the contact forces at the hinge. Therefore, we can 
apply  conservation of angular momentum to the system.  

Before the collision, the angular momentum of the point mass  
about the hinge is L = (Mvl /2) ẑ. The mass sticks to the rod after 
the collision, leading to a rotation of the rod+mass system about 
O. Let us denote the post-impact angular velocity of the 
combined system with Ω.  Hence, after the collision,  the angular 
momentum of the  rod+mass system about the hinge is IOΩ, 
where

	 I0 = Ml2

12 + M ( l
2 )

2
= Ml2

3 .		 	 	 (1)

is the   moment of inertia of the rod+mass about the hinge. An 
application of the conservation of angular momentum about the 
hinge yields

 	 I0Ω = Ml
2 v ẑ	 	 	 	 	 	 	 	 (2)  

or

	 ⇒ M L2

3 ω = ML
2 v

 	 Ω = 3
2

v
l

ẑ.		 	 	 	 	 	 	 (3)

Exercises

1. Two discs of moment of inertia I1 and I2 are rotating about a 
common vertical axis with angular frequencies Ω1 and Ω2 
respectively. The top disc falls onto the bottom disc, and the 
two discs move with a common angular velocity after a while 
Compute the common angular velocity of the discs. Compute 
the kinetic energy lost in the process. Where does lost kinetic 
energy go?

2. A fixed gear A, whose moment of inertia is I1 and radius is R1, is 
rotating with angular frequency Ω1. A second gear B touches 
gear A and rotates without slipping about an axis parallel to the 
axis of gear A.   Assume that the gear A maintains its angular 
velocity. The radius and moment of inertia of the second gear 
are R2 and I2 respectively. Compute the angular momentum of 
the whole system about the axis of gear A.
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3.  Consider the two-coin problem done in the class. Redo the 
angular velocity and angular momentum computations when 
the radii of the inner and outer coins are R1 and R2 respectively.

4. Consider the setup of Example 1 of Section 5, but assume that 
the rod is without a hinge. 

a. Compute the velocity of the CM of rod+mass before and 
after the collision.

b. Compute the angular momentum of the CM of rod+mass 
before and after the collision. Choose appropriate reference 
point.

c. Compute the angular velocity of the rod.

d. Describe the motion of the system.

5. In cricket, every batsman likes to hit the ball such that the 
reaction force on the batsman's hand is as small as possible. 
Where should the point of impact of the bat and ball be to 
achieve this objective? For simplicity, assume the bat has a 
uniform cross-section. 

6. A solid cone of length h and half angle α is rolling on a plane 
about its vortex with an angular velocity of Ω ẑ, as shown in Fig. 
6(a).  Compute the angular velocity, angular momentum, and  
kinetic energy of the cone.  

7.The vertex of the aforementioned cone is fixed on the z axis at a 
height equal to the radius of the cone.  The cone rotates an 
angular velocity of Ω ẑ about the vertical axis as shown in Fig. 
6(b).  Compute the  angular velocity, angular momentum, and  
kinetic energy of the cone.

Z

Y

X

.

(a) (b)

Z

Y

X

Figure 6:	 (a) Exerice 6  	 (b) Exercise 7

8. A particle of mass m, connected to one end of a string, is 
rotating around in a circle of radius r0 with speed u on a 
frictionless table, as shown in Fig. 15P.2(a). For t > 0, the other 
end of the string is pulled through the hole in the middle with a 
force such that the radius of the circle decreases at a constant 
rate. 

(a) What is the force on the string?
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(b) What are the linear and angular velocities of the mass?

. .
.

(a) (b)

m

V0
m/2

l

m/2

Figure 7	 (a) Exerice 8 	 (b) Exercise 9

9.  ball of mass m moving with  velocity v0 collides head-on with 
the lower mass of the rigid dumbbell, as shown in Fig. 15P.2(b). 
The dumbbell consists of two masses m /2 each, and a stick of 
length l separating the two masses.    Assuming that the collision 
is elastic and instantaneous, describe the motion of the system 
after the collision.
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Chapter 16

RIGID BODY DYNAMICS



Example 16.1:	 A cylinder rolls down an incline  without slipping. 
Describe the motion of the cylinder.

Solution:	 A cylinder is rolling down the inclined plane without 
slipping. 

z

Lagrangian of the cylinder is

	 L = 1
2 m ·x2 + 1

2 I ·ϕ2 − mgx cos θ

The constraint that the cylinder rolls down without slipping yields

	 ·x = ·ϕR	 	 	 	 	 	 	 	  

Therefore, 

	 L = 1
2 m(1 + k) ·x2 − mgx cos θ

where k = I /(mR2) = 1/2.  The equation of motion of the cylinder 
is

	 (1 + k)··x = − g sin θ

Hence the acceleration of the cylinder is −(2/3)g sin θ.  The above 
acceleration works for both ascent and descent of the cylinder.

Section 1

Singleaxis Rotation
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Rotation About Multiple Principal Axes

(1) Dynamics of the precessing cylinder

The angular velocity of the cylinder is

 	 Ω = Ωz ẑ + Ωy ŷ = ·ϕ cos θ ẑ + ·ϕ sin θ ŷ

 Therefore the Lagrangian of the cylinder is

	 L = 1
2 I3(

·ϕ cos θ)2 + 1
2 I1(

·ϕ sin θ)2

We also have constraint that θ = θ0= constant.  Therefore we use 
Lagrange multipliers to solve this problem.

	 L = 1
2 I3(

·ϕ cos θ)2 + 1
2 I1(

·ϕ sin θ)2 + λ(θ − θ0)

The equations of motion are

	 ∂L
∂ ·ϕ

= (I3 cos2 θ + I1 sin2 θ) ·ϕ = LZ = const

	 (I1 − I3)
·ϕ sin θ cos θ + λ = 0

Here λ is the constraint force or torque acting on the cylinder due 
to the hinge.

(2) Torque-free precession

Here Ω = ·θ x̂ + ·ϕ sin θ ŷ + ( ·ζ + ·ϕ cos θ) ẑ

and L = 1
2 I1

·θ2 + 1
2 I1(

·ϕ sin θ)2 + 1
2 I3(

·ζ + ·ϕ cos θ)2

Since ∂L /∂ϕ = 0 and ∂L /∂ζ = 0, we obtain

	 ∂L
∂ ·ζ

= I3(
·ζ + cos θ) = Lz = const

	 ∂L
∂ ·ϕ

= I3(
·ζ + ·ϕ cos θ)cos θ + I1

·ϕ sin2 θ = LZ = const 

	 I1
··θ − I1

·ϕ2 sin θ cos θ + I3(
·ζ + cos θ) ·ϕ sin θ = 0

Section 2

Multiaxis Rotation, Gyroscope
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In the last chapter, we consider θ=const.  If we substitute ··θ = 0 in 
the above equation, we recover the formula derived earlier.

(3) Gyroscope

 

z y

x

Z

(a) (b)

Figure 1: Gyroscope

We focus on the heavy disc in the middle of the gyroscope. The 
disc spins about an axis normal to the disc. Note that the CM of 
the gyroscope is hinged, hence it does not move. The setup can 
also rotate freely about the vertical axis Ẑ, as well as about the x̂ 
axis. The components of the angular velocity along the  
orthogonal axes (x̂, ŷ, ẑ) are  

	 	 Ωx = ·θ 

	 	 Ωy = ·ϕ sin θ

	 	 Ωz = ( ·ζ + ·ϕ cos θ)

The potential energy of the mass located at a distance l from the 
center along the z axis is mgl cos θ	 	 	 	  

The Lagrangian of the gyroscope is 

	 L = 1
2 I1

·θ2 + 1
2 I1(

·ϕ sin θ)2 + 1
2 I3(

·ζ + ·ϕ cos θ)2 − mgl cos θ

 Note that ∂L /∂ϕ = 0 and ∂L /∂ζ = 0. Hence,

	 ∂L
∂ ·ζ

= I3(
·ζ + cos θ) = Lz = const    (1)

	 ∂L
∂ ·ϕ

= I3(
·ζ + ·ϕ cos θ)cos θ + I1

·ϕ sin2 θ = LZ = const

which implies that 

	 ·ϕ =
LZ − Lz cos θ

I1 sin2 θ
	 	 	 (2)

The equation of θ is

	 I1
··θ − I1

·ϕ2 sin θ cos θ + I3(
·ζ + cos θ) ·ϕ sin θ = mgl sin θ

or
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I1
··θ + [Lz sin θ −

(LZ − Lz cos θ)
sin θ

cos θ] [ LZ − Lz cos θ
I1 sin2 θ ] = mgl sin θ (3)      

	 	      	 	 	 	 	 	   

 A reformulation of the above problem in terms of energy  
provides a first order differential equation, which is easier to 
solve.  The energy of the disk of the gyroscope is

	 1
2 I1(

·θ2 + ·ϕ2 sin2 θ) +
L2

z

2I3
+ mgl cos θ = E    (4)

	 1
2 I1

·θ2 + Ueff(θ) = E′ �	 	  

 where,

	 Ueff(θ) =
(LZ − Lz cos θ)2

2I1 sin2 θ
− mgl(1 − cos θ) and

	 	 	 E′� = E − mgl −
L2

z

2I3
.	 	 	  

Note that E′� is a constant. It is easy to verify that the time 
derivative of the above equation yields the second-order equation 
for θ. 

We non-dimensionalise the above equation by choosing I1I3 /Lz  

as the time scale, i.e., 

 	 	 t =
I1I3

Lz
t′�.	 	 	 	 	 	

In Eq. (16.6.14) we substitute the above form of t, and divide the 
equation by L2

z /I3, which yields

	 	 1
2 ( dθ

dt′�)
2

+ a
2 ( b − cos θ

sin θ )
2

− c(1 − cos θ) = Ẽ, 	 	

where

	 	 a = I3
I1

,  b = LZ

Lz
,  c = mgl

L2z /I3
, Ẽ = E′�

L2z /I3
,	 	 	 	

	 	

and

	 Ueff(θ) = a
2 ( b − cos θ

sin θ )
2

− c(1 − cos θ).	

We can solve the above equation given θ(t = 0) as an initial 
condition. However, this computation involves square-root 
function ( ·θ = ± f (θ)), which causes difficulty at the turning 

points where the sign of ·θ changes. Hence we solve the 
dimensionless form of Eq. (1), which is

	 d2θ
dt′�2 + a

sin3 θ
(b − cos θ)(1 − b cos θ) = c sin θ.		 (4)	
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We solve the above nonlinear equation numerically for a set of 
convenient parameters.  We also solve for ϕ(t) and ζ(t) using 

	 dϕ
dt′� = a

b − cos θ
sin2 θ

	 	 	 	 	 (5)

	 dζ
dt′� =

1
a

− dϕ
dt′ � cos θ	 	 	 	 	 (6)

In the following discussion, we will consider two cases when 
c > 0 (nonzero torque).

Figure 2:  Plot of Ueff vs. θ for  (a) a = 2,  b = 1.2, and c = 0.2; (b) 
a = 2, b = 0.6, and c = 0.2.

b > 1:   

Figure 3:  Precession with a = 2,  b = 1.2, and c = 0.2:   Time 
series of θ(t), ϕ(t), ζ(t) (left panel) and motion of the top of the z 
axis of the gyroscope (right panel) for (a) top panel: 
Ẽ = Umin = 0.40, and (b) bottom panel: Ẽ = Umin = 0.55 (see Fig. 
16.12(a) for  Ueff plots).  

b < 1 :
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Figure 4:  Precession with a = 2,  b = 0.6, and c = 0.2:  Time series 
of θ(t), ϕ(t), ζ(t) (left panel) and motion of the top of the z axis of 
the gyroscope (right panel) for (a) top panel: Ẽ = 0.11;  

In summary,  motion of a gyroscope consists of a spin about the 
spin axis (z-axis), a precession about the Z-axis, and a nutation 
about x-axis (periodic variation in θ ). In the absence of frictional 
force, θ variation is periodic. However, in an actual gyroscope the 
motion get damped  due to the frictional torque. 

A major application of the gyroscope is in navigation. Note that a 
torque-free gyroscope (set m = 0 in the above example) whose 
angular momentum and angular velocity are parallel will maintain 
its direction of spin irrespective of the orientations or position of 
its base. Hence the direction of the spin can be used as a 
reference direction or initial direction for navigation.

Other Types of Gyroscopes: Top and Bicycle 
Wheel

The derivation is same as that of the earlier section.  The 
Lagrangian however is

	 L = 1
2 I′�1

·θ2 + 1
2 I′�1(

·ϕ sin θ)2 + 1
2 I3(

·ζ + ·ϕ cos θ)2 − mgl cos θ

where I′�1 = I1 + ml2 is the moment of inertia about the hinge. The 
derivation is essentially the same as derived in the earlier section.
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Exercises

1. Two masses m1 and m2 are hanging on the two sides of a pulley 
that has moment of inertia I. Assume the string to be massless 
and inextensible.  Compute the acceleration of the masses. 
Compute the tension of the string.

2. A pendulum consisting of a massless inextensible string length 
I and bob of mass M is revolving with a constant angular 
velocity ω about a point on the ceiling. The bob describes a 
conical surface under steady state. Compute the angle of 
deviation of  the rod from the vertical, and the reaction force at 
the support.

3. A uniform cylinder of radius R and mass M is spinning with an 
angular velocity of Ω about its axis. The cylinder is brought in 
contact with two walls as shown in Fig. 1(a). The coefficient of 
friction between the wall and the cylinder is μ. Compute the 
angular velocity of the cylinder as a function of time.

4.  A disk of radius R and mass M hangs  from a roof by a string, 
as shown in Fig. 1(b). The disk starts to  falls under gravity at 
t = 0. Compute the linear and angular velocity of the disk as a 
function of time.

(a) (b)

T

mg

Figure 1	 (a) Exercise 3;	  (b) Exercise 4.

5.  Under an application of electric field E x̂, a charged ball of 
mass m, radius R, and charge q is rolling without slipping on a 
horizontal slab (motion along x axis). Describe the motion of the 
ball.

6. A ladder is leaning against a frictionless wall and the ground, 
which is also frictionless. The ladder starts to slip downward.

(a)  Obtain an expression for the angular velocity of the 
ladder as a function of time.  

(b) Show that the top of the plank loses contact with the wall 
when it is at two-thirds of its initial height.

7. A disk of mass M and radius R is rigidly attached at the end of 
a rod of length l and mass m, as shown in Fig 16P.4(b). Compute 
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the time period of oscillations for the system. Repeat the 
calculation if the disk is  freely attached, i.e., the disk rotates 
freely about the hinge.

Figure 2: Exercise 7

8. A wooden plank is supported by two rotating rollers that are 
separated by distance a, as shown in Fig. 16P.5. The direction of 
rotation of the rollers are reversed in the two cases.  For both 
cases:

(a) Write down the equations of motion and solve them.

(b) Obtain the equilibrium configuration of the systems.

(c) Determine whether the equilibrium configuration is stable 
or unstable. Compute the period of oscillations for stable 
system (when the displacement is small).

(a) (b)

Figure 3	 Exercise 8.
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