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A B S T R A C T

This paper presents an improved chip thickness model for serrated end mills that accounts for the actual
trochoidal path traced by the tooth. The model includes the influence of radial run-out on teeth. We also
present a method to infer radial run-out on serrated tools using a combination of measurements and
scanned geometry of the serration profiles. We present results for cutters with serrations of the
trapezoidal and circular kinds. We observe differences in chip thickness and cutting forces evaluated
using the proposed model and with those evaluated using a circular tool path approximation to increase
with feed and radial engagements. However, the differences are negligible, being at most 2%, suggesting
that the circular chip thickness model is indeed a reasonable approximation for predicting cutting
forces with serrated cutters. Experiments confirm predictions. For run-outs of the order of feed, i.e., 0.02–
0.05 mm/tooth/rev, or less, we find that cutting force profiles and levels are not significantly altered. The
resultant force with moderate levels of run-out included in the model is at most 1% different than the case
without run-out, suggesting that serrated cutters may be used even with moderate levels of run-outs
when the feed is low. Results can instruct the design and use of serrated cutters that reduce forces and
make easier the high-performance machining of difficult-to-cut materials across industries.
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Introduction

Chip thickness and force models are a function of the path
traced by the milling cutter, which in reality is that of an arc of a
trochoid, and not circular, as has been customarily assumed. What
role, if any, does this trochoidal path play in chip thickness models
for serrated cutters is less understood. Understanding this is
important in the case of serrated cutters, since serrations along the
cutting edges change the local radius. This change results in a
continuously varying non-uniform chip thickness that may result
in the apparent depth of cut to be less than the actual depth of cut –

which contributes to a reduction in cutting forces for cutting with
serrated tools.

To instruct the design of better serrated cutters that can further
reduce forces and make easier the high-performance machining of
difficult-to-cut materials across industries, it is hence necessary to
understand the influence of the real path traced by the cutting
edge. This is the main focus of this paper. Further, what role, if any,
does any potential run-out on the serrated cutter have on the chip
thickness/force model, is also less understood, and will also be
addressed in this paper.
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Seminal early work on milling processes by Martellotti [1,2] had
showed that due to a combination of the translational motion of
the cutter/workpiece and the rotary motion of tool, the path traced
by the tooth is that of a trochoid, and that this results in the local
tooth geometry, chip thickness, and force to continuously change
with position and the radius of curvature of the tooth path. Later
developments that considered trochoidal paths improved upon
chip thickness models to make them implementation friendly
[3,4]. Further improvements were proposed in [5,6] that also
modelled the change in chip thickness for variable pitch cutters
with run-outs [7]. Others extended modelling with trochoidal tool
paths to ball end milling [8], and to also the case of dynamically
predicting surface topographies for milling of flexible parts [9,10].

The literature addressing the influence of trochoidal chip
thickness in milling has focused only on regular end mills, wherein
it was reported that during normal milling the feed rate used is
very low with respect to local radius of the tool, and hence
trochoidal chip thickness does not have any significant effect in the
predicted forces with respect to conventional circular chip
thickness, except for the case of micro-milling operations [11].
How, if, at all, the actual trochoidal tooth path changes the chip
thickness and forces for serrated end mills, is yet unknown.

Research on modelling serrated end mill geometry has all
assumed the tooth path to be approximately circular. The work was
concerned with either explaining the reduced contact between the
odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Fig. 1. (a) Geometry of the serrated cutter with run-out (b) Cross-sectional view at
height z with run-out.
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tool and the workpiece as the reason for reducing cutting forces
[12], or with presenting good generalized mechanics based
geometric models for serrated cutters that could explain the
change in local radius and the variation of local tool angles along
the serration profiles [13–18], or with optimizing serration profiles
for reducing forces [19,20]. Earlier work on serrated end milling did
not consider the actual trochoidal tooth path, nor did it include the
influence of run-out on chip thickness models for serrated cutters,
even with circular tooth path approximations.

Run-out, though undesirable, is invariably present on tools. Its
presence changes the nature of local chip thickness and forces
which contributes to premature tool wear and breakage. Modelling
its influence on regular tools has hence received some attention,
with a focus on understanding its effect on force profiles in end
mills [7] and face mills [21], or on its influence on cutting force
coefficient identification [22] and surface topographies [23,24], or
even in five-axis milling processes [25]. Studies [26,27] have
also investigated the adverse influences of run-out on the dynamic
displacements during ball-end milling of inclined surfaces. Under-
standing, how, if, at all, the run-out changes the local chip
thickness and force profiles for serrated cutters with trochoidal
and/or circular tooth paths remains unaddressed.

Since serrated cutters preferentially reduce cutting forces, the
influence of trochoidal chip thickness on cutting forces, and the
influence of run-out on force profiles, needs to be understood
comprehensively based on systematic model based investigations,
and is the main motivation of the present work. We limit our
discussions in this paper to serrations only of the trapezoidal and
circular kind. We ignore axial run-out, and assume that only radial
run-out exists on serrated tools. Measuring run-out on regular end
mills is possible, and has been reported elsewhere, see for example
[28–30]. However, measuring run-out on serrated cutters due to
the constantly changing radius along the serration is non-trivial,
which is addressed in our paper.

At first, we present an expanded geometric model for serrated
cutters including run-out. Thereafter, the trochoidal chip thickness
model with run-out is presented, following with the force model is
discussed. After which, we systematically investigate the differ-
ence between conventional circular chip thickness and the actual
trochoidal chip thickness, and the corresponding differences in
cutting forces. We present results with and without run-out for a
wide range of cutting operating parameters. The procedure for
measurement of run-out parameters for serrated cutters is also
explained. Following which, experimental validation is presented,
followed by the main conclusions.

Geometric model of serrated cutter

This section describes the geometry of serrated cutters that
lead to a preferential reduction in cutting forces. At first, local
geometries are defined considering the influence of run-out,
followed by describing a generalized method to model serrations,
followed by discussions on multiple delays caused by serrations.
Models described here are based on the classic work done by
Merdol and Altintas [15] and Dombovari et al. [16] and also on our
own earlier reported work [31,32].

Defining local radius and geometry

A schematic, and a cross-sectional view of a serrated cutter with
run-out is shown in Fig. 1. Due to the run-out, cutter geometrical
centre, denoted by Og deviates from spindle rotation centre, by a
constant radial deviation, m. The run-out angle between the
direction of radial offset (deviation) and the nearest tooth at the
bottom of the tool is denoted by d. We assume that there is no axial
run-out or any cutter geometric axis tilt, i.e. m is constant along the
Please cite this article in press as: P. Bari, et al., Improved chip thickness m
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cutter height. Due to the run-out, since the whole system rotates
about the spindle axis through O, it is convenient to model all
things with respect to O, and hence the xyz coordinate frame is
attached to the tool at O as shown in Fig. 1a. xyz is a non-rotating
body fixed co-ordinate system moving along with the tool in the x-
direction at a feed of f mm/tooth/rev with respect to the global
inertial frame XYZ.

The cutter can have N number of flutes (teeth), but as an
example, only three (ith, (i + 1)th and (i + l)th) flutes are shown in
Fig.1. Serrations change the local geometrical radius along the flute
and the height. The local geometrical radius Rg

i zð Þ, measured with
respect to the geometrical axis (dashed line through Og shown in
Fig. 1a), is parallel to the z-axis for the ith flute at the height z, and is
defined as:

Rg
i zð Þ ¼ D

2
� DRg

i zð Þ; ð1Þ

wherein D is shank diameter of the cutter, and DRg
i zð Þ is the

variation in local radius. Geometry is to be measured with respect
to the spindle rotational axis that does not align with the cutter's
geometrical axis due to eccentricity between them caused by the
run-out. Due to the run-out, we define another local radius called
the rotational radius with respect to the z-axis through O as
follows:

Ri zð Þ ¼ m þ Rg
i zð Þcos d �

Xi�1

k¼1

’g
p;k �

2ztanh
D

  !  !2
2
4

þ Rg
i zð Þsin d �

Xi�1

k¼1

’g
p;k �

2ztanh
D

  !  !2
3
5
0:5 ; ð2Þ
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wherein ’g
p;i zð Þ, the pitch angle, is the angle between the ith and the

(i + 1)th flute in the x � y plane, and hi zð Þ is the helix angle. When
the run-out is low with respect to geometrical radius, i.e.,
m � Rg

i zð Þ, which is usually the case, Eq. (2) can be linearized to
the following simplified form:

Ri zð Þ ¼ Rg
i zð Þ þ m cos d �

Xi�1

k¼1

’g
p;k �

2ztanh
D

  !
: ð3Þ

In addition to causing a change in the local radius, run-out also
changes the instantaneous radial immersion angle. The angular
position for the ith flute at height z, measured clockwise from the y
axis in the x � y plane considering the run-out, called the
instantaneous radial immersion angle, is calculated as follows:

’i z; tð Þ ¼ Vt þ
Xi�1

k¼1

’p;k �
2ztanh

D
; ð4Þ

wherein V is the clockwise spindle speed (rad/s) and ’p,i is the
new pitch angle with respect to O due to the run-out. The
relationship between the new pitch angle ’p,i with respect to O
and the geometrical pitch angle ’g

p;i with respect to Og is shown in

Fig. 2. From Fig. 2, using the cosine triangle formula, ’p,i is
calculated as follows:

’p;i ¼ cos�1 Ri zð Þð Þ2 þ Riþ1 zð Þð Þ2 � Li zð Þð Þ2
2Ri zð ÞRiþ1 zð Þ ; ð5Þ

wherein Li zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rg
i zð Þ� �2 þ Rg

iþ1 zð Þ
� �2

� 2Rg
i zð ÞRg

iþ1 zð Þcos’g
p;k

r
:

When the tool rotates at a speed V then the position vector
(measured from the origin O) of an element P located in the ith

cutting edge at the height z is defined as:

Ri z; tð Þ ¼ Ri zð Þsin’i z; tð Þ~i þ Ri zð Þcos’i z; tð Þ~j þ z~k; ð6Þ
wherein Ri zð Þ is the local radius in the x � y plane and ’i z; tð Þ is the
angular position of the point P calculated from Eqs. (3) and (4).

Due to the changing local radius, an axial immersion angle (lead
angle) ki zð Þ, which is the angle between the z-axis of the cutter and
the normal vector ni zð Þ to local flute tangent at the point P, as
shown in the Fig. 1b, also forms part of the force computations, and
is expressed by:

cotki zð Þ ¼ dRi zð Þ
dz

: ð7Þ
Fig. 2. Calculation of the new rotational pitch angle, ’p,i due to the run-out on
serrated cutters. 
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Having defined the local radius and geometry, for the sake of
completeness, we now draw attention to modelling different types
of serration profiles.

Defining serration profiles

The variation in local radius DRg
i zð Þ defined in Eq. (1), is

evaluated from an imagined extended outer surface of a cylinder
over the flute portion shown in Fig. 3. DRg

i zð Þ depends on the type
of the serration profile, which can be sinusoidal, trapezoidal,
circular, or of some other form. The two important parameters
describing any serration profile are the amplitude (A) and the
wavelength (l), with the profile repeating with l. There is also a
phase shift (ci) between the starting of the serration profile on
each flute, which can be described as:

ci ¼
Xi�1

k¼1

’p;k; ð8Þ

wherein ’p,k is the pitch angle between the kth and k þ 1ð Þth flute,
and c1 = 0.

As the flutes are inclined to the z-axis by the helix angle, we
define a direction along the tangent of the cutting edge flute called
the s- direction shown in Fig. 3. The parameter s is expressed in
terms of l and z as follows:

s ¼ rem
x
l

� �
; ð9Þ

wherein x ¼ z
coshi zð Þ � lci

2p and χ = χ + l when χ < 0.

As the serration profile is along s direction, the variation of local
radius DRg

i zð Þ defined in Eq. (1) is replaced by an equivalent term
Rs
i sð Þ, where the value of s is calculated corresponding to z values

using Eq. (9). The expression of Rs
i sð Þ for the serration profiles of

interest in this paper, i.e., the trapezoidal and the circular profiles
are discussed next.

Trapezoidal serration profile
The trapezoidal profile is defined as shown in Fig. 4. There is one

upper land of length L1, one lower land of length L2, and two
inclined lands with inclination angles αserr and βserr. The serration
profile also consists of four small arcs of circles of radii R1,R2, R3
and R4.
Fig. 3. Serration profile along s-direction (along the edge of inclined flute).

odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Fig. 4. Schematic of trapezoidal serration profile.

Fig. 5. Schematic of circular serration profile.
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The variation in local radius Rs
i sð Þ for the trapezoidal serration

profile is given by:

if 0 � s < s1;
Rs
i sð Þ ¼ 0

if s1 � s < s2;

Rs
i sð Þ ¼ R1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 � ðs � s1Þ2

q
if s2 � s < s3;

Rs
i sð Þ ¼ R1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 � ðs1 � s2Þ2

q
þ tanaserrðs � s2Þ

if s3 � s < s4;

Rs
i sð Þ ¼ A � R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 � ðs � s4Þ2

q
if s4 � s < s5;
Rs
i sð Þ ¼ A

if s5 � s < s6;

Rs
i sð Þ ¼ A � R3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3 � ðs � s5Þ2

q
if s6 � s < s7;

Rs
i sð Þ ¼ R4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
4 � ðs7 � s8Þ2

q
� tanbserrðs � s7Þ

if s7 � s � s8;

Rs
i sð Þ ¼ R4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
4 � ðs � s8Þ2

q

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð10Þ

wherein

s1 ¼ L1
s2 ¼ s1 þ R1sinaserr
s3 ¼ s2 þ ðA � ðR2 þ R1Þð1 � cosaserrÞÞcotaserr
s4 ¼ s3 þ R2sinaserr
s5 ¼ s4 þ L2
s6 ¼ s5 þ R3sinbserr
s7 ¼ s6 þ ðA � ðR3 þ R4Þð1 � cosbserrÞÞcotbserr
s8 ¼ s7 þ R4sinbserr
l ¼ s8

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð11Þ

Circular serration profile
The circular serration profile is defined as shown in Fig. 5. There

are two arcs of circles of radii R1 and R2 centered at O1 and O2 with
arc heights A1 (<R1) and A2 (<R2).

ThevariationinlocalradiusRs
i sð Þ for circular serration is given by:

if 0 � s < s1

Rs
i sð Þ ¼ R1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 � s � s1

2

� �2r
if s1 � s � s2

Rs
i sð Þ ¼ A1 þ A2 � R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 �

s1 þ s2
2

� s
� �2r

9>>>>>>=
>>>>>>;
; ð12Þ

wherein

s1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 2R1 � A1ð Þp

s2 ¼ s1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð2R2 � A2Þ

p
l ¼ s2
A ¼ A1 þ A2

9>>=
>>;: ð13Þ
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Having described methods to define serration profiles of
interest, we address next, how a change in the local radius
influences surface generation.

Multiple delays between serrated flutes

Due to the serration profile and changes in the local radius
across the height of the cutter, it is possible that the cut surface
generated previously, was made either by the same flute in the
previous pass or by other flutes in same pass. This leads to
multiple delays, where delay is the time elapsed between
formation of the current surface being generated and the previous
surface generated. If the current cut surface is made by ithflute at
time t and the previous cut surface was made by i þ lð Þth flute
at time t � ti;l zð Þ, then at the same angular position one can rewrite
the instantaneous radial immersion angle as (shown in Fig. 1b):

’i z; tð Þ ¼ ’iþl z; t � ti;lðzÞ
� �

; ð14Þ
wherein ti,l is the multiple delay term for serrated cutter and it is
defined as:

ti;lðzÞ ¼ ’i;lðzÞ
V

¼ 1
V

Xl�1

k¼1

’p; iþkð Þ mod NðzÞ: ð15Þ

This delay is used in the estimation of the improved local chip
thickness as discussed next.

Improved chip thickness model

The improved chip thickness model incorporates the trochoidal
trajectory of the cutter [33]. A trochoid is the curve described by a
fixed point P on a circle of radius r as it rolls along a straight line
[34]. There are three types of trochoidal paths. If the point P lies
inside the circle, on its circumference, or outside, then the trochoid
is described as being curtate, common, or prolate, respectively. The
value of r should be such that tangential velocity will be equal to
the linear feed of the centre of the cutter, i.e., the pure rolling
condition should be satisfied. For serrated end mills, the tangential
velocity at the periphery of the teeth is much higher than the
velocity of centre (rotational centre O, considering run-out) as
the feed rate is much lower than the diameter of the cutter. Hence
the imaginary circle will lie inside the cutter periphery, i.e., r < Ri(z,
t). Hence all the flutes follow a prolate trochoid path when the
cutter rotates at speed V rad/sec and is fed in the x-direction at a
feed of f mm/tooth/rev as shown in Fig. 6.

Along the circle of radius r we get Vr ¼ V
2pNf , where N is the

number of flutes. Hence we get r ¼ Nf
2p mm. Comparison of this

trochoidal path with conventional circular path considering radial
run-out is shown in Fig. 7. For circular path geometric radius Rð Þ
and radius of curvature rð Þ are the same, whereas for trochoidal
odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Fig. 6. Different types of trochoid paths traced by different points on the serrated
cutter with run-out.

Fig. 7. Difference between (a) trochoid and (b) circular path considering run-out.
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paths they are different, and the center of curvature always lies on
the base line over which the inside circle rolls.

Since the cutter actually traces a trochoidal path, the radius of
curvature for this path is obtained as described next.

Radius of curvature of trochoidal path

The position of the ith flute at height z at time t (point P) along
the trochoidal path is described as follows:

Pi z; tð Þ ¼ Xi z; tð Þ Yi z; tð Þ½ �T ¼ r’i z; tð Þ þ Ri zð Þsin’i z; tð Þ
Ri zð Þcos’i z; tð Þ

� �
: ð16Þ

Substituting Yi z; tð Þ by Ri zð Þ � di z; tð Þ½ � in Eq. (16), wherein
di z; tð Þ is the instantaneous radial depth of cut as shown in Fig. 8
(more details of which are discussed nextSection 3.2), we obtain:

Xi z; tð Þ ¼ rcos�1 Ri zð Þ � di z; tð Þ
Ri zð Þ

	 

þ f2Ri zð Þ � di z; tð Þgdi z; tð Þ½ �0:5: ð17Þ
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From Eqs. (16) and (17) the slope to the trochoidal path is
evaluated as follows:

tanfi z; tð Þ ¼ dYi z; tð Þ
dXi z; tð Þ ¼

dYi z;tð Þ
d’i z;tð Þ
dXi z;tð Þ
d’i z;tð Þ

¼ � f2Ri zð Þ � di z; tð Þgdi z; tð Þ½ �0:5
r þ Ri zð Þ � di z; tð Þ½ � : ð18Þ

Radius of curvature of the trochoidal path followed by the tool
teeth, which is measured from the rolling line (base line), is
governed by the following expression [35]:

ri z; tð Þ ¼
1 þ dYi z;tð Þ

dXi z;tð Þ
� �2� �3

2

d2Yi z;tð Þ
dX2

i z;tð Þ

; ð19Þ

wherein dYi z;tð Þ
dXi z;tð Þ ¼ tan’i z; tð Þ and d2Yi z;tð Þ

dX2
i z;tð Þ ¼

d
dYi z;tð Þ
dXi z;tð Þ

� �
dXi z;tð Þ ¼

d tan’i z;tð Þf g
d’i z;tð Þ
dXi z;tð Þ
d’i z;tð Þ

:

Using Eqs. (16)–(19) we finally obtain the following expression
of radius of curvature:

ri z; tð Þ ¼
fN
p Ri zð Þ � di z; tð Þð Þ þ Ri zð Þ2 þ fN

2p

� �2� �3
2

� fN
2p Ri zð Þ � di z; tð Þð Þ � Ri zð Þ2

: ð20Þ

Eq. (20) is used to calculate the chip thickness as discussed next.

Trochoidal chip thickness for serrated cutters

Elemental geometric static chip thickness hstg;cir z; tð Þ of the
serrated cutter with run-out considering circular approximation is
defined as the local distance between the current surface and the
next surface to be cut in the direction of normal vector ni zð Þ of the
flute as:

hstg;cir z; tð Þ ¼ minN
l¼1 Ri zð Þ � Riþl zð Þð Þ þ f i;l z; tð Þsin’i z; tð Þ� �

sinki zð Þ;
ð21Þ

wherein f i;l z; tð Þ is the corresponding feed motion during delay ti,l

between the ith flute and the i þ lð Þth flute and Ri zð Þ is rotational
radius due to run-out calculated from Eq. (3). The first two terms in
the right hand side of Eq. (21) are due to variation in local radius,
and the last term is due to rotation and linear feed motion of the
serrated cutter. Eq. (21) is derived considering conventional
circular trajectories of the tooth. In reality tooth path trajectories
are trochoidal. A schematic view of the chip thickness formation of
the serrated cutter with run-out due to actual trochoidal tooth path
trajectories is shown in Fig. 8.

Since the chip thickness is calculated using rotational radius,
the eccentricity line through geometric centre Og is not shown in
Fig. 8 for brevity. Position of the centre of serrated cutter at seven
different times: t1< t2< t3< t4< t5< t6< t7 are shown by: O1, O2, O3,
O4, O5, O6, O7 points respectively in Fig. 8. Inner circles are drawn
only at t1 and t4. Assume that the current cut surface is made by the

ith flute and next surface to be cut is made by the i þ lð Þth flute due
to multiple delays of the serrated cutter. Positions of the ith flute in
the current surface at the time t1, t2, t3 and t5 are denoted by

Pi
1; Pi

2; Pi
3 and Pi

5, respectively. At time t4, t6 and t7 the position of

i þ lð Þth flute in next surface to be cut (red colour thick dashed line)

are denoted by Piþl
4 ; Piþl

6 and Piþl
7 respectively. When the ith flute is in

between positions at times t3 and t5, then the i þ lð Þth comes into
the cutting path at time t4, as is evident in Fig. 8.

Radius of curvature ri z; tð Þ and radius of geometry Ri zð Þ are

drawn at instants of Pi
3 and Piþl

6 . Corresponding center of curvatures
odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.

https://doi.org/10.1016/j.cirpj.2019.03.001
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Fig. 8. Trochoidal chip thickness calculation for serrated cutter with run-out. The legends are as follows: the current surface (black colour thick solid line) made by the ith

flute; the next surface (red colour thick dashed line) made by the i þ lð Þth flute; Geometric radius (solid line); Radius of curvature (thin dashed line).
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are detonated by Ci
3 and Ciþl

6 . Hence we obtain Piþl
6 Ciþl

6 ¼ riþl z; t6ð Þ;
Piþl
6 O6 ¼ Riþl zð Þ Pi

3C
i
3 ¼ ri z; t3ð Þ and Pi

3O3 ¼ Ri zð Þ. Considering
trochoidal trajectories, the elemental trochoidal geometric static
chip thickness is:

hst
g;tro z; tð Þ ¼ minN

l¼1 Ri zð Þ � Riþl zð Þð Þ þ htro z; tð Þ½ �sinki zð Þ; ð22Þ

wherein htro z; tð Þ is the relative radial distance between two
corresponding trochoidal trajectories along the radius of curvature
shown in Fig. 8, and can be expressed as:

htro z; tð Þ ¼ Piþl
6 � Pi

3 ¼ Ciþl
6 Piþl

6 � Ciþl
6 Pi

3 ¼ riþl z; t6ð Þ � Ciþl
6 Pi

3: ð23Þ

The terms riþl z; t6ð Þ and Ciþl
6 Pi3 in Eq. (23) are unknowns, and

can be evaluated from the geometry in Fig. 8, wherein DCiþl
6 Pi

3C
i
3,

Pi
3C

i
3 ¼ ri z; t3ð Þ and Ci

3C
iþl
6 ¼ A1. Assuming ffCiþl

6 Pi3C
i
3 ¼ e, and using

the sine rule for DCiþl
6 Pi

3C
i
3, we can write:

Ciþl
6 Pi

3

sin p � uiþl z; t6ð Þ þ p
2 þ e

� �
 � ¼ ri z; t3ð Þ
sin uiþl z; t6ð Þ þ p

2

� � ¼ A1

sine : ð24Þ

From Eq. (24) we can derive the following two equations:

sine ¼ A1cosuiþl z; t6ð Þ
ri z; t3ð Þ ; ð25Þ

and

Ciþl
6 Pi

3 ¼ cos uiþl z; t6ð Þ þ eð Þ ri z; t3ð Þ
cosuiþl z; t6ð Þ

¼ ri z; t3ð Þ cose � sinetanuiþl z; t6ð Þ½ �

¼ ri z; t3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A2

1cos2uiþl z; t6ð Þ
r2
i z; t3ð Þ

s
� A1sinuiþl z; t6ð Þ

ri z; t3ð Þ

" #
: ð26Þ

Substituting Eq. (26) into Eq. (23), and simplifying, we can write:

htro z; tð Þ ¼ riþl z; t6ð Þ þ A1sinuiþl z; t6ð Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
i z; t3ð Þ � A2

1cos2uiþl z; t6ð Þ
q

: ð27Þ
Please cite this article in press as: P. Bari, et al., Improved chip thickness m
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Forconvenience, theunknowntermsintherightsideofEq. (27) are
to be determined as functions of the localradius and immersionangle.

TakingaverticalprojectionofPiþl
6 Ciþl

6 and Piþl
6 O6 along the dotted line

O6C
iþl
6 (shown in Fig. 8) we can derive that riþl z; t6ð Þsinuiþl z; t6ð Þ ¼

r þ Riþl zð Þsin’iþl z; t6ð Þ, form which we obtain:

uiþl z; t6ð Þ ¼ sin�1 r þ Riþl zð Þsin’iþl z; t6ð Þ
riþl z; t6ð Þ

� �
: ð28Þ

In DCiþl
6 Piþl

6 O6 (see Fig. 8), using the cosine rule we can evaluate:

riþl z; t6ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

iþl zð Þ þ 2rRiþl zð Þcos’iþl z; t6ð Þ
q

: ð29Þ

Similarly in DCi
3P

i
3O3 (see Fig. 8), using again the cosine rule we

can show:

ri z; t3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

i zð Þ þ 2rRi zð Þcos’i z; t3ð Þ
q

: ð30Þ

HavingobtainedexpressionsforallunknowninEq.(27) intermsof
the local radius and immersion angle, but for A1, A1 can be evaluated
by first evaluating A2. From Fig. 8, it is clear that the delay time ti,l
can be between t1 and t4 or between t5 and t7. Hence we obtain

Pi
1P

iþl
4 ¼ O1O4 ¼ Pi5P

iþl
7 ¼ O5O7 ¼ f i;l z; tð Þ ¼ A. Now, in the time gap

between t1 and t2, the tool center moves by O1O2 and the ith flute
rotates by ’i z; t2ð Þ which is measured at O2. Hence we obtain
O1O2 ¼ r’i z; t2ð Þ. Similarly O1O3 ¼ r’i z; t3ð Þ and O4O6 ¼ r’iþl z; t6ð Þ.
In the time gap between t2 and t4, the tool center moves by O2O4

denoted by A2 in Fig. 8. A2 can hence be written as follows:

A2 ¼ O2O4 ¼ O1O4 � O1O2ð Þ ¼ f i;l z; tð Þ � r’i z; t2ð Þ: ð31Þ
Similarly, in the time gap between t3 and t6, the tool center

moves by O3O6 denoted by A1 in Fig. 8. A1 can hence similarly be
evaluated as:

A1 ¼ O3O6 ¼ O1O4 � O1O3ð Þ þ O4O6
¼ f i;l z; tð Þ � r’i z; t3ð Þ þ r’iþl z; t6ð Þ: ð32Þ
odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Having obtained all the terms in the right hand side of Eq. (27),
as desired, to further simplify, we find the relation between
’iþl z; tj

� �
and ’i z; tið Þ by assuming j ¼ ’i z; tið Þ � ’iþl z; tj

� �
, wherein

the index j that belongs to the i þ lð Þth path, is linked to the index i
that belongs to the ith path by such way that when i = 2, 3 and
5 then the corresponding values of j = 4, 6 and 7. As the
tooth proceeds along its trochoidal path, the angle j varies. At
the start of the engagement, ’iþl z; tj

� � ¼ ’iþl z; t4ð Þ ¼ 0; ’i z; tið Þ ¼
’i z; t2ð Þ and j ¼ ’i z; t2ð Þ. At an intermediate time, ’iþl z; tj

� � ¼
’iþl z; t6ð Þ; ’i z; tið Þ ¼ ’i z; t3ð Þ and j = g (shown in Fig. 8)
¼ ’i z; t3ð Þ � ’iþl z; t6ð Þ. At exit of the engagement
’iþl z; tj

� � ¼ ’iþl z; t7ð Þ ffi p
2, ’i z; tið Þ ¼ ’i z; t5ð Þ ffi p

2 and j = 0. There-
fore assuming a linear relation between j and ’iþl z; tj

� �
we determine the expression of j by linear interpolation as
follows:

j ¼ ’i z; t2ð Þ 1 � 2’iþl z; tj
� �
p

	 

¼ ’i z; tið Þ � ’iþl z; tj

� �
: ð33Þ

Rearranging Eq. (33) we obtain the relation between ’iþl z; tj
� �

and ’i z; tið Þ as follows:

’iþl z; tj
� � ¼ ’i z; tið Þ � ’i z; t2ð Þ� �

1 � 2’i z;t2ð Þ
p

h i ; ð34Þ

wherein assuming very small angle, ’i z; t2ð Þ (shown in Fig. 8) can
be evaluated from Eq. (16) as follow:

’i z; t2ð Þ ¼ f i;l z; tð Þ
r þ Ri zð Þ : ð35Þ

Using Eqs. (34) and (35) we can now express the term ’iþl z; t6ð Þ of
the Eq. (29) in term of ’i z; t3ð Þ. Substituting Eqs. (28)–(32) into
Eq. (27) we obtain an expression of htro z; tð Þ in terms of ’i z; t3ð Þ as
below:
htro z; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

iþl zð Þ þ 2rRiþl zð Þcos
’i z; t3ð Þ � f i;l z; tð Þ

r þ Ri zð Þ
� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
vuuuuuut

þ f i;l z; tð Þ � r’i z; t3ð Þ þ r
’i z; t3ð Þ � f i;l z; tð Þ

r þ Ri zð Þ
� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
0
BBB@

1
CCCA�

r þ

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

iþ

vuuuuuut

� r2 þ R2
i zð Þ þ 2rRi zð Þcos’i z; t3ð Þ � f i;l z; tð Þ � r’i z; t3ð Þ þ r

�0
BBB@

8>>><
>>>:

�

R2
iþl zð Þcos2

’i z; t3ð Þ � f i;l z; tð Þ
r þ Ri zð Þ

� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� � þ 2rRiþl zð Þ cos
’i z; t3ð Þ �
� 

1 � 2f i
p r þð 

� 

0
BBB@

0
BBB@

r2 þ R2
iþl zð Þ þ 2rRiþl zð Þcos

’i z; t3ð 

� 

1 �
p

� 

0
BBB@
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In Eq. (36) the term ’i z; t3ð Þ is an instantaneous angle at a general
position, hence it can be replaced by ’i z; tð Þ. Further simplifying
Eq. (36) we finally obtain the following compact form for the
relative radial distance between two corresponding trochoidal
trajectories along the radius of curvature as:

htro z; tð Þ ¼ V þ A1 r þ Riþl zð ÞsinWð Þ½ �
V0:5

� V �
A2
1 R2

iþl zð Þcos2W þ 2
ffiffiffi
2

p
rRiþl zð Þcos W þ p

4

� �� �
V

2
4

3
5
1=2

;

ð37Þ
wherein

W : ¼
’i z; tð Þ � f i;l z; tð Þ

r þ Ri zð Þ
� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
A1 ¼ f i;l z; tð Þ � r’i z; tð Þ þ rW
V : ¼ r2 þ R2

iþl zð Þ þ 2rRiþl zð ÞcosW

9>>>>>>>=
>>>>>>>;
: ð38Þ

Substituting Eqs. (37) and (38) into Eq. (22) we finally
determine the geometric static chip thickness hstg;tro z; tð Þ for
serrated cutters considering trochoidal trajectories followed by
the tool teeth. This however, does not signify the actual physical
chip thickness. Elemental physical static chip thickness is
calculated by multiplying two screening functions as follows:

hsti z; tð Þ ¼ gi z; tð Þhst
g;tro z; tð Þ; ð39Þ

wherein, gi z; tð Þ ¼ gri;i z; tð Þgh;i z; tð Þ, is the product of the screening
function due to radial immersion:

gri;i z; tð Þ ¼ 1; if ’en � ’i z; tð Þmod 2p
� � � ’ex

0; otherwise

�
ð40Þ
 Riþl zð Þsin
’i z; t3ð Þ � f i;l z; tð Þ

r þ Ri zð Þ
� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
1
CCCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l zð Þ þ 2rRiþl zð Þcos

’i z; t3ð Þ � f i;l z; tð Þ
r þ Ri zð Þ

� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �

’i z; t3ð Þ � f i;l z; tð Þ
r þ Ri zð Þ

 �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
1
CCCA

2

f i;l z; tð Þ
r þ Ri zð Þ

�
;l z; tð Þ

 Ri zð ÞÞ
� � sin

’i z; t3ð Þ � f i;l z; tð Þ
r þ Ri zð Þ

� �

1 � 2f i;l z; tð Þ
p r þ Ri zð Þð Þ

� �
1
CCCA
1
CCCA

Þ � f i;l z; tð Þ
r þ Ri zð Þ

�
2f i;l z; tð Þ

 r þ Ri zð Þð Þ
�
1
CCCA

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

1=2

: ð36Þ
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and, the screening function due to missed cut effect:

gh;i z; tð Þ ¼ 1; if hstg;tro z; tð Þ 	 0
0; otherwise

�
: ð41Þ

The calculation of exit angle (’ex) and entry angle (’en) defined
in Eq. (40) is discussed in the next section.

When the geometric chip thickness (see Eq. (27)) becomes
negative due to the inclusion of variation of local radius in chip
thickness, then those corresponding flute(s) do not cut the surface
because resultant movement of cutter occurs in backward
direction. This is called the missed cut effect which causes non-
uniform chip thickness, and can also be understood from Fig. 9. In

Fig. 9 the next surface to be cut made by the i þ lð Þth flute lags
behind the current surface made by the ith flute and hence a missed
cut occurs. The irregular chip distribution caused by missed-cut-
effect of serrated cutters produces periodic cutting forces with
non-uniform amplitudes, which contributes to a reduction in
instantaneous cutting forces, as discussed in the subsequent
section.

Updated entry and exit angles

Due to actual trochoidal tool path and the influence of run-out,
the local entry and exit angles for the serrated cutter are changed.
The refined exit angle (’ex) made at the point Pi is shown in Fig. 10
for up-milling case. The dashed line in Fig. 10 is made by the next

i þ lð Þth tooth and the solid line path is made by the current (ith)
tooth.

During the delay time ti,l, radius of curvature of the serrated

cutter moves from Ci+l to Ci . From Fig. 10 we get CiþlPiþl ¼ riþl zð Þ;
CiPi ¼ ri zð Þ; CiþlCi ¼ f i;l and the geometrical chip thickness

hst
g;ie z; tð Þ ¼ PiPiþl � CiPi: Hence we obtain

CiPiþl ¼ CiPi � PiPiþl 
 CiPi ¼ ri zð Þ. Finally from DCi+lCiPi+l made
of sides f i;l; ri zð Þ and riþl zð Þ, the exit angle (’ex) using the cosine
rule can be shown to be:

’ex ¼ sin�1
riþl zð Þ� �2 � ðri zð ÞÞ2 � f 2i;l z; tð Þ

h i
2f i;l z; tð Þri zð Þ : ð42Þ

From Eq. (42) we observe that exit angle ’ex :¼ ’i
exðzÞ depends

on the tooth and height of the serrated cutter considering run-out
and trochoidal tool path. For the down-milling case, the entry
Fig. 9. Possible missed-cut effect of the serrated tool considering run-out.
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angle, ’en is also modified as follows:

’en ¼ p � sin�1
riþl zð Þ� �2 � ðri zð ÞÞ2 � f 2i;l z; tð Þ

h i
2f i;l z; tð Þri zð Þ : ð43Þ

However, the effect of run-out on the updated entry and exit
angles is negligible because the difference of local radius due to
run-out is very small with respect to radial depth of cut. Hence,
even though we present the updated formulations for these angles
in Eqs. (42) and (43), these are ignored in the prediction of cutting
forces.

Force model for serrated cutters

All differential elemental forces are calculated in each element
of the discretized serrated tool with run-out as shown in Fig. 11.
Fig. 11. (a) Differential forces acting on an infinitesimal dz axial segment on the ith

edge of the serrated cutter with run-out. (b) Variation of cutting force along flute
and height.
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The cutting forces for the ith flute at a height z are found in the
radial-tangential-and-axial, i.e., rta directions as shown in Fig. 11a.
Due to variation of the local tool geometry along the serration and
along the axis of the tool, this rta frame changes its orientation as
shown in Fig. 11b. Differential forces evaluated in the rta frame are
given by:

dFrta;i z; tð Þ ¼ Kchst
i z; tð Þ þ Ke

h i dz
sinki zð Þ gi z; tð Þ; ð44Þ

wherein primary cutting force coefficient vector is:

Kc ¼ Kc
r Kc

t Kc
a

� �T
ð45Þ

and, the edge cutting force coefficient vector is:

Ke ¼ Ke
r Ke

t Ke
a

� �T
: ð46Þ

These coefficients can either be identified mechanistically (as is
done presently) for a given tool geometry and workpiece material
combination, and for a given range of cutting conditions [36], or
can be also obtained using an orthogonal to oblique transforma-
tion, from a given orthogonal database [37], as was done elsewhere
in [15,16,19].

Differential forces evaluated in the rta frame are transformed to
the fixed machine coordinate frame (xyz) as follows:

dFxyz;i z; tð Þ ¼ Txr;i z; tð ÞdFrta;i z; tð Þ; ð47Þ
wherein the force transformation matrix is given by:

Txr;i z; tð Þ ¼
�sin’isinki �cos’i �sin’icoski
�cos’isinki sin’i �cos’icoski

coski 0 �sinki

2
664

3
775; ð48Þ

with ’i :¼ ’i z; tð Þ; ki :¼ ki zð Þ:
The total lumped cutting force vector acting on the cutting tool

in the x, y and z directions is calculated by integrating the
differential force vector along flute and summing the contribution
of all flutes as follows:

Fxyz tð Þ ¼ Fx Fy Fz½ �T ¼
XN
i¼1

Z ap

0
dFxyz;i z; tð Þ: ð49Þ
Table 1
Geometry of the serrated cutters

Serration profile Tool diameter (D) Serration Parameters Ini

Trapezoidal 16 A = 0.63mm;
L1 = 0.97 mm;
L2 = 0 mm;
R1 = 0.06 mm;
R2 = 0.39mm;
R3 = 0.39 mm;
R4 = 0.06 mm;
αserr = 39�;
βserr = 40�;
l = 2.82 mm

[0 

Circular 16 A1 = 0.13 mm;
A2 = 0.27 mm;
R1 = 0.3 mm;
R2 = 0.63 mm;
A = A1 + A2

= 0.4 mm;
l = 1.5 mm

[0 
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This force model that incorporates an improved chip thickness
model considering the trochoidal path traced by the cutter, and
also includes the influence of run-out is used to predict cutting
forces. We further contrast these forces with those predicted by the
approximate circular path model and also with experimental
results, as discussed next.

Comparison of chip thickness and resultant forces

We discuss here the comparison of chip thickness predicted
with the proposed improved model and the approximate model,
and the corresponding resultant forces for both types of serrated
cutters under investigations. Serration parameters for both cutters
are listed in Table 1. These were measured on an Alicona make 3D
surface profilometer. Cutting force coefficients used in the model
were identified mechanistically on a 3 axis AMSL make CNC
machine instrumented with a table top dynamometer as shown in
Fig. 17. The run-out during measurements was inferred to be less
than 5 mm, and hence its influence on identification is ignored.
Two materials were cut – Al7075, and a medium carbon steel. The
Al7075 workpiece was cut with the 3-fluted serrated end mill
that had a trapezoidal serration profile, and steel was cut with the
4-fluted serrated mill that had a circular serration profile. The
identified coefficients are listed in Table 2.

Using the measured serration profiles and the coefficients, chip
thickness and resultant forces in the x � y plane

i:e:; Fxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2x þ F2y

q� �
are compared in Figs. 12 and 13 for the

trapezoidal profiled serrated cutter, and in Figs. 14 and 15 for the
circular profiled serrated cutter. Comparisons are also made for the
case of zero run-out and for a run-out of m = 30mm and d = 30.
Though investigations were carried out for a range of feeds and
radial engagements, results in Figs. 12 and 14 are limited to only a
representative subset of low feed (f = 0.02 mm/tooth/rev), and full
immersion, i.e., slotting. A summary of comparisons for a range of
operating conditions is made in Figs. 13 and 15.

Comparisons for the trapezoidal profiled serrated cutter

Comparisons in Fig. 12 clearly show that the differences
between the improved chip thickness model and the approximate
chip thickness model are negligible, varying at most by 0.17%.
tial phase shift (c) No of flutes (N) Helix angle (h) Rake angle

120 240]� 3 40� 10�

90 180 270]� 4 40� 10�

odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Table 2
Mechanistically identified coefficients

Material cut Identified coefficients

Kc
t

(N/mm2)
Kc
r

(N/mm2)
Kc
a

(N/mm2)
Ke
t

(N/mm)
Ke
r

(N/mm)
Ke
a

(N/mm)

Al7075 824 225 15 24 28 2
Steel 1925 437 �216 24 20 �9

Fig. 13. Difference in maximum resultant cutting force with changing feed and
radial immersion for the 3-fluted trapezoidal profiled serrated cutter with no run-
out.
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These comparisons were made for slot cutting AL7075 at a depth of
cut of 2 mm and at speed of 6000 rpm with a feed of 0.02 mm/
tooth/rev. For the case with run-out included, see Fig. 12b the chip
thickness distribution changes when compared to the case of no
run-out in Fig. 12a. This change in the chip thickness distribution
with run-out contributes to a change in the profile of the resultant
cutting force in Fig.12d when compared to the case of no run-out in
Fig. 12c, however the difference in maximum forces remains
negligible (as it is less than 1%). This suggests that the approximate
circular chip thickness model remains valid, and that run-out too
has a negligible influence on cutting forces for serrated cutters.

Since Fig. 12 shows results only for one level of feed and for slot
cutting, differences between maximum resultant cutting forces
due to the proposed improved chip profile and the approximate
circular chip profile for a range of feeds (0.02–0.25 mm/tooth/rev)
and radial engagements (30–100%) can be understood from Fig. 13.
All results in Fig. 13 are for the case of no run-out. For a fixed
engagement, the differences between the proposed model and the
approximate model are observed to increase with feed rate,
becoming at most �1.4%, whereas for a fixed feed rate, differences
in general increase with engagement, becoming also at most
�1.4%. These trends are true for chip thickness too. The observed
Fig.12. Comparison of chip thickness and forces for the 3-fluted trapezoidal profiled serra
tool tip with run-out. Trochoidal chip profile represented by thick lines, and circular app
with run-out.
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differences are consistent with those reported for regular end
mills, elsewhere in [1,5].

Comparisons for the circular profiled serrated cutter

Similarly comparing the differences in chip thickness formu-
lations with the circular profiled 4-fluted serrated cutter in Fig. 14
for slot cutting a medium carbon steel at a depth of cut of 2 mm and
at speed of 1600 rpm with a feed of 0.02 mm/tooth/rev, we find the
difference between both chip profiles is negligible, varying by at
most 0.18%. And, as before, even though there is a change in the
ted cutter. (a) chip thickness at the tool tip with no run-out; (b) chip thickness at the
roximation with thin lines. (c) resultant forces with no run-out; (d) resultant forces

odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Fig.14. Comparison of chip thickness and forces for the 4-fluted circular profiled serrated cutter. (a) chip thickness at the tool tip with no run-out; (b) chip thickness at the tool
tip with run-out. Trochoidal chip profile represented by thick lines, and circular approximation with thin lines. (c) resultant forces with no run-out; (d) resultant forces with
run-out.

Fig. 15. Difference in maximum resultant cutting force with changing feed and
radial immersion for the 4-fluted circular profiled serrated cutter with no run-out.
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chip load distribution across the teeth for the case with run-out
(see Fig. 14(a–b)), the change in the resultant cutting forces are
negligible (see Fig. 14(c–d)). Furthermore, the summary of the
differences for changing feeds and engagements, as shown in
Fig. 15 for the case of no run-out is consistent with earlier
observations, with the maximum difference observed to be �1.7%.

Our findings suggest that the approximate circular chip
thickness model remains valid for serrated end milling, and that
differences between maximum resultant cutting forces due to
the proposed improved chip thickness model and the approximate
model is maximum at high feed, which is consistent with the
passing observations made in [13]. We also find that even a
Please cite this article in press as: P. Bari, et al., Improved chip thickness m
cirpj.2019.03.001
moderate level of run-out on serrated cutters does not adversely
change the chip load or the force profile. These model predicted
observations are confirmed through experiments Section 6 after
the discussion of run-out measurement. Section 6.

Inferring run-out on serrated cutters from measurements

Since radial run-out results in a local change in the radius of the
cutter, its effect is easy to confound with the change in the local
radius on account of the serration geometry. To discern the change
in radius due to run-out from that of the change in radius due to
serration geometry, we infer radial run-out on serrated tools using
a combination of measurements and scanned geometry of the
serration profiles.

The run-out inference setup for the representative 3-flute
trapezoidal serrated cutter is shown in Fig. 16(a). Local change in
radius is measured using a dial gauge in static condition (zero rpm)
at different levels. The schematic of measurement locations at
different serration heights is shown in Fig. 16(b), and the
corresponding cross-sectional views are shown in Fig. 16(c).
Differences of rotational radius Ri(z) between different flutes
at different heights are measured by a dial gauge probe, and the
differences in geometrical radius Rg

i zð Þ between different flutes
at different heights are evaluated from measurements on an
Alicona make 3D surface profilometer.

The detailed procedure to infer the radial run-out is as under:


 At first, we measure the difference of local radius, Ri(z) between
the three flutes at z = 0 mm (tool tip). The geometrical radius
Rg
i ðzÞ is the same for each flute at this location, being 8 mm, due

to the initial land on the cutter, as shown in Fig. 16(b–c).
odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Fig. 16. (a) Run-out inference setup for 3-flute trapezoidal serrated cutter (b) schematic of measurement locations at different serration heights (c) Cross-sectional views of
the serrated cutter at corresponding axial heights.
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 We then measure the local radius at the z = 5 mm location. We
deliberately choose this location since the third flute on this
three flute cutter has an upper land at this location, and the
geometrical radius, Rg

i ðzÞ ¼ 8 mm. At this same location, the first

and the second flutes have a geometrical radius, Rg
i ðzÞ < 8 mm –

as is evident from Fig. 16(b–c), and since the diameter of dial
gauge probe is of the order of length (width) of the trough,
measurement of the local radius of the first and second flute at
this location is not feasible.


 Since we can measure the local radius only at the sections on the
flutes where there is an upper land, and because this is a three
fluted cutter with serration profiles phase shifted in a regular
manner, i.e., with a phase shift of [0 120 240]�, we next measure
the local radius of the second flute where there is an upper land,
i.e., at the z = 5 + l/3 =5.94 mm, and where the first flute has an
upper land, i.e., at the z = 5 +2l/3 =6.88 mm locations, wherein l
is the wavelength of the trapezoidal serration.
Table 3
Inferred run-out parameters for three-fluted trapezoidal serrated cutter

Positions Difference of rotatio
radius Ri(z) between
different flutes at di
heights measured by
gauge probe

z = 0 mm (initial land portions, i.e., non-serrated part) D1=R1(0)–R2(0) = 1 m
D2=R2(0)–R3(0) = 1 m
D3=R3(0)–R1(0) = �2

Measured at z = 5 mm for 3rd flute, at z = 5 + l/3 = 5.94 mm
for 2nd flute, at z = 5 + 2l/3 = 6.88 mm for 1st flute
(at upper lands of serrated part)

D1 = R3(5)–R2(5.94) =
D2=R2(5.94)–
R1(6.88) = �1 mm,
D3=R1(6.88)–R3(5) = 

Shank – 

Please cite this article in press as: P. Bari, et al., Improved chip thickness m
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 We next measure the radius on the cylindrical shank part of the
tool. All measurements are tabulated in Table 3.

Substituting these measured values into Eq. (3), we calculate
the run-out parameters, m (radial deviation) and d (run-out angle).
Evaluated parameters are also listed in Table 3.

Though the above described procedure is specific to the three-
fluted trapezoidal serrated end mill, it can be easily generalized.
The axial locations where local radius is to be measured depends
on the number of flutes and initial phase shift of serrations. For
instance, for a four-fluted serrated cutter with a regular phase shift
of [0 90 180 270]�, locations from the upper land of the first flute,
will be indexed by l/4, 2l/4 and 3l/4, for the second, third, and
fourth flutes respectively.

From the Table 3 we see the value of m is 1mm which is very low
and constant throughout the axial height, i.e., rotational and
geometrical axis are parallel which means there is no axial tilt.
nal

fferent
 dial

Difference of geometrical radius Rg
i ðzÞ

between different flutes at different
heights measured by Alicona 3D

Identified m and d

m,
m,

 mm

D
g
1 ¼ Rg

1ð0Þ � Rg
2ð0Þ ¼ ð8 � 8Þmm ¼ 0mm,

D
g
2 ¼ Rg

2ð0Þ � Rg
3ð0Þ ¼ ð8 � 8Þmm ¼ 0mm,

D
g
3 ¼ Rg

3ð0Þ � Rg
1ð0Þ ¼ ð8 � 8Þmm ¼ 0mm

m = 1mm, d = 33�

 0 mm,

1 mm

D
g
1 ¼ Rg

3ð5Þ � Rg
2ð5:94Þ ¼ ð8 � 8Þmm ¼ 0mm,

D
g
2 ¼ Rg

2ð5:94Þ � Rg
1ð6:88Þ ¼ ð8 � 8Þmm ¼ 0mm,

D
g
3 ¼ Rg

1ð6:88Þ � Rg
3ð5Þ ¼ ð8 � 8Þmm ¼ 0mm

m = 1mm, d = 33�

– m = 1mm
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Fig. 17. Experimental validation of cutting forces.
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Hence we have neglected run-out in the experimental validation as
it is less than 5 mm for both tools. We also ignore any dynamic run-
out influences, if present.

Experimental validation of cutting forces

Model predicted forces for both types of chip thickness profiles
for both types of serrated cutters under investigation are
Fig. 18. Experimental validation of (a) Fx and (b) Fyusing the 3-fluted trapezoidal
serrated cutter for cutting Al7075.

Please cite this article in press as: P. Bari, et al., Improved chip thickness m
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experimentally validated using the setup as described earlier,
and as shown in Fig. 17. Measured forces were low-pass filtered,
and these forces are compared with model predictions in Figs. 18
and 19. Both cutters were mounted in a power-milling-chuck type
holder, and the measured run-out at the tool tip was observed to be
less than 5 mm, and since run-out was observed to be insignificant,
it was ignored presently in the models for comparison with
experiments.

Since serrated cutters are more effective at low feeds than at
high, sample results for low feed cutting are shown in Figs. 18 and
19 for the 3-fluted trapezoidal profiled serrated cutter and the 4-
fluted circular profiled serrated cutter, respectively. As before,
Al7075 was cut with the 3-fluted cutter and medium carbon steel
with the 4-fluted cutter. Al7075 was cut with a depth of cut of 2
mm at a speed of 6000 rpm in the 50% up-milling mode with a feed
of 0.05 mm/tooth/rev. And, steel was cut in the 50% down-milling
mode with a depth of cut of 2 mm at a speed of 1600 rpm with a
feed of 0.05 mm/tooth/rev.

As is evident from the comparisons in Figs. 18 and 19, the
difference between forces predicted with the proposed improved
chip thickness model and the approximate chip thickness model
remain negligible, and both compare very well with the
experimentally measured forces. This confirms our model based
investigations shown earlier. Even though the proposed model is
complete and more representative of the actual cutting taking
place, the circular chip thickness model is indeed a reasonable
approximation for predicting cutting forces with serrated cutters.
Fig. 19. Experimental validation of (a) Fx and (b) Fy using the 4-fluted circular
serrated cutter for cutting steel.

odel for serrated end milling, NULL (2019), https://doi.org/10.1016/j.
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Conclusion

A comprehensive geometric model for chip thickness that
traces the actual trochoidal path followed by milling cutters was
presented for serrated tools. The model factored in the influence of
radial run-out on the chip thickness distribution. We also
presented a method to infer radial run-out on serrated tools using
a combination of measurements and scanned geometry of the
serration profiles. Though we ignored axial run-out in our model,
from radial run-out inference, we figured that for low levels of
radial run-out, the axial run-out is negligible, and hence does not
adversely influence our model. Even though we limited our
investigations in this paper to serrations only of the trapezoidal
and circular kind, models presented are generalized, and can be
extended to serrated cutters with different geometries.

Detailed analysis of the proposed improved chip thickness
model and its influence on forces was presented for a range of
cutting feeds and engagements, for cutting of Aluminum and steel,
at different speeds. We observed that the difference between
cutting forces due to the proposed trochoidal chip thickness and
the circular approximation in general increase with feed and radial
engagements. The difference however was observed to be
negligible, with the maximum difference being at most 2%. This
was supported by experiments. For run-outs of the order of feed
0.02 – 0.05 mm/tooth/rev, or less, we further observed that cutting
force profiles and levels were not significantly altered, changing at
most by 1%, suggesting that serrated cutters may be used even with
moderate levels of run-outs when the feed is low.

Even though the proposed model is complete and more
representative of the actual cutting taking place, we conclude
that the circular chip thickness model is indeed a reasonable
approximation for predicting cutting forces with serrated cutters.
Our results can instruct the design and use of the next-generation
of serrated cutters that preferentially reduce cutting forces and
make easier the high-performance machining of difficult-to-cut
materials across industries.
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