
Chapter 2

Constraints, 
Lagrange’s 
equations



The position of the particle or system follows certain rules due to 
constraints:

Holonomic constraint: f (r1 . r2, . . . rn, t) = 0

Constraints that are not expressible as the above are called 
nonholonomic.

Examples:

Rigid body: ra,b = constant

Rolling without slipping: VCM = ωRCM

particle moving on a circle.

Generalized coordinates: qi with i = 3N − C, where C is the 
number of constraints.

	 ra = ra(qi)

Note that qi, ·qi are independent variables.

	

1. Principle of Virtual work

System under equilibrium: 

The total force on each particle fa = 0

Virtual displacement δra : Arbitrary infinitesimal change in the 
position of the a-th particle keeping the constraints. This is called 
virtual displacement.

Therefore, the sum of virtual work is zero:

	  ∑
a

fa ⋅ δra = 0

Note that fa = fa,ext + fa,int.

We choose δra such that

	 ∑
a

fa,int ⋅ δra = 0,
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then 

	 ∑
a

fa,ext ⋅ δra = 0.

This is the principle of virtual work.

Example: A plank resting agains at a wall. The bottom surface is 
frictional with the friction force = f.

y

f

mg

N1

N2

x

y

x

Virtual displacement: δθ. 

The internal forces between the molecules of the plank does not 
do any work under displacement δθ.  

The normal forces do no work.

Work done by the frictional force:

	 W1 = fd x = f lδ(sin θ) = f l cos θδθ

Work done by mg:

	 W2 = mgδy = mg(l /2)δ(cos θ) = − mg(l /2)sin θδθ

Using principle of virtual work: W1 + W2 = 0.

Therefore tan θ = 2f
mg

.

2. D’Alembert’s Principle

For dynamics

	 fa = ·pa

Hence

	 ∑
a

(fa − ·pa) ⋅ δra = 0.
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Again choose δra such that the virtual work done by the internal 
forces is zero. Hence

	 ∑
a

(fa,ext − ·pa) ⋅ δra = 0

Now some algebra:

[1.1]	 ∑
a,i

fa,ext,iδra,i = − ∑
a,i, j

∂U
∂ra,ext,i

∂ra,i
∂qj

δqj = − ∑
j

∂U
∂qj

δqj

	 ∑
a,i

ma
·va,iδra,i = ∑

a,i, j
ma

·va,i
∂ra,i, j

∂qj
δqj

	 	 = ∑
j

ma
d
dt ∑

a,i
va,i

∂ra,i
∂qj

− mava,i
d
dt [

∂ra,i
∂qj ] δqj

Note: ·ra,i =
dra,i
dt

= ∑
j

∂ra,i
∂qj

·qj +
∂ra,i
∂t

Hence, 
∂ra,i
∂qj

=
∂ ·ra,i
∂ ·qj

	 d
dt [

∂ra,i
∂qj ] = ∑

k

∂2ra,i
∂qj∂ ·qk

·qk +
∂2ra,i
∂qj∂t

=
∂ ·ra,i
∂qj

	

substitution of which in the above yields

[1.2]	 ∑
a,i

m ·va,iδra,i = ∑
j

d
dt [ ∂T

∂ ·qj ] − ∂T
∂qj

δqj

where 

	 T = ∑
1
2 mv2

a,i	

is the kinetic energy of the system. The displacement δqj is 
arbitrary.  Therefore, using Eqs. [1.1, 1.2] we obtain

	 d
dt [ ∂T

∂qj ] − ∂T
∂qj

= ∂U
∂qj

Typically, ∂U/∂ ·qj = 0. Then

	 d
dt [ ∂L

∂qj ] − ∂L
∂qj

= 0

where L=T-U is the Lagrangian of the system.

Advantages of the Lagrangian formalism 

No need to worry about constraint forces, simpler

Analytical, For example, Mécanique analytique by Lagrange does 
not have a single figure.
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Examples:

(1) a free particle

(2) a particle in 2D

(2) Consider the plank discussed before.  Let us assume the 
ground surface to be frictionless. 

	 Generalized coordinate = θ

The KE = T = 1
2 m( ·x2 + ·y2) + 1

2
1
12 ml2 ·θ2 = 1

6 ml2 ·θ2

The potential energy U = mgy = 1
2 mgl sin θ

The Lagrangian L = T − U

The equation of motion yields

	 ··θ = 3
2 sin θ

(3) Construct Lagrangian for a cylinder rolling down an incline.

	

Exercises:

(1) A particle is sliding on a uniformly rotating wire.  Write down 
the Lagrangian of the particle.  Derive its equation of motion.

(2) Verify D’Alembert’s principle for a block of mass M sliding 
down a wedge with an angle of θ. 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Chapter 3

Principle of 
Least Action



Function of functions

	 L = L(q, ·q, t)

L  is a function of q(t), which itself is a function of t.

Objective: 

Extremize action

	  S = ∫
t2

t1
L(q, ·q, t)dt

with the ends fixed at (t1, q1) and (t2, q2).  

q1

q2

t1 t2

We will derive an equation for the required function q(t) that 
extremizes the action.  We will compute action for another 
function

	 q(t, α) = q(t,0) + αη

where αη is the deviation from the required function.  Here α is a 
number and  η(q, ·q, t). The change in action due to the above is

	 δS = ∫
t2

t1
[δL(q, ·q, t)]dt = ∫

t2

t1
[ ∂L

∂q
αη + ∂L

∂ ·q α ·η + HOT] dt

where HOT stands for the higher order terms.  For extremization, 
we take the limit α → 0 (ignore HOT).  An integration by parts 
yields

	 ∫
t2

t1
[ ∂L

∂ ·q α ·η] dt = [ ∂L
∂ ·q αη]

t2

t1

− ∫
t2

t1 [ d
dt ( ∂L

∂ ·q )] αηdt

The variation of q at the ends must vanish, that is η=0 at the 
ends. Hence, the boundary term vanishes.  Therefore,

Section 1
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	 δS = ∫
t2

t1 [ ∂L
∂q

− d
dt ( ∂L

∂ ·q )] αηdt

Since η is arbitrary, 

	 d
dt ( ∂L

∂ ·q ) = ∂L
∂q

Note: The following Lagrangian 

	 L′�(q, ·q, t) = L(q, ·q, t) + d
dt

f (q, t)

yields the same equation of motion.

Proof (a): S′� = ∫
t2

t1
L′�(q, ·q, t)dt = ∫

t2

t1
L(q, ·q, t)dt + ∫

t2

t1

d f
dt

dt

	 	 = S + f (q2, t2) − f (q1, t1)

Hence, δS′� = δS.  QED

Proof (b): 

d
dt

f = ∂f
∂q

·q + ∂f
∂t

Hence 

	 ∂
∂ ·q ( d f

dt ) = ∂f
∂q

Therefore,

	 d
dt ( ∂

∂ ·q
d f
dt ) = ∂2f

∂q2
·q + ∂2f

∂q∂t

and 

	 ∂
∂q ( d f

dt ) = ∂2f
∂q2

·q + ∂2f
∂q∂t

Hence the additional terms cancel each other. Q.E.D.

NOTE: On many occasions, the dependent variable is x rather 
than time. On those cases, we replace ·q by q′�.

For Multi Variables

Here the generalized variables are qi’s. Hence

	 L = L(qi, ·qi, t)

For this case, qi(t, α) = qi(t,0) + αηi. Hence Eq. () becomes

	

δS = ∫
t2

t1
[δL(qi, ·qi, t)]dt = ∫

t2

t1
∑

i { ∂L
∂qi

αηi + ∂L
∂ ·qi

α ·ηi} + HOT dt
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	 δS = ∫
t2

t1
∑

i

∂L
∂qi

− d
dt ( ∂L

∂ ·qi ) αηidt

Since it is valid for arbitrary ηi, we obtain

	 d
dt ( ∂L

∂ ·qi ) = ∂L
∂qi

Beltrami Identity

If L is not an explicit function of time t, then

	 L − ∑
i

·qi
∂L
∂ ·qi

= const

Proof: 

	 LHS = dL
dt

− ∑
i

d
dt (qi

∂L
∂ ·qi )

	 	 = ∂L
∂t

+ ∑
i

∂L
∂qi

·qi + ∂L
∂ ·qi

··qi − ··qi
∂L
∂ ·qi

− ·qi
d
dt

∂L
∂ ·qi

	 	 = 0

Here we have used the equation of motion.

	 	

Examples:

(1) Minimize the distance between two points in 3D:

	 D = ∫
2

1
1 + ( dy

d x )
2

+ ( dz
d x )

2
d x

x: independent variable

y,z: Dependent variables

L = 1 + ( dy
d x )

2
+ ( dz

d x )
2

Since ∂L
∂y

= ∂L
∂z

= 0,

	 ∂L
∂y′� = C1 and ∂L

∂z′� = C2

Therefore,

	 y′�2

1 + y′�2 + z′�2 = C2
1    and  z′�2

1 + y′�2 + z′�2 = C2
2

Hence, y′�2 + z′�2 =  constant. Therefore, y′� and z′� are constants. 
Hence, the particle moves on a straight line.

(2) Minimize the time of descent between two points in a 
gravitational field:
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x

y

B

A

	 T = ∫
B

A

ds
v

= ∫
B

A

1 + y′ �2

2gx
d x

Hence, the Lagrangian is

	 L = 1 + y′�2

x

Since ∂L /∂y = 0,  ∂L /∂y′ � = C, a constant, which yields

	 y′�2

x(1 + y′�2) = C.

Hence

	 y′� = Cx
1 − Cx

.

A substitution of Cx = sin2 θ yields y′� = tan θ. Therefore,

	 d x
dθ

= sin 2θ
C

 and dy
dθ

= 1 − cos 2θ
C

,

whose parametric solution with initial condition (x=0, y=0) is

	 x = A(1 − cos ϕ) and y = A(ϕ − sin ϕ)

where ϕ = 2θ.  The above is an equation of cycloid.

                

Note: We chose the vertical axis as x, so that L is independent of 
y. It helps simplify the solution. If we interchanged the axes, the 
time will be

	 T = ∫
B

A

ds
v

= ∫
B

A

1 + y′�2

2gy
d x.
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Hence the Lagrangian will be

	 L = 1 + y′�2

y

Using Beltrami identity, we obtain

	 L − ·q ∂L
∂ ·q = 1

y(1 + y′ �2)
= C

Therefore,

	 y′� = C − y
y

,

whose solution is same as before except the change of axis.

Extremization under constraints
Detour to Lagrange multiplier

We illustrate using an example.  Suppose we want to Extremize 
f (x, y) under the constraint that g(x, y) = c.  The constraint would 
make  f (x, y) a function of single variable (say x) that can be 
maximized using the standard method.  However solving a 
constraint equation could be tricky.  Also, this method is not 
convenient when we have more constraints and variables.  

Lagrange proposed an alternative.  He suggests that the variables  
x, y and a new variable λ be made independent. Idea is to look for 
a contour of f (x, y) that is tangent to  the g(x, y) = c curve.  See 
figure below.

From Wikipedia 

The intersection point is the desired extremum point. Here

	 ∇f (x, y) = − λ∇g(x, y) and g(x, y) = c.

The above equations can be derived by extremizing 

	 F(x, y, λ) = f (x, y) + λ[g(x, y) − c] 

wrt x, y, λ that yields

	 fx = λgx

	 fy = λgy
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	 g(x, y) = c

Example:

(1) Find minimum of the function x2 + y2 under the constraint that 
y − x − 1 = 0.

Solution: We minimize the function

	 F = (x2 + y2) + λ(y − x − 1)

By taking derivatives wrt x, y, λ we obtain

	 2x − λ = 0; 2y + λ = 0; y = x + 1

whose solution is y = 1/2,x = − 1/2,λ = − 1/2.

Application to variation calculus

Extremize functions under constraints variationally.

We illustrate using an example.

(1) Parametric curve

	 x = x(t), y = y(t)

We return to the original point, but with a constant perimeter. That 
is, x(t1) = x(t2) = x0 and  y(t1) = y(t2) = y0. We want to know a 
function that yields maximum area.

	 S = 1
2 ∫

t2

t1
(x ·y − y ·x)dt

under the constraint that

	 I = ∫
t2

t1
( ·x2 + ·y2)dt

Hence we extremize

	 L = 1
2 (x ·y − y ·x) + λ ·x2 + ·y2

which yields

	 1
2

·y − d
dt (− 1

2 y + λ ·x
·x2 + ·y2 ) = 0

	 − 1
2

·x − d
dt ( 1

2 x + λ ·y
·x2 + ·y2 ) = 0

that yields

	 y − λ ·x
·x2 + ·y2

= C1; x + λ ·y
·x2 + ·y2

= C2

which yields

	 (x − C1)2 + (y − C2)2 = λ2
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which is an equation of a circle.  The parameter λ is determined 
by the perimeter of the circle.

Exercises:

(1) A rope of linear density γ and length L is hanging by two 
supports that are located horizontally 2a apart. Assuming 
equilibrium position for the rope, compute its equation. 

(2) On a sphere, the great arc is defined as the curves that 
minimizes the distance travelled between the given two points. 
Compute the equation of a great arc.

(3) Analyze the variational problems corresponding to the 
following functionals. In each case take y(0) = 0 and y(1) = 1.

(a) ∫
1

0
y′�2d x

(b) ∫
1

0
yy′�d x

(c) ∫
1

0
xyy′�d x

(4) Consider the functional 

	 S[y] = ∫
b

a
(Py′�2 + Qy2)d x

Find the extrema of the above subject to the condition that 

	 ∫
b

a
y2d x = 1

The resulting equation is called Sturm-Liouville problem.  Relate 
this equation to the Schrodinger’s equation.
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