### **Chapter 2**

# Constraints, Lagrange's equations

# Constraints

The position of the particle or system follows certain rules due to constraints:

Holonomic constraint:  $f(\mathbf{r}_1 \cdot \mathbf{r}_2, \dots \mathbf{r}_n, t) = 0$ 

Constraints that are not expressible as the above are called nonholonomic.

Examples:

Rigid body:  $r_{a,b}$  = constant

Rolling without slipping:  $V_{CM} = \omega R_{CM}$ 

particle moving on a circle.

Generalized coordinates:  $q_i$  with i = 3N - C, where *C* is the number of constraints.

 $\mathbf{r}_a = \mathbf{r}_a(q_i)$ 

Note that  $q_i$ ,  $\dot{q}_i$  are independent variables.

## **1. Principle of Virtual work**

System under equilibrium:

The total force on each particle  $\mathbf{f}_a = 0$ 

Virtual displacement  $\delta \mathbf{r}_a$ : Arbitrary infinitesimal change in the position of the *a*-th particle keeping the constraints. This is called virtual displacement.

Therefore, the sum of virtual work is zero:

$$\sum_{a} \mathbf{f}_{a} \cdot \delta \mathbf{r}_{a} = 0$$

Note that  $\mathbf{f}_a = \mathbf{f}_{a,\text{ext}} + \mathbf{f}_{a,\text{int}}$ .

We choose  $\delta \mathbf{r}_a$  such that

$$\sum_{a} \mathbf{f}_{a,int} \cdot \delta \mathbf{r}_{a} = 0$$

then

$$\sum_{a} \mathbf{f}_{a,ext} \cdot \delta \mathbf{r}_{a} = 0.$$

This is the principle of virtual work.

Example: A plank resting agains at a wall. The bottom surface is frictional with the friction force = f.



Virtual displacement: δθ.

The internal forces between the molecules of the plank does not do any work under displacement  $\delta\theta$ .

The normal forces do no work.

Work done by the frictional force:

 $W_1 = fdx = fl\delta(\sin\theta) = fl\cos\theta\delta\theta$ 

Work done by mg:

 $W_2 = mg\delta y = mg(l/2)\delta(\cos\theta) = -mg(l/2)\sin\theta\delta\theta$ 

Using principle of virtual work:  $W_1 + W_2 = 0$ .

Therefore  $\tan \theta = \frac{2f}{mg}$ .

## 2. D'Alembert's Principle

For dynamics

 $\mathbf{f}_a = \dot{\mathbf{p}}_a$ 

Hence

$$\sum_{a} \left( \mathbf{f}_{a} - \dot{\mathbf{p}}_{a} \right) \cdot \delta \mathbf{r}_{a} = 0.$$

Again choose  $\delta \mathbf{r}_a$  such that the virtual work done by the internal forces is zero. Hence

$$\sum_{a} \left( \mathbf{f}_{a,ext} - \dot{\mathbf{p}}_{a} \right) \cdot \delta \mathbf{r}_{a} = 0$$

Now some algebra:

$$[1.1] \quad \sum_{a,i} f_{a,ext,i} \delta r_{a,i} = -\sum_{a,i,j} \frac{\partial U}{\partial r_{a,ext,i}} \frac{\partial r_{a,i}}{\partial q_j} \delta q_j = -\sum_j \frac{\partial U}{\partial q_j} \delta q_j$$

$$\sum_{a,i} m_a \dot{v}_{a,i} \delta r_{a,i} = \sum_{a,i,j} m_a \dot{v}_{a,i} \frac{\partial r_{a,i,j}}{\partial q_j} \delta q_j$$
$$= \sum_j \left\{ m_a \frac{d}{dt} \left[ \sum_{a,i} v_{a,i} \frac{\partial r_{a,i}}{\partial q_j} \right] - m_a v_{a,i} \frac{d}{dt} \left[ \frac{\partial r_{a,i}}{\partial q_j} \right] \right\} \delta q_j$$

Note: 
$$\dot{r}_{a,i} = \frac{dr_{a,i}}{dt} = \sum_{j} \frac{\partial r_{a,i}}{\partial q_j} \dot{q}_j + \frac{\partial r_{a,i}}{\partial t}$$

Hence, 
$$\frac{\partial r_{a,i}}{\partial q_j} = \frac{\partial \dot{r}_{a,i}}{\partial \dot{q}_j}$$

$$\frac{d}{dt} \left[ \frac{\partial r_{a,i}}{\partial q_j} \right] = \sum_k \frac{\partial^2 r_{a,i}}{\partial q_j \partial \dot{q}_k} \dot{q}_k + \frac{\partial^2 r_{a,i}}{\partial q_j \partial t} = \frac{\partial \dot{r}_{a,i}}{\partial q_j}$$

substitution of which in the above yields

$$[1.2] \quad \sum_{a,i} m \dot{v}_{a,i} \delta r_{a,i} = \sum_{j} \left\{ \frac{d}{dt} \left[ \frac{\partial T}{\partial \dot{q}_j} \right] - \frac{\partial T}{\partial q_j} \right\} \delta q_j$$

where

$$T = \sum \frac{1}{2} m v_{a,i}^2$$

is the kinetic energy of the system. The displacement  $\delta q_j$  is arbitrary. Therefore, using Eqs. [1.1, 1.2] we obtain

$$\frac{d}{dt} \left[ \frac{\partial T}{\partial q_j} \right] - \frac{\partial T}{\partial q_j} = \frac{\partial U}{\partial q_j}$$

Typically,  $\partial U/\partial \dot{q}_j = 0$ . Then

$$\frac{d}{dt} \left[ \frac{\partial L}{\partial q_j} \right] - \frac{\partial L}{\partial q_j} = 0$$

where L=T-U is the Lagrangian of the system.

### Advantages of the Lagrangian formalism

No need to worry about constraint forces, simpler

Analytical, For example, Mécanique analytique by Lagrange does not have a single figure.

Examples:

(1) a free particle

(2) a particle in 2D

(2) Consider the plank discussed before. Let us assume the ground surface to be frictionless.

Generalized coordinate =  $\theta$ 

The KE = 
$$T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}\frac{1}{12}ml^2\dot{\theta}^2 = \frac{1}{6}ml^2\dot{\theta}^2$$

The potential energy 
$$U = mgy = \frac{1}{2}mgl\sin\theta$$

The Lagrangian L = T - U

The equation of motion yields

$$\ddot{\theta} = \frac{3}{2}\sin\theta$$

(3) Construct Lagrangian for a cylinder rolling down an incline.

Exercises:

(1) A particle is sliding on a uniformly rotating wire. Write down the Lagrangian of the particle. Derive its equation of motion.

(2) Verify D'Alembert's principle for a block of mass M sliding down a wedge with an angle of  $\theta$ .

## **Chapter 3**

# Principle of Least Action

# **Variational Calculus**

Function of functions

 $L = L(q, \dot{q}, t)$ 

L is a function of q(t), which itself is a function of t.

Objective:

Extremize action

$$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$

with the ends fixed at  $(t_1, q_1)$  and  $(t_2, q_2)$ .



We will derive an equation for the required function q(t) that extremizes the action. We will compute action for another function

$$q(t,\alpha) = q(t,0) + \alpha \eta$$

where  $\alpha \eta$  is the deviation from the required function. Here  $\alpha$  is a number and  $\eta(q, \dot{q}, t)$ . The change in action due to the above is

$$\delta S = \int_{t_1}^{t_2} [\delta L(q, \dot{q}, t)] dt = \int_{t_1}^{t_2} \left[ \frac{\partial L}{\partial q} \alpha \eta + \frac{\partial L}{\partial \dot{q}} \alpha \dot{\eta} + HOT \right] dt$$

where *HOT* stands for the higher order terms. For extremization, we take the limit  $\alpha \rightarrow 0$  (ignore HOT). An integration by parts yields

$$\int_{t_1}^{t_2} \left[ \frac{\partial L}{\partial \dot{q}} \alpha \dot{\eta} \right] dt = \left[ \frac{\partial L}{\partial \dot{q}} \alpha \eta \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} \left[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) \right] \alpha \eta dt$$

The variation of q at the ends must vanish, that is  $\eta=0$  at the ends. Hence, the boundary term vanishes. Therefore,

$$\delta S = \int_{t_1}^{t_2} \left[ \frac{\partial L}{\partial q} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) \right] \alpha \eta dt$$

Since  $\eta$  is arbitrary,

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) = \frac{\partial L}{\partial q}$$

Note: The following Lagrangian

$$L'(q, \dot{q}, t) = L(q, \dot{q}, t) + \frac{d}{dt}f(q, t)$$

yields the same equation of motion.

Proof (a): 
$$S' = \int_{t_1}^{t_2} L'(q, \dot{q}, t) dt = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt + \int_{t_1}^{t_2} \frac{df}{dt} dt$$

$$= S + f(q_2, t_2) - f(q_1, t_1)$$

Hence,  $\delta S' = \delta S$ . QED

Proof (b):

$$\frac{d}{dt}f = \frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}$$

Hence

$$\frac{\partial}{\partial \dot{q}} \left( \frac{df}{dt} \right) = \frac{\partial f}{\partial q}$$

Therefore,

$$\frac{d}{dt}\left(\frac{\partial}{\partial \dot{q}}\frac{df}{dt}\right) = \frac{\partial^2 f}{\partial q^2}\dot{q} + \frac{\partial^2 f}{\partial q\partial t}$$

and

$$\frac{\partial}{\partial q} \left( \frac{df}{dt} \right) = \frac{\partial^2 f}{\partial q^2} \dot{q} + \frac{\partial^2 f}{\partial q \partial t}$$

Hence the additional terms cancel each other. Q.E.D.

**NOTE**: On many occasions, the dependent variable is *x* rather than time. On those cases, we replace  $\dot{q}$  by q'.

## For Multi Variables

Here the generalized variables are  $q_i$ 's. Hence

$$L = L(q_i, \dot{q}_i, t)$$

For this case,  $q_i(t, \alpha) = q_i(t, 0) + \alpha \eta_i$ . Hence Eq. () becomes

$$\delta S = \int_{t_1}^{t_2} [\delta L(q_i, \dot{q}_i, t)] dt = \int_{t_1}^{t_2} \left[ \sum_i \left\{ \frac{\partial L}{\partial q_i} \alpha \eta_i + \frac{\partial L}{\partial \dot{q}_i} \alpha \dot{\eta}_i \right\} + HOT \right] dt$$

$$\delta S = \int_{t_1}^{t_2} \sum_{i} \left[ \frac{\partial L}{\partial q_i} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) \right] \alpha \eta_i dt$$

Since it is valid for arbitrary  $\eta_i$ , we obtain

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$$

### **Beltrami Identity**

If *L* is not an explicit function of time *t*, then

$$L - \sum_{i} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}} = \text{const}$$

Proof:

$$-HS = \frac{dL}{dt} - \sum_{i} \frac{d}{dt} \left( q_{i} \frac{\partial L}{\partial \dot{q}_{i}} \right)$$
$$= \frac{\partial L}{\partial t} + \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i} - \ddot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}} - \dot{q}_{i} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{i}}$$
$$= 0$$

Here we have used the equation of motion.

#### **Examples:**

(1) Minimize the distance between two points in 3D:

$$D = \int_{1}^{2} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} + \left(\frac{dz}{dx}\right)^{2}} dx$$

x: independent variable

y,z: Dependent variables

$$L = \sqrt{1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{dz}{dx}\right)^2}$$

Since 
$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} = 0$$
,  
 $\frac{\partial L}{\partial y'} = C_1$  and  $\frac{\partial L}{\partial z'} = C_2$ 

Therefore,

$$\frac{y^2}{1+y^2+z^2} = C_1^2$$
 and  $\frac{z^2}{1+y^2+z^2} = C_2^2$ 

Hence,  $y'^2 + z'^2 = \text{constant}$ . Therefore, y' and z' are constants. Hence, the particle moves on a straight line.

(2) Minimize the time of descent between two points in a gravitational field:



A substitution of  $Cx = \sin^2 \theta$  yields  $y' = \tan \theta$ . Therefore,

$$\frac{dx}{d\theta} = \frac{\sin 2\theta}{C}$$
 and  $\frac{dy}{d\theta} = \frac{1 - \cos 2\theta}{C}$ ,

whose parametric solution with initial condition (x=0, y=0) is

$$x = A(1 - \cos \phi)$$
 and  $y = A(\phi - \sin \phi)$ 

where  $\phi = 2\theta$ . The above is an equation of cycloid.



Note: We chose the vertical axis as *x*, so that *L* is independent of *y*. It helps simplify the solution. If we interchanged the axes, the time will be

$$T = \int_{A}^{B} \frac{ds}{v} = \int_{A}^{B} \frac{\sqrt{1 + y^{2}}}{\sqrt{2gy}} dx.$$



$$T = \int_{A}^{B} \frac{ds}{v} = \int_{A}^{B} \frac{\sqrt{1 + y^{2}}}{\sqrt{2gx}} dx$$

Hence, the Lagrangian is

$$L = \sqrt{\frac{1 + y^2}{x}}$$

Since  $\partial L/\partial y = 0$ ,  $\partial L/\partial y' = \sqrt{C}$ , a constant, which yields

$$\frac{y^2}{x(1+y^2)} = C.$$

Hence

Hence the Lagrangian will be

$$L = \sqrt{\frac{1 + y^2}{y}}$$

Using Beltrami identity, we obtain

$$L - \dot{q}\frac{\partial L}{\partial \dot{q}} = \frac{1}{\sqrt{y(1 + y^2)}} = C$$

Therefore,

$$y' = \sqrt{\frac{C - y}{y}},$$

whose solution is same as before except the change of axis.

### **Extremization under constraints** Detour to Lagrange multiplier

We illustrate using an example. Suppose we want to Extremize f(x, y) under the constraint that g(x, y) = c. The constraint would make f(x, y) a function of single variable (say *x*) that can be maximized using the standard method. However solving a constraint equation could be tricky. Also, this method is not convenient when we have more constraints and variables.

Lagrange proposed an alternative. He suggests that the variables x, y and a new variable  $\lambda$  be made independent. Idea is to look for a contour of f(x, y) that is tangent to the g(x, y) = c curve. See figure below.



From Wikipedia

The intersection point is the desired extremum point. Here

$$\nabla f(x, y) = -\lambda \nabla g(x, y)$$
 and  $g(x, y) = c$ .

The above equations can be derived by extremizing

$$F(x, y, \lambda) = f(x, y) + \lambda[g(x, y) - c]$$

wrt  $x, y, \lambda$  that yields

$$f_x = \lambda g_x$$
$$f_y = \lambda g_y$$

$$g(x, y) = c$$

Example:

(1) Find minimum of the function  $x^2 + y^2$  under the constraint that y - x - 1 = 0.

Solution: We minimize the function

 $F = (x^{2} + y^{2}) + \lambda(y - x - 1)$ 

By taking derivatives wrt  $x, y, \lambda$  we obtain

 $2x - \lambda = 0; 2y + \lambda = 0; y = x + 1$ 

whose solution is  $y = 1/2, x = -1/2, \lambda = -1/2$ .

#### Application to variation calculus

Extremize functions under constraints variationally.

We illustrate using an example.

(1) Parametric curve

x = x(t), y = y(t)

We return to the original point, but with a constant perimeter. That is,  $x(t_1) = x(t_2) = x_0$  and  $y(t_1) = y(t_2) = y_0$ . We want to know a function that yields maximum area.

$$S = \frac{1}{2} \int_{t_1}^{t_2} (x \dot{y} - y \dot{x}) dt$$

under the constraint that

$$I = \int_{t_1}^{t_2} (\dot{x}^2 + \dot{y}^2) dt$$

Hence we extremize

$$L = \frac{1}{2}(x\dot{y} - y\dot{x}) + \lambda\sqrt{\dot{x}^2 + \dot{y}^2}$$

which yields

$$\frac{1}{2}\dot{y} - \frac{d}{dt}\left(-\frac{1}{2}y + \frac{\lambda\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}}\right) = 0$$

$$-\frac{1}{2}\dot{x} - \frac{d}{dt}\left(\frac{1}{2}x + \frac{\lambda\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}}\right) = 0$$

that yields

$$y - \frac{\lambda \dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = C_1; x + \frac{\lambda \dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = C_2$$

which yields

$$(x - C_1)^2 + (y - C_2)^2 = \lambda^2$$

which is an equation of a circle. The parameter  $\lambda$  is determined by the perimeter of the circle.

### Exercises:

(1) A rope of linear density  $\gamma$  and length L is hanging by two supports that are located horizontally 2a apart. Assuming equilibrium position for the rope, compute its equation.

(2) On a sphere, the great arc is defined as the curves that minimizes the distance travelled between the given two points.Compute the equation of a great arc.

(3) Analyze the variational problems corresponding to the following functionals. In each case take y(0) = 0 and y(1) = 1.

(a) 
$$\int_{0}^{1} y'^{2} dx$$
  
(b) 
$$\int_{0}^{1} yy' dx$$
  
(c) 
$$\int_{0}^{1} xyy' dx$$

(4) Consider the functional

$$S[y] = \int_{a}^{b} (Py^{2} + Qy^{2})dx$$

Find the extrema of the above subject to the condition that

$$\int_{a}^{b} y^{2} dx = 1$$

The resulting equation is called *Sturm-Liouville problem*. Relate this equation to the Schrodinger's equation.